Разъем pci 1. Чем отличается интерфейс PCI Express от PCI

Практически все современные материнские платы на текущий момент оснащены слотом расширения PCI-E x16. В этом нет ничего удивительного: в него устанавливается дискретный графический акселератор, без которого создание производительного персонального компьютера вообще невозможно. Именно о его предыстории появления, технических спецификациях и возможных режимах работы пойдет в дальнейшем речь.

Предыстория появления слота расширения

В начале 2000-х годов со слотом расширения AGP, который на тот момент использовался для установки сложилась такая ситуация, когда максимальный уровень быстродействия достигнут и его возможностей уже недостаточно. В результате этого был создан консорциум PCI-SIG, который приступил к разработке программной и аппаратной составляющих будущего слота для установки графических ускорителей. Плодом его творчества и стала в 2002 году первая спецификация PCI Express 16х 1.0.

Некоторые компании для обеспечения совместимости двух существовавших на тот момент времени портов установки дискретных графических адаптеров разрабатывали специальные устройства, которые позволяли устанавливать устаревшие графические решения в новый слот расширения. На языке профессионалов такая разработка имела свое название - переходник PCI-E x16/AGP. Основное его назначение - это минимизация затрат на модернизацию ПК за счет использования комплектующих с предыдущей конфигурации системного блока. Но такая практика не получила большого распространения по той причине, что видеоплаты начального уровня на новом интерфейсе имели стоимость практически равную цене переходника.

Параллельно с этим были созданы и более простые модификации этого слота расширения для внешних контроллеров, которые пришли на смену привычным на то время портам PCI. Несмотря на внешнюю схожесть, эти устройства существенно различались. Если AGP и PCI могли похвастаться параллельной передачей информации, то вот PCI Express был последовательным интерфейсом. Его более высокое быстродействие обеспечивалось значительно увеличенной скоростью передачи данных в дуплексном режиме (информация в этом случае могла передаваться сразу по двум направлениям).

Скорость передачи и метод шифрования

В обозначении интерфейса PCI-E x16цифра указывает на количество задействованных полос для передачи данных. В данном случае их 16. Каждая из них, в свою очередь, состоит из 2 пар проводов для передачи информации. Как было отмечено, более высокая скорость обеспечивается тем, что эти пары работают в дуплексном режиме. То есть передача информации может идти сразу в двух направлениях.

Для защиты от возможных потерь или искажения передаваемых данных применяется в этом интерфейсе специальная система защиты информации, которая называется 8В/10В. Это обозначение расшифровывается следующим образом: для правильной и корректной передачи 8 бит данных необходимо их дополнить 2 служебными битами для выполнения проверки правильности. В этом случае система вынуждена передавать 20 процентов служебной информации, которая для пользователя компьютера не несет полезной нагрузки. Но это плата за надежную и стабильную работу графической подсистемы персонального компьютера, и без этого уж точно никак не обойтись.

Версии PCI-E

Разъем PCI-E x16 внешне одинаковый на всех системных платах. Только вот скорость передачи информации в каждом случае может существенно отличаться. Как результат, быстродействие устройства тоже разное. А модификации у этого графического интерфейса такие:

  • 1-я модификация PCI - Express х16 v. 1.0 имела теоретическую пропускную способность в 8 Гб/с.
  • 2-е поколение PCI - Express х16 v. 2.0 уже могло похвастаться увеличенным вдвое значением пропускной способности - 16 Гб/с.
  • Аналогичная тенденция сохранилась уже и для третьей версии данного интерфейса. В этом случае этот показатель был установлен на отметке 64 Гб/с.

Визуально отличить по расположению контактов невозможно. При этом они совместимы между собой. Например, если в слот версии 3.0 установить плату графического адаптера, которая соответствует на физическом уровне спецификациям 2.0, то вся система обработки автоматически переключится в наименее скоростной режим (то есть 2.0) и будет уже в дальнейшем функционировать именно с пропускной способностью в 64 Гб/с.

Первое поколение PCI Express

Как было отмечено ранее, впервые PCI Express был представлен в 2002 году. Его выход ознаменовал появление персональных компьютеров с несколькими графическими адаптерами, которые к тому же могли похвастаться даже с одним установленным акселератором повышенным быстродействием. Стандарт AGP 8Х позволял получить пропускную способность 2,1 Гб/с, а первая ревизия PCI Express - 8 Гб/с.

Конечно, говорить о восьмикратном приросте не приходится. 20 процентов прироста использовалось на передачу служебной информации, которая позволяла находить ошибки.

Вторая модификация PCI-E

На смену первому поколению данного в 2007 году пришел PCI-E 2. 0 x16. Видеокарты 2-го поколения, как было отмечено ранее, физически и программно были совместимы с первой модификацией этого интерфейса. Только в таком случае существенно снижалось быстродействие графической системы до уровня версии интерфейса PCI Express 1.0 16х.

Теоретически предел передачи информации в этом случае был равен 16 Гб/с. Но 20 процентов полученного прироста расходовалось на служебную информацию. В итоге в первом случае реальная передача была равна: 8 Гб/с - (8 Гб/с х 20% : 100%) = 6,4 Гб/с. А для второго исполнения графического интерфейса это значение было уже таким: 16 Гб/с - (16 Гб/с х 20% : 100%) = 12,8 Гб/с. Разделив же 12,8 Гб/с на 6,4 Гб/с, получаем реальный практический прирост быстродействия в 2 раза между 1-м и 2-м исполнением PCI Express.

Третье поколение

Последнее и наиболее актуальное обновление этого интерфейса увидело свет в 2010 году. Пиковая скорость PCI-E x16 в этом случае увеличилась до 64 Гб/с, а максимальная мощность графического адаптера без дополнительного питания в этом случае может быть равна 75 Вт.

Варианты конфигураций с несколькими графическими акселераторами в составе одного ПК. Их плюсы и минусы

Одним из наиболее важных нововведений данного интерфейса является возможность наличия сразу нескольких графических адаптеров в x16. Видеокарты при этом объединяются между собой и образуют, по существу, единое устройство. Их общая производительность суммируется, и это позволяет в разы повысить быстродействие ПК с позиции обработки выводимого изображения. Для решений от NVidia такой режим называется SLI, а для графических процессоров от АМД - CrossFire.

Будущее данного стандарта

Слот PCI-E x16в обозримом будущем уж точно не будет изменяться. Это позволит более производительные видеокарты использовать в составе устаревших ПК и за счет этого осуществлять поэтапный апгрейд компьютерной системы. Сейчас же прорабатываются спецификации уже 4-й версии этого способа передачи данных. Для графических адаптеров в этом случае будет предусмотрена максимальная 128 Гб/с. Это позволит выводить изображение на экран монитора в качестве «4К» и более.

Итоги

Как бы там ни было, а PCI-E x16 на текущий момент является безальтернативным графическим слотом и интерфейсом. Он будет актуальным еще достаточно долгое время. Его параметры позволяют создавать как компьютерные системы начального уровня, так и высокопроизводительные ПК с несколькими акселераторами. Именно за счет такой гибкости и не предвидится существенных изменений в этой нише.

И PCI-X представляют собой щелевые разъемы, имеющие контакты с шагом 0,05 дюйма. Слоты расположены несколько дальше от задней панели, чем ISA/EISA или MCA. Компоненты карт PCI расположены на левой поверхности плат. По этой причине крайний PCI-слот обычно совместно использует посадочное место адаптера (прорезь на задней стенке корпуса) с соседним ISA-слотом. Такой слот называют разделяемым (shared slot), в него может устанавливаться либо карта ISA, либо PCI.

Карты PCI могут предназначаться для интерфейсных сигналов уровня 5 В и 3,3 В, а также быть универсальными. Слоты PCI имеют уровни сигналов, соответствующие питанию микросхем PCI-устройств системной платы (включая главный мост): либо 5 В, либо 3,3 В. Во избежание ошибочного подключения слоты имеют ключи, определяющие номинал напряжения. Ключами являются пропущенные ряды контактов 12, 13 и/или 50, 51:

  • для слота на 5 В ключ (перегородка) расположен на месте контактов 50, 51 (ближе к передней стенке корпуса); такие слоты отменены в PCI 3.0;
  • для слота на 3,3 В перегородка находится на месте контактов 12, 13 (ближе к задней стенке корпуса);
  • на универсальных слотах перегородок нет;
  • на краевых разъемах карт 5 В имеются ответные прорези только на месте контактов 50, 51; такие карты отменены в PCI 2.3;
  • на картах 3,3 В прорези только на месте контактов 12, 13;
  • на универсальных картах имеется оба ключа (две прорези).

Ключи не позволяют установить карту в слот с неподходящим напряжением питания. Карты и слоты различаются лишь питанием буферных схем, которое поступает с линий +V I/O:

  • на слоте «5 В» на линии +V I/O подается + 5 В;
  • на слоте «3,3 В» на линии +V I/O подается + (3,3–3,6) В;
  • на карте «5 В» буферные микросхемы рассчитаны только на питание + 5 В;
  • на карте «3,3 В» буферные микросхемы рассчитаны только на питание + (3,3– 3,6) В;
  • на универсальной карте буферные микросхемы допускают оба варианта питания и будут нормально формировать и воспринимать сигналы по спецификациям 5 или 3,3 В, в зависимости от типа слота, в который установлена карта (то есть от напряжения на контактах + V I/O).

На слотах обоих типов присутствуют питающие напряжения + 3,3, + 5, + 12 и –12 В на одноименных линиях. В PCI 2.2 определена дополнительная линия 3.3Vaux - «дежурное» питание + 3,3 В для устройств, формирующих сигнал PME# при отключенном основном питании.

ПРИМЕЧАНИЕ!

Выше приведены положения из официальных спецификаций PCI. На современных системных платах пока чаще всего встречаются слоты, по ключу являющиеся 5вольтовыми. Однако при этом напряжение на линиях +V I/O и уровни сигналов интерфейса являются 3,3-вольтовыми. В этих слотах нормально работают все современные карты с 5-вольтовыми ключами - их интерфейсные схемы работают при питании как 3,3, так и 5 В. Интерфейс с 5-вольтовым питанием может работать только на частоте до 33 МГц. «Настоящие» 5-вольтовые системные платы были только для процессоров 486 и первых моделей Pentium.

Наибольшее распространение получили 32-битные слоты, заканчивающиеся контактами A62/B62. 64-битные слоты встречаются реже, они длиннее и заканчиваются контактами A94/B94. Конструкция разъемов и протокол позволяют устанавливать 64-битные карты как в 64-битные, так и в 32-битные разъемы, и наоборот, 34-битные карты как в 32-битные, так и в 64-битные разъемы. При этом разрядность обмена будет соответствовать слабейшему компоненту.

Для сигнализации об установке карты и потребляемой ею мощности на разъемах PCI предусмотрено два контакта - PRSNT1# и PRSNT2#, из которых хотя бы один соединяется на карте с шиной GND. С их помощью система может определить присутствие карты в слоте и ее энергопотребление. Кодирование потребляемой мощности приведено в таблице; здесь приведены значения и для малогабаритных карт Small PCI.

Карты и слоты PCI-X по механическим ключам соответствуют 3,3-вольтовым картам и слотам; напряжение питания + V I/O для PCI-X Mode 2 устанавливается 1,5 В.

На рисунке изображены карты PCI в конструктиве PC/AT-совместимых компьютеров. Полноразмерные карты (Long Card, 107×312 мм) используются редко, чаще применяются укороченные платы (Short Card, 107×175 мм), но многие карты имеют и меньшие размеры. Карта имеет обрамление (скобку), стандартное для конструктива ISA (раньше встречались карты и с обрамлением в стиле MCA IBM PS/2). У низкопрофильных карт (Low Profile) высота не превышает 64,4 мм; их скобки также имеют меньшую высоту. Такие карты могут устанавливаться вертикально в 19-дюймовые корпуса высотой 2U (около 9 см).

Назначение выводов разъема карт PCI/PCI-X приведено в таблице ниже.

Ряд B Ряд A Ряд B Ряд A
-12В 1 TRST# GND/M66EN 1 49 AD9
TCK 2 +12 В GND/Ключ 5 В/MODE 2 50 GND/Ключ 5 В
GND 3 TMS GND/Ключ 5 В 51 GND/Ключ 5 В
TDO 4 TDI AD8 52 C/BE 0 #
+5 В 5 +5 В AD7 53 +3,3 В
+5 В 6 INTA# +3,3 В 54 AD6
INTB# 7 INTC# AD5 55 AD4
INTD# 8 +5 В AD3 56 GND
PRSNT1# 9 ECC 5 2 GND 57 AD2
ECC4 2 10 +V I/O AD1 58 AD0
PRSNT2# 11 ECC 3 2 +V I/O 59 +V I/O
GND/Ключ 3,3 В 12 GND/Ключ 3,3 В ACK 64 #/ ECC 1 60 REQ 64 #/ ECC 6
GND/Ключ 3,3 В 13 GND/Ключ 3,3 В +5 В 61 +5 В
ECC2 2 14 3.3Vaux 3 +5 В 62 +5 В
GND 15 RST# Конец 32-битного разъема
CLK 16 +V I/O Резерв 63 GND
GND 17 GNT# GND 64 C/BE 7 #
REQ# 18 GND C/BE 6 # 65 C/BE 5 #
+V I/O 19 PME# 3 C/BE 4 # 66 +V I/O
AD31 20 AD30 GND 67 PAR 64 /ECC 7 2
AD29 21 +3,3 В AD63 68 AD62
GND 22 AD28 AD61 69 GND
AD27 23 AD26 +V I/O 70 AD60
AD25 24 GND AD59 71 AD58
+3,3 В 25 AD24 AD57 72 GND
C/BE3# 26 IDSEL GND 73 AD56
AD23 27 +3,3 В AD55 74 AD54
GND 28 AD22 AD53 75 +V I/O
AD21 29 AD20 GND 76 AD52
AD19 30 GND AD51 77 AD50
+3.3 В 31 AD18 AD49 78 GND
AD17 32 AD16 +V I/O 79 AD48
C/BE 2 # 33 +3,3 В AD47 80 AD46
GND 34 FRAME# AD45 81 GND
IRDY# 35 GND GND 82 AD44
+3,3 В 36 TRDY# AD43 83 AD42
DEVSEL# 37 GND AD41 84 +V I/O
PCIXCAP 4 38 STOP# GND 85 AD40
LOCK# 39 +3,3 В AD39 86 AD38
PERR# 40 SMBCLK 5 AD37 87 GND
+3,3 В 41 SMBDAT 5 +V I/O 88 AD36
SERR# 42 GND AD35 89 AD34
+3,3 В 43 PAR/ECC0 AD33 90 GND
C/BE 1 # 44 AD15 GND 91 AD32
AD14 45 +3,3 В Резерв 92 Резерв
GND 46 AD13 Резерв 93 GND
AD12 47 AD11 GND 94 Резерв
AD10 48 GND Конец 64-битного разъема

Примечание!

1 - Сигнал M66EN определен в PCI 2.1 только для слотов на 3,3 В.
2 - Сигнал введен в PCI-X 2.0 (прежде был резерв).
3 - Сигнал введен в PCI 2.2 (прежде был резерв).
4 - Сигнал введен в PCI-X (в PCI - GND).
5 - Сигналы введены в PCI 2.3. В PCI 2.0 и 2.1 контакты A40 (SDONE#) и A41 (SBOFF#) использовались для слежения за кэшем; в PCI 2.2 они были освобождены (для совместимости на системной плате эти цепи подтягивались к высокому уровню резисторами 5 кОм).

На слотах PCI имеются контакты для тестирования адаптеров по интерфейсу JTAG (сигналы TCK, TDI, TDO, TMS и TRST#). На системной плате эти сигналы задействованы не всегда, но они могут и организовывать логическую цепочку тестируемых адаптеров, к которой можно подключить внешнее тестовое оборудование. Для непрерывности цепочки на карте, не использующей JTAG, должна быть связь TDI–TDO.

На некоторых старых системных платах позади одного из слотов PCI встречается разъем Media Bus, на который выводятся сигналы ISA. Он предназначен для размещения на карте PCI звукового чипсета, предназначенного для шины ISA. Большинство сигналов PCI соединяются по чистой шинной топологии, то есть одноименные контакты слотов одной шины PCI электрически соединяются друг с другом. Из этого правила есть несколько исключений:

  • сигналы REQ# и GNT# индивидуальны для каждого слота, они соединяют слот с арбитром (обычно - мостом, подключающим эту шину к вышестоящей);
  • сигнал IDSEL для каждого слота соединяется (возможно, через резистор) с одной из линий AD, задавая номер устройства на шине;
  • сигналы INTA#, INTB#, INTC#, INTD# циклически сдвигаются по контактам, обеспечивая распределение запросов прерываний;
  • сигнал CLK заводится на каждый слот индивидуально от своего выхода буфера синхронизации; длина подводящих проводников выравнивается, обеспечивая синхронность сигнала на всех слотах (для 33 МГц допуск ± 2 нс, для 66 МГц - ± 1 нс).