Rar скачать для windows 10 c ключом. Видео по активации WinRAR ключом. Параметры командной строки

Помехи в радиоканалах

В процессе прохождения по каналу связи сигнал подвергается искажениям. Необратимые искажения формы сигнала в канале являются следствием воздействия помех. Помехой мы назовем любое случайное воздействие в канале связи на сигнал, приводящее к неисправимому искажению его формы. В общем случае характер воздействия помехи на сигнал можно выразить через оператор :

В частности, если , оператор имеет характер суммирования, помеха называется аддитивной . Если , помеха является мультипликативной . В более общем случае .

Источниками аддитивных помех являются физические явления, порождающие мешающие воздействия, способные исказить форму полезного сигнала. Среди источников помех следует отметить атмосферные (связанные с грозовыми явлениями), индустриальные (излучения электрических промышленных и медицинских приборов, систем автомобильного зажигания и т. д.), космические (излучения космических объектов), помехи от посторонних радиостанций и т. д. В любом канале связи типичными являются помехи флуктуационного характера, связанные с электрическими колебаниями шумового характера, возникающие вследствие электрических возмущений на уровне молекулярных и атомарных структур физических компонент, составляющих элементную базу функциональных блоков системы связи.

По характеру процессов аддитивные помехи можно разделить на гладкие, непрерывные, широкополосные по спектру частот (тепловые, флуктуационные шумы); импульсные (хаотические последовательности импульсов) - помехи в виде одиночных импульсов, следующие один за другим через такие промежутки времени, что переходные процессы в канале от одного импульса успевают практически завершиться к моменту прихода следующего импульса; сосредоточенные по спектру излучений - сигналы посторонних радиостанций, называемые иногда структурно-детерминированными в предположении известного характера модуляции мешающих радиосигналов; различного рода прицельные помехи - помехи, создаваемые противником.

Мультипликативные помехи чаще всего порождаются явлениями, связанными с особыми условиями распространения радиоволн в атмосфере. Случайные изменения неоднородностей окружающей среды - тропосферные, ионосферные, - приводящие к флуктуациям амплитуд и фаз канальных сигналов, многолучевость радиосигналов, приходящих в точку приема, являются основной причиной возникновения мультипликативных помех.

В радиолокации и радионавигации помехи принято делить на активные - помехи от различных мешающих источников - и пассивные помехи, возникающие в результате переотражения зондирующих сигналов от мешающих объектов. Кроме того, различают преднамеренные специально организованные противником - и непреднамеренные. Рассмотренные выше шумовые, индустриальные и взаимные помехи относятся к активным непреднамеренным. Прицельные или преднамеренные помехи создаются противником с помощью специальных средств радиопротиводействия. Они также могут иметь характер активных помех, создаваемых радиопередатчиками противодействия, либо пассивных помех, возникающих в результате переотражения от искусственных мешающих объектов (к ним можно отнести дипольные отражатели, ложные цели, разбросанную в воздухе металлическую фольгу и др.).

Различные математические модели помех будут рассмотрены далее.

В реальном канале связи сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала связи определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Если эти линейные и нелинейные искажения обусловлены известными характеристиками канала, то их в принципе можно устранить путем соответствующей коррекции.

Помехи в отличие от искажений имеют случайный характер, они заранее неизвестны и поэтому не могут быть полностью устранены. Подпомехой понимается любое воздействие на полезный сигнал, затрудняющее его прием. Помехи весьма разнообразны по своему происхождению и физическим свойствам. Это могут быть атмосферные помехи, обусловленные электрическими процессами в атмосфере (грозовые разряды и другие), которые в наибольшей степени влияют на сигналы в радиоканалах. Энергия этих помех сосредоточена в основном в области длинных и средних волн. Имеют место также индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях различных электрических устройств промышленного назначения (электротранспорт, системы зажигания двигателей, медицинские установки и т.д.). Существуют помехи от посторонних радиостанций и каналов, обусловленные нарушением регламента распределения рабочих частот, недостаточной стабильностью этих частот и плохой фильтрацией гармоник сигнала.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных шумов часто обуславливается автоматической коммутацией и перекрестными наводками. Прерывание связи это явление, при котором сигнал в линии резко затухает или совсем исчезает. Основной их причиной являются нарушения контактов в реле.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в различных элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн. В этом диапазоне имеют место и космические помехи, связанные с электромагнитными процессами на Солнце, звездах.

В общем случае влияние помехи N(t) на сигнал U(t) можно выразить оператором

В частном случае оператор f вырождается в сумму

и помеха называется аддитивной.

Когда оператор f представлен в виде произведения

помеха называется мультипликативной.

реальных сигналах имеют место оба вида помех.



Среди аддитивных помех особое место занимает флуктуационная помеха или флуктуационный шум, представляющий собой случайный процесс с нормальным распределением (гауссовский процесс). Эта помеха наиболее изучена и имеет место практически во всех реальных каналах связи. С физической точки зрения такие помехи порождаются случайными, т.е. флуктуационными отклонениями тех или иных физических величин от их средних значений. Так источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов).

Имеют место также импульсные или сосредоточенные по времени помехи (атмосферные, индустриальные), а также помехи сосредоточенные по спектру (основной вид помех для коротковолновой связи – это сигналы посторонних радиостанций, излучения генераторов высокочастотных в промышленности, медицине и т.д.).

Помеха — всякое постороннее воздействие на полезный сигнал, оказывающее мешающее действие при его приеме и проявляющее себя изменением его формы.

Классификация помех приведена на рисунке 1.

Аддитивной является сумма полезного сигнала Sм(t) и помехи N 0 (t):

Z(t)=Sм(t)+N 0 (t) (6)

Мультипликативной является произведение полезного сигнала и помехи:

Z(t)=Sм(t)?N 0 (t) (7)

Рисунок 1 - Классификация помех

Внешними являются помехи, возникающие вне канала, к ним относятся:

  • атмосферные возникают в атмосфере земли и могут быть вызваны грозовыми разрядами, осадками, пылевыми бурями, северным сиянием;
  • космические возникают в космическом пространстве и могут быть вызваны солнечной активностью, космическими телами;
  • промышленные могут быть вызваны промышленными установками: высокочастотными генераторами, высоковольтными линиями электропередачи, электрифицированным транспортом;
  • от других систем связи обуславливаются воздействием на полезный сигнал одной системы связи сигналов других систем, например, прослушивание радиопередач или другого разговора в телефонной трубке, прием на одной частоте срезу нескольких радиопередач.

Внутренними являются помехи, возникающие внутри канала, к ним относятся собственные шумы , которые, в свою очередь, подразделяются на:

  • дробовые обусловлены неоднородной плотностью носителей заряда в проводниках.

Собственные шумы не могут быть устранены, т. к. они вызваны физикой процесса передачи электрической энергии.

Импульсными помехами являются сконцентрированные по времени скачки тока или напряжения (рисунок 2а).

Флуктуационные помехи вызваны флуктуациями (отклонением от среднего значения) тока и напряжения (рисунок 2б).

Периодические помехами являются периодические скачки тока или напряжения (рисунок 2в).

Рисунок 2 - Виды помех по форме: а) импульсные, б) флуктуационные, в) периодические

Собственные шумы канала являются флуктуационными помехами и имеют спектральную плотность мощности равномерно распределенную во всех диапазонах частот используемых для электросвязи (0…10 14 Гц). По аналогии с белым светом, имеющем в своем спектре составляющие на всех частотах, данные шумы называются белым шумом.

При прохождении сигнала через систему связи и при воздействии на него помехи его форма изменяется. Изменение формы сигнала называется искажением.

Различают нелинейные и линейные искажения.

Нелинейными являются искажения, при которых в спектре сигнала появляются новые составляющие. Такие искажения вызваны нелинейностью характеристик элементов и блоков, входящих в аппаратуру системы связи.

Линейными являются искажения, при которых в спектре сигнала не появляются новые составляющие. Такие искажения возникают из –за изменения соотношения между составляющими спектра сигнала. Линейные искажения бывают амплитудно-частотными (АЧИ), при которых изменяются амплитуды составляющих спектра сигнала и фазо-частотные (ФЧИ), при которых изменяются фазы составляющих спектра. На рисунке 3а приведен сигнал являющийся результатом сложения двух гармонических сигналов с одинаковыми амплитудами и фазами и отличающимися друг от друга частотами (обозначен толстой линией). Соответственно в спектре данного сигнала присутствует две гармонических составляющих на частотах w с и 2w с. На рисунке 3б уменьшилась амплитуда второй гармоники, в результате чего изменилась форма сигнала, т. е. произошли амплитудно-частотные искажения. На рисунке 3в изменилась фаза второй гармоники на 90°, в результате чего, опять произошло изменение формы сигнала, т. е. произошли фазо-частотные искажения. Как видно из диаграмм в спектре сигнала и в первом и во втором случае новые составляющие не появились, хотя форма сигнала изменилась.

Рисунок 3 - Линейные искажения: а) сигнал; б) амплитудно-частотные искажения; в) фазо-частотные искажения

АЧИ объясняются не равномерностью коэффициента передачи для различных составляющих спектра сигнала. При идеальной АЧХ коэффициент передачи одинаков для всех составляющих спектра сигнала и АЧИ отсутствуют. Реальная АЧХ четырехполюсника с увеличением частоты имеет спад (рисунок 4а), что приводит к уменьшению амплитуды высокочастотных составляющих спектра сигнала и соответственно к АЧИ.

ФЧИ вызваны неодинаковым временем задержки tз=j/w для составляющих различных частот.. При идеальной ФЧХ время задержки для всех составляющих одинаковое и ФЧИ отсутствуют. Реальная ФЧХ имеет подъем на высоких частотах, поэтому время задержки для высокочастотных составляющих меньше чем для никочастотных и появляются ФЧИ (рисунок 4б).

Рисунок 4 - Характеристики четырехполюсника: а) АЧХ; б) ФЧХ

Компенсация АЧИ и ФЧИ осуществляется специальными устройствами — корректорами.

Под помехой будем понимать всякое случайное воздействие на сигнал в канале связи, препятствующее правильному приему сигналов. При этом следует подчеркнуть случайный характер воздействия, так как борьба с регулярными помехами не представляет затруднений (во всяком случае, теоретически). Так например, фон переменного тока или помеха от определенной радиостанции могут быть устранены компенсацией или фильтрацией. В каналах связи действуют как аддитивные помехи, т. е. случайные процессы, налагающиеся на передаваемые сигналы, так и мультипликативные помехи, выражающиеся в случайных изменениях характеристик канала.

На выходе непрерывного канала всегда действуют гауссовские помехи. К таким помехам, в частности, относится тепловой шум. Эти помехи неустранимы. Модель непрерывного канала, вклю­чающая в себя закон композиции сигнала s(t), четырёхполюсник с импульсной характеристикой g(t,) и источник аддитивных гауссовских помех (t).

Более полная модель должна учитывать другие типы аддитивных (аддитивные – суммарные) помех, нелинейные искажения сигнала, а также мультипликативные помехи.

Перейдем к краткой характеристике перечисленных выше помех.

Сосредоточенные по спектру, или гармонические, помехи представляют собой узкополосный модулированный сигнал. Причинами возникновения таких помех являются снижение переходного затухания между цепями кабеля, влияние радиостанций и т. п.

Импульсные помехи - это помехи, сосредоточенные по времени. Они представляют собой случайную последовательность импульсов, имеющих случайные амплитуды и следующих друг за другом через случайные интервалы времени, причем вызванные ими переходные процессы не перекрываются во времени. Причины появления этих помех: коммутационные шумы, наводки с высоковольтных линий, грозовые разряды и т. п. Нормирование импульсных помех в канале ТЧ производится путем ограничения времени превышения ими заданных порогов анализа.

Флуктуационная (случайная) помеха характеризуется широким спектром и максимальной энтропией, и поэтому с ней труднее всего бороться. Однако в проводных каналах связи уровень флуктуационных по­мех достаточно мал и они при малой удельной скорости передачи информации практически не влияют на коэффициент ошибок.

Мультипликативные (умножения на сигнал) помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала на выходе демодулятора. Различают плавные и скачкообразные изменения уровня. Плав­ные изменения происходят за время, которое намного больше, чем 0 – длительность единичного элемента; скачкообразные - за время, меньшее 0 . Причиной плавных изменений уровня могут быть колебания затухания линии связи, вызванные, например, изменением состояния погоды, а в радиоканалах - замирания. Причиной скачкообразных изменений уровня могут быть плохие контакты в аппаратуре, несовершенство эксплуатации аппаратуры связи, технологии измерений и др.

Снижение уровня более, чем 17,4 дБ ниже номинального, на­зывается перерывом. При перерыве уровень падает ниже порога чувствительности приемника и прием сигналов фактически прекращается. Перерывы длительностью меньше 300 мс принято называть кратковременными, больше 300 мс - длительными.

Импульсные помехи и перерывы являются основной причиной появления ошибок при передаче дискретных сообщений по про­водным каналам связи.

Аддитивные помехи содержат три составляющие: сосредоточенную по частоте (гармоническую), сосредоточенную во времени (импульсную) и флуктуационную. Помеха, сосредоточенная по частоте, имеет спектр значительно уже полосы пропускания канала. Импульсная помеха представляет собой последовательность кратковременных импульсов, разделенных интервалами, превышающими время переходных процессов в ка­нале. Флуктуационную помеху можно представить как последовательность непрерывно следующих один за другим импульсов, имеющую широкий спектр, выходящий за пределы полосы пропускания канала. Импульсную помеху можно рассматривать как крайний случай флуктуационной, когда её энергия сосредоточена в отдельных точках временной оси, а гармоническую помеху - как другой крайний случай, когда вся энергия сосредоточена в отдельных точках частотной оси.

Характеристиками аддитивных помех в каналах ТЧ являются псофометрическая мощность шума и уровень не взвешенного шума. Первая величина измеряется прибором с квадратичным детектором и специальным контуром, учитывающим чувствительность человеческого уха, микрофона и телефона к напряжениям различных частот. Средняя величина псофометрической мощности составляет 2*10 -15 Вт/м. Не взвешенный шум измеряют прибором с квадратичным детектором, имеющим время интегрирования 200 мс. Эта величина в точке с относительным нулевым уровнем не должна превышать -49 дБ на одном участке переприёма. Указанные характеристики не охватывают импульсные шумы, которые измеряют отдельно и специальными приборами. Мультипликативные помехи в каналах связи выражаются в основном в изменении остаточного затухания, приводящего к изменениям уровня сигнала. Изменения уровня сигнала в реальных каналах связи весьма разнообразны по своему характеру. Так, например, различают плавные и скачкообразные изменения уровня сигнала (иногда их называют изменениями остаточного затухания), кратковременные занижения уровня, кратковременные и длительные перерывы.

Плавными изменениями уровня называют такие, при которых отклонение уровня от своего номинального значения до максимального (минимального) происходит за время, несоизмеримо большее длительности единичных элементов передаваемого сигнала т 0 . К скачкообразным изменениям уровня относятся те, при которых изменение уровня от значения р Н0М до р МАКС происходит за время, соизмеримое с временем единичного интервала 0 .

Исследования показали, что за длительный промежуток времени отклонения уровня от номинального значения происходят как в сторону повышения, так и в сторону понижения, при этом оба направления изменения имеют примерно равную вероятность. Изменения такого рода могут быть отнесены к числу медленных изменений остаточного затухания. Наряду с ними имеют место быстрые, сравнительно кратковременные изменения остаточного затухания, в основном приводящие к уменьшению уровня приема. Значительные занижения уровня сигнала приводят к искажениям принимаемых сигналов и, как следствие, к ошибкам. Занижения уровня сигнала уменьшают его помехозащищенность, что также вызывает рост числа ошибок. И, наконец, в синхронных системах снижение уровня сигнала приводит к нарушению работы синхронизации и затрате определенного времени на вхождение, в режим синхронизации при восстановлении нормального уровня. Поэтому в современных системах ПДИ имеются специальные устройства, которые блокируют приемник и его систему синхронизации при уменьшении уровня сигнала ниже заданного значения - П. По этой причине занижение уровня на величину, большую или равную П, получило название перерыва. При передаче данных согласно рекомендациям ЕАСС перерывом считают П = 17,4 дБ. Перерывы делят на кратковременные и длительные

Для коммутируемых каналов ТЧ существует следующая нор­ма: t КР.ПЕР ЗОО мс. Это время выбрано из принятых в аппаратуре телефонной коммутации схемных решений, которые в случае перерыва длительностью более 300 мс обеспечивают разъединение ранее установленного соединения, т. е. приводят к отказу связи. Указанная величина рекомендуется МСЭ в качестве критерия отказа для передачи по коммутируемым каналам ТЧ. Рекомендуемая доля кратковременных перерывов на одном переприемном участке не должна превышать 1,5*10 -5 за 90% часовых отрезков времени.

Плавные изменения уровня до некоторой степени характеризуются величиной стабильности остаточного затухания. Согласно рекомендациям МСЭ остаточное затухание для двухпроводного канала ТЧ должно составлять 7,0, для четырёхпроводного - 17,4 дБ, а его нестабильность во времени на одном участке переприёма - не превышать 1,75 дБ.

В каналах связи возникают также своеобразные мультипликативные помехи, связанные с нестабильностью генераторов поднесущих частот аппаратуры передачи. В результате затрудняется выделение на приёме когерентного колебания при ФМ или возникают искажения сигнала ЧМ. По существующим нормам расхождение поднесущих частот на участке переприёма ограничивается величиной 1 Гц. Кроме того, наряду со скачкообразными изменениями уровня сигнала в каналах связи имеют место скачки фазы, однако последние пока не нормированы.