Разгон оперативной памяти ddr2 800 через биос. Где прогресс в оперативной памяти и зачем её разгонять

Практически все пользователи хотят добиться наибольшего быстродействия своего персонального компьютера. Неплохой способ улучшить скорость работы ПК – разогнать оперативную память. Это делается с помощью настроек BIOS вашей материнской платы. Правильный разгон имеет несколько тонкостей, и они описаны в данной статье. Далее вы узнаете, как можно разогнать свою оперативную память, как узнать результаты разгона и как определить оптимальные параметры.

Подготовка к работе

«У меня есть новая оперативная память – как узнать, что делать дальше, чтоб увеличить ее частоту?» — обычно спрашивают пользователи. Установка планок оперативки в соответствующие слоты компьютера является довольно простым делом и в данной статье не рассматривается. После того, как вы подключите – RAM заработает на минимальной скорости. Производители стараются настраивать все так, чтобы оно работало максимально надежно.

Любое повышение скорости работы компьютера – это одновременно и снижение стабильности. Правильно разогнать память — значит опытным путем определить оптимальную частоту и тайминги.

Если вам не хочется экспериментировать – можно узнать, какая сборка будет оптимальной, на тематических форумах или в специальных статьях.

Для того чтобы искать на форуме нужную информацию, необходимо узнать ответы на следующие вопросы:

  • Какая у меня оперативная память?
  • Что у меня за процессор?
  • Какая меня установлена материнская плата?

Только после этого опытные пользователи смогут узнать оптимальные для вас конфигурации. Установленный процессор очень сильно влияет на частоту оперативки, а разные материнки могут выдавать разные показатели стабильности работы при одних и тех же настройках.

Настройки BIOS

Для того чтобы разогнать тактовую частоту каких-либо комплектующих компьютера, пользователям нужно зайти в меню конфигураций БИОС. Для этого выполните несколько простых действий, описанных в данной инструкции:


Проверка и повторная настройка

Если после попытки разогнать ПК он не запускается – значит, вы установили сильно высокие показатели. В этом случае необходимо замкнуть металлическим предметом специальный контакт Clear CMOS (JBAT), расположенный недалеко от слотов оперативной памяти, чтобы сбросить настройки. В этом случае задайте немного более приближенные к исходному профилю варианты.

После загрузки Windows пользователям потребуется провести несколько тестов на стабильность работы компьютера. Это можно сделать с помощью бенчмарков, например, в программах Everest или AIDA64. Также попробуйте запустить наиболее требовательные видеоигры и поиграть в них несколько часов. Если никаких ошибок не возникает – значит данная сборка стабильна и можно пробовать разогнать еще.

Теперь же поговорим о мифах, связанных с ОЗУ.

1. Двухканальный режим работы не нужен, главное - объем.

Неудивительно, что одна плашка на 8 ГБ стоит дешевле, чем две по 4 ГБ, так что желание сэкономить выглядит очевидным. Но не стоит этого делать, если вы используете ПК не только для серфинга в интернете и просмотра фильмов - двухканальный режим ускоряет работу с ОЗУ на 70-90%, что и снизит нагрузку на процессор (он будет меньше времени простаивать - а значит больше времени сможет работать), и ускорит производительность в любых вычислительных и игровых задачах, причем зачастую разница будет не в единицы процентов, а в десятки, то есть переплата за две плашки порядка 5-7% стоит того.

2. Для получения двухканального режима нужны две идентичные плашки ОЗУ.

Если мы не берем времена DDR и DDR2, когда установка больше одной плашки памяти могла вызвать многочисленные танцы с бубном, даже если модули были одинаковыми, то сейчас с этим все проще: у плашек DDR3 и DDR4 может быть любой объем, частота и тайминги - в большинстве случаев (увы - из-за кривых BIOS исключения бывают) двухканальный режим будет работать, объем модулей, разумеется, суммироваться, а частоты будут браться по самой медленной плашке и (или) спецификациям JEDEC: это комитет, который занимается разработкой ОЗУ. По их предписаниям, в любой плашке памяти должна быть зашита определенная частота и тайминги для каждого стандарта памяти - это как раз создано для того, чтобы любые плашки одного стандарта (например, DDR4) всегда могли найти «общий язык».

3. Разгон ОЗУ - баловство, нужное только для получения высоких циферек в бенчмарках

Еще лет 7-10 назад это действительно было так - более того, тогда и двухканальный режим особо производительность не увеличивал. Но, увы, сейчас времена меняются: так, например, у процессоров Ryzen частота ОЗУ связана с частотой внутренней шины, которой соединяются два блока ядер, так что разгон ОЗУ в их случае напрямую влияет на производительность CPU. Но даже в случае процессоров от Intel более высокая частота памяти дает свои результаты:


Так, при обработке фотографий увеличение скорости ОЗУ с 2400 до 2933 МГц - такой разгон способны взять практически любые модули DDR4 - время обработки уменьшается на 15-20%, что очень и очень существенно.

4. Встроенные профили авторазгона XMP/D.O.C.P сразу же предлагают лучшие частоты и тайминги

Разгон становится все проще и доступнее рядовому пользователю: так, сейчас на рынке выпускается огромное количество модулей ОЗУ со вшитыми профилями авторазгона - стоит выбрать их в BIOS, как ваша память сразу же стабильно заработает на частотах, зачастую в полтора раза выше стандартных для DDR4 2133 МГц. Однако следует понимать, что прежде чем выставить такую частоту и тайминги в своем профиле, производитель тщательно протестировал большое количество плашек, так что такие профили - это как Turbo Boost в процессоре: вроде и разгон, но в щадящем режиме.

Поэтому есть смысл еще «покрутить» настройки самому - зачастую получится «выжать» еще пару сотен мегагерц, что даст вам лишние 5-10% производительности. С учетом того, что производитель зачастую выпускает целую линейку памяти, например 3066/3200/3333 МГц, то зачастую можно взять самую дешевую, на 3066 МГц, и поставить параметры от 3333 МГц, получив такую же производительность и несколько сэкономив.

5. Быстрая ОЗУ увеличит производительность в любом случае

Не стоит забывать, что далеко не всегда можно разогнать память: так, у Intel это можно сделать только на чипсетах Z-серии. Поэтому абсолютно нет смысла брать какой-нибудь i5-8400, плату на B360 чипсете и ОЗУ DDR4-3200 МГц - контроллер памяти в процессоре не даст вам поднять частоту выше 2666 МГц, так что смысла в переплате за быструю ОЗУ тут нет.

Это же касается и ноутбуков - редкие дорогие модели с процессорами HK имеют возможность разогнать память, и если у вас не такой CPU - нет смысла брать ОЗУ с частотами выше 2400-2666 МГц.

6. Радиаторы на ОЗУ - нужная вещь, спасают плашки от перегрева

Миф, активно продвигаемый различными маркетологами, чтобы продать вам те же самые плашки, но уже с радиаторами и несколько дороже. Во-первых, если у вас случаи как в пункте 5, то есть память работает на частотах и напряжениях, близких к спецификациям JEDEC (2133-2400 МГц и 1.2 В для DDR4), то радиаторы не нужны абсолютно: нагрев едва ли превысит 35-40 градусов даже под серьезной нагрузкой - именно поэтому ноутбучная память идет без радиаторов.

Более того, даже если вы берете высокочастотную память, которая способна взять 4000+ МГц при 1.35-1.4 или даже 1.5 В (последнее значение уже считается экстремальным), то нагрев может стать ощутимым - вплоть до 50-60 градусов. Однако если посмотреть, при каких температурах могут работать чипы памяти, то всплывает интересная картина - зачастую цифры от различных производителей колеблются от 80 до 90 градусов, что банально недостижимо ни при каком мыслимом разгоне. Поэтому радиаторы в данном случае - просто украшение.

7. От разгона оперативная память сгорает

Да, и именно поэтому ОЗУ некоторые производители продают уже разогнанной, причем не только частоту памяти повышают, но еще и напряжение. Разумеется, при желании сломать можно любую вещь, так что лучше не выходить за определенные рамки: так, безопасными напряжениями для DDR4 считаются 1.2-1.35 В, частоты - любые, достижимые в этом диапазоне напряжений (так как частота - параметр, который никак к «железу» не относится, а значит и сжечь его не может).

8. Если на плате есть слоты и DDR3, и DDR4, то можно ставить любые сочетания плашек - они заработают вместе


Достаточно опасный миф: во-первых, разумеется DDR3 и DDR4 вместе работать не смогут, как минимум из-за того, что у них нет общих по JEDEC частот и таймингов. Во-вторых, установка вместе DDR3 и DDR4 может повредить плату или память - например, на DDR4 плата может подать напряжение в 1.5 В, которое для DDR3 является вполне рабочим, а вот для DDR4 - экстремальным. Так что следите за тем, чтобы на плату были установлены плашки только одного типа.

9. Последние поколения процессоров от Intel (Coffee Lake) не умеют работать с DDR3

Действительно, если зайти на официальный сайт Intel, то в спецификациях будет поддержка только DDR4:

Однако на деле в Intel особо не меняли контроллер ОЗУ со времен Skylake, и учитывая то, что многие производители материнских плат гонятся за прибылью, а не за выполнением условий, поставленных Intel, в продажу попадают вот такие платы:

Маркировка платы - Biostar H310MHD3, то есть это H310 чипсет, который поддерживает даже Core i9-9900K, а на плате есть только два слота DDR3. Так что если вы решили обновить процессор - абсолютно не обязательно менять при этом еще и ОЗУ.

10. При разгоне ОЗУ главное добиться максимальной частоты

В общем и целом - нет, важен баланс между частотой и таймингами (то есть задержками при работе с памятью). В противном случае может оказаться так, что память при меньшей частоте и с меньшими задержками окажется лучше, чем при высокой частоте и с большими задержками:


Поэтому при разгоне пробуйте разные сочетания частот и таймингов (или возьмите лучшие из обзоров, только не забудьте их проверить memtest-ом).

11. Нельзя ставить вместе DDR3L и DDR3

Уже не самый актуальный миф, но все же DDR3 с арены до сих пор не ушла, так что имеет смысл про него рассказать. Так как выход DDR4 оказался достаточно затянутым, была придумана промежуточная память - DDR3L, основное нововведение в которой - возможность работы при более низких напряжениях, 1.35 В против 1.5 у обычной DDR3. И именно отсюда и идет миф - дескать если поставить их вместе, то DDR3L сгорит от 1.5 В.

Как я уже писал выше, у ОЗУ каждого стандарта есть свой диапазон безопасных напряжений, и 1.5 В - это нормальное значение для низковольтной памяти. Более того - раз JEDEC не стала менять сам слот, это еще раз говорит о том, что эти два подтипа памяти совместимы.

12. 64-битные версии Windows поддерживают любой объем ОЗУ

Разумеется, это не так: про то, что у Windows x86 есть ограничение в ~3.5 ГБ ОЗУ (если не говорить о PAE), знают многие, и если вычислить объем памяти, который можно адресовать в 64-битной системе, то цифра действительно кажется бесконечной - 16 миллионов терабайт. Но на практике все банальнее: так, Windows XP x64 поддерживает «лишь» 128 ГБ ОЗУ, Windows 7 - до 192, а Windows 8 и 10 - до 512 ГБ. Да, для пользовательского ПК это цифры крайне большие, но вот для серверов - уже давно нет, ну и уж тем более тут и близко нет миллионов терабайт.

Если вы знаете еще какие-либо мифы про ОЗУ - пишите про них в комментариях.

часть первая: аппаратное изменение параметров работы процессора и памяти

Предупреждение: модификации, о которых рассказывается в этой статье, могут привести к необратимому выходу ноутбука из строя и дальнейшему дорогостоящему ремонту! Любые модификации, описанные в настоящем материале, производятся пользователями на свой страх и риск.

Если вы не уверены в своих действиях или не очень хорошо знакомы с устройствами, описанными в статье, не стоит прибегать к описанным методам разгона!

Введение

Разогнать ноутбук несколько сложнее, чем настольный компьютер. Если в разгоне настольного компьютера 80% времени занимает процесс подбора нужных параметров в BIOS, то в разгоне ноутбука эту часть времени займет поиск ответа на вопрос "А как его вообще разогнать?", потому что BIOS ноутбука настройками для разгона не балует.

В ноутбуке, как и в стационарном компьютере, разогнать можно процессор, оперативную память и видеокарту.

Видеокарта

С ней обычно проблем нет, существует множество программ, позволяющих без труда её разогнать, например, RivaTuner, AtiTool и прочие. Аппаратно видеокарту разгонять тоже можно (модифицировать её BIOS, делать вольтмод видеочипа и видеопамяти), но сделать это непросто и опасно. На скорость загрузки ОС аппаратный разгон видеокарты не влияет, поэтому единственным удобством станет то, что после переустановки операционной системы не придется заново создавать профили разгона. К тому же, такой способ гораздо опасней программного, ведь в случае, например,неудачной модификации видео-BIOS в ноутбук не установишь другую видеокарту, а прошивать вслепую рабочий вариант BIOS не всегда возможно.

Оперативная память

В чипсетах AMD частота памяти не зависит от частоты FSB, но удачный самостоятельный разгон возможен только при использовании процессора AMD. В случае связки процессора Intel с чипсетом AMD частота памяти выбирается максимально возможная по данным из SPD (из поддерживаемых чипсетом, естественно), т.е. фактически для разгона памяти в этом случае достаточно прошить в SPD бОльшую частоту.

Процессор

С ним часто приходится попотеть, чтобы получить желаемый результат. Разогнать процессор в ноутбуке можно тремя основными способами:

1. Программный разгон. Он осуществляется с помощью программ, которые управляют тактовым генератором (ТГ, PLL-микросхема, clocker, клокер) и умеют на лету изменять частоту FSB . Здесь есть одно "но" - чтобы программа работала, нужно знать, какой тактовый генератор установлен в Вашем ноутбуке, а для этого придётся либо его разбирать и искать заветную микросхему на плате, либо подбирать, пробуя каждый из немалого списка ТГ. Примерами программ для разгона являются SetFSB, Clockgen и прочие. Есть также некоторые факторы, ограничивающие применение этого метода разгона, а именно:

  • не все PLL поддерживают программное управление;
  • бывает, что разгон заблокирован аппаратно или на уровне BIOS. Т.е. даже если нужный ТГ поддерживается программой, разгон осуществить не удастся;
  • новые ноутбуки с новыми ТГ выпускают чуть ли не каждую неделю, соответственно, на добавление поддержки этих ТГ иногда требуется значительное время;
  • частота памяти увеличивается вместе с частотой FSB, поэтому при разгоне можно упереться в память.

2. BSEL-мод. Метод заключается в подаче низкого (логический 0) и высокого (логическая 1) уровня на BSEL-пины процессора. Под низким и высоким уровнем понимается напряжение определённой величины, оно может быть различным для разных процессоров. Физически реализуется замыканием на землю и изолированием (либо замыканием на Vcc пины процессора) соответствующих пинов процессора. Главный плюс такого метода в том, что чипсет выставляет новое соотношение FSB: DRAM либо более высокие тайминги для оперативной памяти, поэтому разгон не упрётся в память, но не всегда. Как и в случае с программным разгоном, у BSEL-мода есть свои подводные камешки:

  • Последние мобильные чипсеты Intel (проверено на 945PM, PM965, PM45) после BSEL-мода блокируют множитель процессора на х6, и результирующая частота оказывается меньше исходной. На чипсетах AMD такой проблемы нет (проверялось на чипсете Xpress 1250 c процессором Intel T2330, BSEL-мод 133->200 прошел успешно);
  • частоту FSB таким способом можно переключать только на стандартные значения типа 133, 166, 200, 266 и т.п.;
  • если чипсет официально не поддерживает частоту FSB, на которую планируется сделать BSEL-мод, то, скорее всего разгон не удастся. Это может происхоидть по разным причинам, например, блокировка либо отсутствие поддержки других BSEL-комбинаций в BIOS, или невозможность чипсета работать на новой бОльшей частоте и т.п.

3. Мод тактового генератора. Непосредственное вмешательство в электрическую схему, связывающую ТГ с процессором и чипсетом. Метод похож на BSEL-мод, только проводится с BSEL-пинами микросхемы ТГ, а не процессора. При этом в ряде случаев нужно отключать BSEL-пины процессора от модифицируемых BSEL пинов ТГ. Преимущества данного метода:

  • он универсален и подходит почти ко всем ноутбукам;
  • в отличие от BSEL-мода, чипсетуBIOS необязательно иметь официальную поддержку нужной частоты, и такой разгон невозможно заблокировать в BIOS. В общем случае чипсет вообще не знает, что новая частота FSB отличается от частоты, задаваемой BSEL-пинами процессора.

Недостатки:

  • достаточно сложно реализовать, требует навыков обращения с паяльником и некоторых теоретических знаний, а также наличие мультиметра и некоторых других технических приспособлений;
  • как и в случае с BSEL-модом, частоту можно переключать только на стандартные значения типа 133, 166, 200, 266 и т.д.;
  • частота памяти увеличивается вместе с частотой FSB, так что разгон может упереться в память.
  • При таком методе чипсет не переключает свои внутренние тайминги, и увеличить частоту FSB более чем на 66 МГц вряд ли получится.

Последние 2 способа аппаратные, т.е. они начинают работать сразу после нажатия кнопки «ВКЛ», после переустановки ОС тоже не нужно всё настраивать заново.

Разгон видеокарты

В Samsung R560 стоит распаянная на материнской плате дискретная видеокарта GeForce 9600M GS/GT с 256/512 MB GDDR3 памяти. У меня версия GS с 256 MB. Разгонялась она с помощью программы nVidia system tools. Подробно описывать этот процесс смысла нет, т.к. он заключается в передвижении ползунков в программе. Скажу лишь, что после выставления частот необходимо тестировать систему на артефакты и нагрев «волосатыми» тестами типа FurMark или кубика в AtiTool. Артефакты - это искажения изображения при переразгоне. Вот максимальный, стабильный разгон моего экземпляра:

Частоты я поставил в автозагрузку с помощью правил в той же nVidia system tools. Стоит отметить, что в простое карта сама сбрасывает частоты для экономии энергии.

Разгон процессора и памяти

Небольшая предыстория

Тут все оказалась не так гладко как с видеокартой. Когда еще у меня был Samsung R70, я хотел разогнать его программно, потому что понятия не имел об остальных способах. Ради этого я разобрал ноутбук, нашел ТГ и отправился качать программы для изменения частоты FSB. Ноутбук был тогда относительно новым, и поддержки нужного мне ТГ ни в одной программе не оказалось. Точнее, в них были были модели ТГ, похожие на мою, они даже позволяли менять частоту, но через несколько секунд ноутбук зависал.

Я не поленился и написал письмо Abo, разработчику SetFSB, с просьбой добавить поддержку моего ТГ. Однако он ответил, что указанный ТГ не поддерживает программное изменение частоты. Тогда я написал ему про ситуацию насчет изменения частоты при выборе другого PLL, но в ответе он написал, что не понимает как это может быть реализовано.

Но я на этом не остановился. Перелопатив десятки страниц в поисковиках и сайтов на китайском языке, я нашёл и скачал техническое описание (даташит) на свой ТГ и его ближайших родственников. Оттуда я узнал, что ТГ управляется путём записи данных в его регистры . А самое замечательное, что содержимое этих регистров можно просматривать и изменять в SetFSB. Внимательно изучив даташит, я все-таки нашел регистр, с помощью которого можно было управлять частотой этого злополучного PLL:

Видно, что 7-й бит отвечает за включение/выключение ручного режима управления, а с 4-го по 2-й - за выставление частоты. Правда, частоту с его помощью можно было менять только ступеньками с одной стандартной частоты на другую, т.е. 166,200,266 и т.п. - так, как это делает BSEL-мод. И это тоже был, казалось бы, тупик, потому что в R70 стоял процессор с частотой FSB=200 МГц и чипсет PM965, который официально не поддерживает более высокую частоту. Т.е. при переключении с частоты 200 МГц на частоту 266 МГц ноутбук зависал. Вольтмод чипсета я тогда еще делать не умел, впрочем, если бы даже и умел, то неизвестно, помог бы он или нет. Но к счастью, у знакомого оказался процессор T5750, который работал на FSB 166 МГц, и мы поменялись. С этим процессором разгон удался, изменив значение регистра я переставил частоту со 166 на 200 МГц и получил прирост частоты процессора в 400 МГц и частоты памяти в 133 МГц, т.е. процессор стал работать на 2,4 ГГц, а память DDR2 - на 800. Хотя, честно говоря, абсолютный выигрыш от разгона в данном случае несколько сомнителен, так как у моего Т7300 кэш второго уровня 4 МБ, а у Т5750 он в два раза меньше. И непонятно, что в данном случае лучше - лишние 2 МБ кэша или 400 МГц прироста частоты.

И все вроде бы получилсоь, только вот частота выставлялась через раз, а в остальных случаях ноутбук зависал, причем чаще зависал, чем выставлял частоту. Но какое никакое, а достижение. Написал про этот регистр Abo, и он впоследствии добавил поддержку моего PLL в SetFSB. Правда, поддержка не такая, как для «нормальных» ТГ, но хоть какое-то поле для действий. Под «нормальными» ТГ я подразумеваю такие ТГ, которые позволяют изменять частоту с шагом ~1 МГц, а не по таблице.

В R560 стоит точно такой же тактовый генератор. Кстати говоря, не во всех экземплярах R70, R560 и R710 (аналог R560 с 17-дюймовым экраном) стоят ТГ Silego SLG8SP513V. В некоторых устанавливались ТГ фирмы IDT и SpectraLinear. Ситуация с их поддержкой такая же безрадостная как и с SLG, причем в ТГ SpectraLinear частоту переключать нельзя вообще никак. Вот сам ТГ от Silego:

Процесс разгона

В R560 установлен чипсет Intel PM45, который официально поддерживает частоту 266 МГц и может работать даже на частоте 333 МГц, что, казалось бы, создает идеальные условия для разгона моего Т7300 (200*10). Однако не тут-то было. Чипсет при старте ноутбука в зависимости от частоты FSB (точнее, не от самой частоты, а от BSEL-комбинации пинов процессора) выставляет тайминги для памяти, которые он берет из SPD. И получилась такая ситуация: для FSB 200 МГц выставлялись тайминги 6-6-6-15, а для разгона на FSB 266 МГц нужны тайминги 7-7-7-20, если верить SPD. Выходов было несколько:

  • сделать BSEL-мод на 333 МГц, тогда множитель заблокируется на х6 и результирующая частота процессора останется такой же (333*6=2,0 ГГц), что достаточно неплохо, учитывая более широкую шину процессора и то, что частота памяти была бы в этом случае 1333 МГц. Тайминги при этом должны выставиться правильные;
  • модифицировать SPD модулей памяти так, чтобы на частоту FSB 200 МГц чипсет выставлял тайминги 7-7-7-20. При этом дальше можно было бы заниматься программным разгоном, т.к. память функционировала бы в стандартном режиме.

Первый вариант, на который я так надеялся, отпал после его практической проверки. В таком положении перемычек/изоляторов на BSEL-пинах процессора ноутбук не стартовал вообще. Такая ситуация возможна в силу целого ряда причин, но точную могут знать только инженеры компании Samsung.

Второй вариант было реализовать относительно просто. Существует специальное ПО для перепрошивки SPD, я воспользовался Taiphoon Burner 6.1. Однако при прошивке возникла проблема: в силу того, что в R560 используется память типа DDR3, разные программы почему-то выдают разную информацию об SPD, однако это в итоге не помешало мне при работе с SPD. После недолгих опытов и перепрошиванием SPD туда и обратно выяснилось, что ноутбук упорно не хочет стартовать, если для частоты FSB 200МГц прописан Cas Latency не равный 6, а мне нужен был CL=7. Остальные тайминги без CL=7 выставлялись замечательно. Некоторое время я искал на различных форумах причины такой ситуации, но безрезультатно. Поэтому было решено протестировать тайминги 6 -7-7-20. Вопреки моим ожиданиям, система не только запустилась, но и стабильно работала даже в стресс-тестах.

Вот что прописано в SPD по умолчаниию:

А вот модифицированный вариант:

Так выглядит редактор таймингов:

Стоит отметить, что если у вас только одна планка памяти, то заниматься перепрошивкой SPD не стоит. Потому что в случае неправильной установки таймингов ноутбук стартовать с этой планкой не будет. Я специально для опытов купил еще одну самую дешёвую планку памяти на гигабайт, которую не слишком жалко потерять. Если в ноутбуке стоит две планки и одна из них прошита неправильно, то можно вставить рабочую, загрузить на ней систему, а потом «на горячую» воткнуть нерабочую и прошивать её обратно на рабочие тайминги. Есть риск спалить планку или, что еще хуже, того материнскую плату, но при отсутствии под рукой программатора других вариантов нет. К слову, планку я таким способом возвращал к жизни около 10 раз и сейчас она чудесно функционирует. Позднее было выяснено, что существует безопасный способ с заклеиванием контактов на планках скотчем. Суть его заключается в том, что нужно заклеить скотчем все контакты на планке памяти, кроме тех, которые нужны для чтениязаписи микросхемы SPD. Для So-DIMM DDR3 204pin нужно оставлять незакленными по 5 последних контактов с обоих сторон планки. Если память другая, то нужно найти даташит на нужный формфактор, и в соответствии с ним оставить незаклеенными плюс, массу и пины, касающиеся работы с микросхемой SPD.

Казалось бы, цель достигнута, но у программного разгона R560 есть существенные недостатки - мало того, что, как и в R70, при переключении частоты ноутбук с вероятностью ~70% зависает, при удачном переключении частоты он ещё и перезагружается. Понятно, что о постоянном использовании этой схемы и речи быть не может, в лучшем случае будет двойной старт, в худшем система вообще зависнет.

Финишная прямая

К счастью, это был не конец. На форуме, в ветке про разгон ноутбуков, я наткнулся на запись о том, как один человек (Выражаю благодарность Константину из Байконура, без него то, что я буду описывать далее, не получилось бы) с помощью паяльника и определенных навыков сделал мод, при котором чипсет продолжал думать, что работает на стандартной частоте, в то время как ТГ выдавал другую (способ разгона №3). Множитель, естественно, не блокировался. Посовещавшись с ним, мы пришли к выводу, что аналогичный мод можно сделать и у меня.

Как я уже говорил ранее, в тактовом генераторе существуют три пина, которые выполняют ту же функцию, что и контакты BSEL в процессоре. На рисунке это пины под номерами 5, 17, 64.

В большинстве случаев на этих пинах висят еще и дополнительные функции, поэтому приходится думать, что-то куда-то перепаивать, где-то делать разрыв, добавлять дополнительные сопротивления. В общем, это достаточно трудоёмкий процесс, требующий специальных знаний, навыков, инструментов и деталей. Чтобы сделать такой мод, нужно отследить, с чем соединяется на плате нужный пин тактового генератора. В моем случае это было нереально, так как выходящая из ТГ дорожка через 5 мм уходила во внутренние слои платы. К счастью, мне повезло, на нужном мне пине, а именно №64, была функция, которая ни на что не влияет в нормальном режиме работы ноутбука.

Согласно этой таблице, чтобы переключить частоту с 200 на 266 МГЦ, мне нужно было отпаять пин FS_B (№64) и подать на него низкий уровень, т.е. замкнуть его на землю, чтобы получить логический 0. В принципе, если не замыкать его на землю, а просто отпаять, то, по идее, ничего измениться не должно, так как на стандартной частоте эта нога имеет значение логической единицы. Я не долго думая разобрал ноутбук и перебил дорожку, отходящую от 64-го пина.

Решил проверить ноутбук и убедиться, что он по-прежнему работает. Windows загрузилась, и тут я в трее, рядом со значком RMClock, увидел на индикаторе частоты процессора цифру 2,66, подумал что это какой-то сбой. Выключил, включил, но RMClock все равно показывал те же цирфы, а CPU-Z показывал, что частота FSB равна 266 МГц. Единственное, меня немного смущал вопрос, почему пин, висящий в воздухе, принимается за логический 0. Я протестировал систему на стабильность в течение нескольких минут и наконец собрал ноутбук на все винты, а не на три шурупчика «лишь бы держалось». Можно считать, что цель достигнута.

Вот они, заветные цифры:

В скором времени обнаружилась интересная особенность - после ухода ноутбука в режим сна S3, и выхода из него, частота сбрасывалась на заводскую. Тут я вспомнил про пин, висящий в воздухе, и решил всё-таки припаять его на землю, как и полагается. После этого баг больше не проявлялся.

Охлаждение и тестирование

Во времена, когда у меня был еще R70, очень остро стоял вопрос охлаждения, потому что установленная в него видеокарта 8600M GT сильно греется, а при разгоне температура вообще доходила до 100 градусов. С этим надо было что-то делать. При разборке я заметил, что на других ноутбуках прямо под вентилятором охлаждения предусмотрены вентиляционные отверстия, через которые он засасывает холодный воздух. В R70, также как и в R560, напротив вентилятора таких отверстий нет и поток воздуха из-за этого ослабевает и приходит на вентилятор уже нагретый за счёт тепла компонентов материнской платы. Я решил исправить этот досадный момент колхозным, но эффективным способом:

Уже не помню, насколько упала температура после этого, но могу сказать, что такой ход примерно равносилен покупке охлаждающей подставки, он снижает температуру на 5 и более градусов в зависимости от нагрузки. Кстати о подставке, всем рекомендую приобретать такую, если хотите заняться разгоном ноутбука. Главное при выборе подставки для R560, это расстояние между днищем и подставкой - чем оно больше, тем лучше. Расположение вентиляторов имеет имеет значение только если вы будете сверлить отверстия напротив вентилятора, как это сделал я. Лучше, если заборные отверстия вентилятора ноутбука находятся прямо над вентиляторами подставки.

Теперь о результатах тестов. Рассуждать тут собственно не о чем, цифры говорят сами за себя:

3Dmark 2006 (default, 1280×800, видеокарта под разгоном, процессор и память не разогнаны, XP).

Everest без разгона:

Everest с разгоном:

О температурном режиме могу сказать, что мой T7300 сам по себе горячий, стресс-тестирование S&M или LinX без дополнительного охлаждения он не проходит даже на заводской частоте. Без разгона эта проблема на ура решается понижением напряжения - процессор может стабильно работать при напряжении 0,9875В. А вот с разгоном понижать напряжение уже некуда. С разгоном в ресурсоёмких играх температура процессора держится на уровне 80–90 градусов, видеокарты - около 80. Хотя, в принципе, этот уровень находится в пределах нормы. Примечательно, что после разгона температура процессора практически не изменилась.

Заключение

Разгон ноутбуков - занятие непростое, но интересное и к тому же выгодное. Зачем покупать ноутбук за 50–70 тысяч рублей, когда той же (если не бо́льшей) производительности при правильном подходе можно добиться от ноутбука за 30–40 тысяч. Пример в лице Samsung R560 это подтверждает. Мое личное мнение состоит в том, что Samsung R560 просто создан для разгона. На 45-нм процессоре (которым он, кстати, и комплектуется) можно достичь внушительных результатов: процессор можно разогнать до ~2,8–3,4ГГц, память DDR3 - до 1333МГц. Недурно для ноутбука за ~35 тысяч рублей.

Глоссарий

  • Слово «вольтмод» взято из английского (voltmodification) и означает «модификация напряжения». Вольтмод включает в себя любую модернизацию напряжения питания памяти или ядра (не путать с изменением настроек BIOS материнской платы). В основном вольтмод применяют для модернизации системы питания видеокарт или материнских плат.
  • Чипсет - набор микросхем материнской платы.
  • Тайминги - задержки доступа к данным в DDR-памяти.
  • Микросхема SPD (Serial Presence Detect) - микросхема на планке оперативной памяти, в которой хранится информация о частотах, таймингах памяти и многое другое.
  • Тактовый генератор - генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах.
  • Частота, на которой работает центральный процессор, определяется исходя из частоты FSB и коэффициента умножения. Большинство современных процессоров имеют заблокированный коэффициент умножения, так что единственным способом разгона является изменение частоты FSB.
  • BSEL-пины на процессоре отвечают за выбор чипсетом и ТГ частоты FSB и всех зависящих от неё параметров соответственно. На последних процессорах таких пинов три, они могут принимать значения логического нуля или единицы. Различные комбинации таких нулей и единиц соответствуют разным частотам FSB.
  • Регистром называется функциональный узел, осуществляющий приём, хранение и передачу информации.

Поскольку процессоры Intel Q6600 разгоняются довольно хорошо, частота шины была сразу увеличена с 266 МГц до 333 МГц:

Однако так как от шины зависит не только частота процессора, но и памяти, то разогналась и она. Здесь использовались модули памяти DDR-2 800 МГц, для которых частота в 1000 МГц может оказаться непосильной. Чтобы избежать переразгона, частоту оперативной памяти следует понизить с помощью ещё одной настройки – множителя (для некоторых платформ более правильно использовать слово «делитель») памяти.

В BIOS’е Gigabyte GA-P35-DS3R эта настройка называется System Memory Multiplier. Перемножением частоты шины на этот множитель определяется частота оперативной памяти. Поскольку после разгона шина будет работать на 333 МГц, то определить требуемый множитель памяти можно делением исходной частоты памяти на частоту шины: 800/333=2,4. Задаем это значение в настройках BIOS’а:

Материнская плата красным текстом предупреждает, что были изменены настройки с заводских на другие. Ничего страшного в этом нет. Память как работала на частоте 800 МГц, так и работает. Для ее разгона в данном случае нужно всего лишь задать большее значение множителя (но при этом не слишком большое):

Разгон с 800 МГц до 833 МГц это, конечно, не серьезно, но следующее значение множителя после 2,5 сразу 3,0, что слишком много. Более удачнее удалось бы разогнать при возможности увеличения множителя процессора: в паре с подбором требуемой частоты шины настроить систему можно более гибко. В данном случае была предпринята попытка снижения множителя с 9,0 до 8,0. Для достижения частоты 3000 МГц шина должна заработать на 375 МГц, а при множителе памяти равным 2,4 ОЗУ получит частоту 900 МГц. Память с таким разгоном не справилась - ПК постоянно зависал. При множителе памяти 2,0 получаем всего лишь 750 МГц – ниже номинала. Поэтому было решено в рамках первой попытки разгона остановиться на варианте 333х9,0.

Для успешного и значительного разгона процессора часто требуется небольшое увеличение напряжения. На 5-10%. Выбираем пункт CPU Voltage Control, заходим в него, устанавливаем, к примеру, 1,35 В:

Таким образом, процессор был разогнан по шине с 2400 МГц до 3000 МГц (333х9) с небольшим увеличением напряжения.

Для разгона оперативной памяти в некоторых случаях необходимо так же, как и для процессора, немного увеличить напряжение. Делается это аналогичным способом. Выбираем требуемый пункт:

Устанавливаем увеличение напряжения на +0,1 В, жмем Enter.

Перед выходом из BIOS проверяем все настройки:

Если все в порядке, нажимаем клавишу F10, затем Enter.

При старте ПК наблюдаем новую частоту процессора:

Если получился переразгон, то система может не стартовать. В этом случае на плате следует отыскать пластиковую перемычку возле круглой серебристой батарейки. Перемычка Clear Cmos по умолчанию замыкает два контакта из трех. Переставляем ее на несколько секунд так, чтобы замкнуть средний контакт с другим, бывшим до этого свободным. Затем возвращаем перемычку на прежнее место, стартуем, заново настраиваем BIOS, поскольку после такой манипуляции материнская плата сбросит все настройки на заводские.

Вот так за пару минут можно прибавить 600 МГц к частоте процессора. Но это пока лишь первое приближение к искомому результату.

На материнских платах с AMI BIOS’ом все выполняется аналогично. Выглядит он следующим образом:

Для разгона сразу переходим в раздел «Advanced»:

Интересующие оверклокера настройки собраны в закладках «CPU configuration» и «Chipset configuration». Заходим в первую:

Частота шины здесь называется «CPU Host Frequency». По аналогии с Award BIOS переключаем на ручное управление, в Manual.

После этого можно заняться частотой. Остальные параметры (напряжения, множитель/делитель памяти и так далее) меняются аналогичным образом:

Кроме AWARD и AMI существует относительно недавно появившийся UEFI BIOS. К его основным особенностям относят графический интерфейс с поддержкой мыши и возможность работы с винчестерами емкостью 3 ТБ и более.

Инструкция

Увеличить частоту оперативной памяти можно двумя способами: изменить ее множитель или частоту системной шины. Лучше использовать второй вариант, потому что он обеспечивает плавный прирост производительности, а не резкий скачек, который может привести к порче устройства. Установите утилиту Speccy и запустите ее. Откройте меню «Оперативная память» и посмотрите частоту , с которой работают платы в данный момент.

Перезагрузите компьютер и откройте BIOS, нажав клавишу Del. Откройте меню Advanced и найдите пункт FSB/Memory Ratio. Он может называться иначе в различных моделях материнских плат. Установите для этого пункта параметр Manual вместо Auto. Теперь вы можете самостоятельно задать значения частоты и множителя. Выполните эти действия. Увеличьте частоту шины оперативной памяти на 20-50 Герц.

Вернитесь в главное окно меню BIOS и выберите пункт Save & Exit. Нажмите клавишу Enter и дождитесь перезагрузки компьютера. Теперь выполните проверку стабильности оперативной памяти . Откройте панель управления и выберите меню «Система и безопасность» (Windows Seven). Откройте подменю «Администрирование» и запустите ярлык «Проверка памяти Windows». Подтвердите выполнение перезагрузки компьютера для проверки состояния оперативной памяти .

Если тестирование показало хорошие результаты, то повторите вход в меню BIOS и вновь поднимите частоту оперативной памяти . Выполняйте описанные циклы до тех пор, пока система проверки ОЗУ не выявит ошибок. После этого можете попробовать уменьшить задержки памяти . Для этого поочередно понижайте на один пункт показатели четырех видов таймингов. Обычно они расположены в Advanced Settings.

Если во время изменения параметров работы ОЗУ произошел сбой, а компьютер перестал загружаться, то извлеките на некоторое время BOIS-батарейку из системного блока. Это позволит применить заводские настройки ПК.

Источники:

  • как поднять частоту памяти

Для полной оптимизации компьютера необходимо настроить параметры работы плат оперативной памяти . Этот процесс рекомендуют выполнять через меню BIOS, но иногда можно использовать дополнительные программы.

Инструкция

Выполните проверку производительности и стабильности установленных плат оперативной памяти . Можно использовать программу MemTest, но если у вас нет желания искать и устанавливать эту утилиту, то воспользуйтесь средствами Windows. Откройте меню «Администрирование», расположенное в панели управления компьютера. Запустите ярлык «Проверка памяти Windows».

Перезагрузите компьютер и дождитесь завершения анализа состояния плат оперативной памяти . Теперь откройте меню BIOS, нажав клавишу Delete после включения компьютера. Перейдите в меню System Configuration или Advanced Chipset Setup. Выберите способ изменения частоты планок оперативной памяти . Лучше изменять частоту шины, потому что смена множителя даст резкий скачок производительности.

Немного повысьте частоту шины оперативной памяти . Увеличьте напряжение, подаваемое на платы ОЗУ. Это поможет избежать аварийного отключения компьютера при большой нагрузке на платы оперативной памяти . Сохраните изменения параметров меню BIOS, нажав клавишу F10. Дождитесь завершения загрузки операционной системы.

Вновь выполните проверку состояния планок оперативной памяти . Особое внимание обратите на прирост производительности и наличие (отсутствие) ошибок. Если проверка показала отличные результаты, то повторите процедуру повышения частоты оперативной памяти . Обязательно периодически повышайте напряжение.

Если в определенный момент компьютер перестал загружаться, то разберите корпус системного блока и извлеките BIOS-батарейку. Установите ее в гнездо спустя 10-15 минут. Установите последнее удачное значение частоты шины оперативной памяти , чтобы избежать проблем в ее работе. Если вы решили увеличить показатель множителя, то предварительно уменьшите частоту шины.

Видео по теме

Каким бы быстрым не был ваш компьютер или ноутбук, со временем его мощности перестает хватать и он больше не может справляться с нужными вам задачами. Тогда и возникает мысль о разгоне его компонентов. Относительно приличного увеличения производительности можно добиться, разгоняя оперативную память компьютера. Только помните, что разгон приводит к уменьшению стабильности работы компьютера, поэтому его необходимо проводить с осторожностью и только при острой необходимости.

Вам понадобится

  • - Компьютер с ОС Windows;
  • - программа CPU Stability Test.

Инструкция

Итак, для того чтобы увеличить частоту оперативной памяти , зайдите в BIOS. После этого пройдите в расширенные настройки (они могут называться Advanced Chipset Settings или еще каким-то другим, подобным образом). Для изменения таймингов найдите поле, отвечающее за это (Current Latency или подобное) и поставьте минимальное значение. Например, если стоит 3, поставьте 2.

Теперь попробуйте увеличить частоту памяти . Для этого здесь же найдите пункт, отвечающий за скорость системной шины. Он может называться FSB Speed или подобным образом. Поставьте частоту шины на 1 шаг больше той, которая стоит у вас сейчас. Лучше изменять частоту на минимальную величину, не более 5 МГц.

После изменения частоты шины сохраните в BIOS настройки, загрузите операционную систему и запустите программу для тестирования стабильности работы процессора и памяти . В этом плане хорошо себя зарекомендовала программа CPU Stability Test.

Если тестирование утилитой не выявило проблем, можете смело возвращаться в BIOS и увеличивать частоту системной шины (а вместе с ними – процессора и оперативной памяти ) еще на шаг. После этого снова сохраните настройки, загрузите операционную систему и протестируйте стабильность. Цикл нужно повторять до тех пор, пока утилита не покажет нестабильность текущей конфигурации. В этом случае рекомендуется вернуться в BIOS и откатиться по частоте на 2 шага назад.

Полезный совет

Обычно разгон оперативной памяти сводится к увеличению частоты системной шины или уменьшению таймингов до минимума. Тайминги определяют скорость отклика в тактах вашей оперативной памяти. Не все материнские платы позволяют изменять частоту системной шины с маленьким шагом (1-5 МГц), если это так, лучше откажитесь от разгона. При повышении частоты системной шины одновременно увеличивается частота процессора. Если это происходит резко без надлежащего тестирования, то есть высокий риск вывести из строя один или оба этих компонента компьютера.

Если вам требуется повысить производительность оперативной памяти, не прибегая к установке новых планок ОЗУ, то уменьшите тайминги существующих. Делать это следует крайне аккуратно, дабы не повредить устройства компьютера.

Вам понадобится

  • - Riva Tuner.

Инструкция

Сначала проведите проверку установленных планок памяти. В операционной системе Windows Seven присутствует встроенная утилита для осуществления этого процесса. Откройте панель управления и выберите меню «Система и безопасность». Теперь откройте пункт «Администрирование». Перейдите к меню «Средство проверки памяти Windows». Теперь выберите параметр «Выполнить перезагрузку и проверку памяти».

Теперь перезагрузите компьютер и откройте меню BIOS, удерживая клавишу Delete. Нажмите сочетание клавиш Ctrl и F1 для открытия меню дополнительных параметров работы компьютера. Перейдите в меню Advanced. Теперь изучите данные, расположенные ниже строки Memory Frequency. Там находится четыре пункта: CAS Latеncy, RAS Prеcharge dеlay, RАS to СAS Delаy и Аctive Prеchаrge Dеlay.

Уменьшать тайминги необходимо очень аккуратно, каждый раз изменяя только один параметр на минимальную «единицу». Начните уменьшение с первого пункта CAS Latency. Обычно его уменьшают на 0.5. Вернитесь в главное меню BIOS. Выберите пункт Save & Exit и нажмите клавишу Enter. После перезагрузки компьютера повторите процедуру входа в меню тестирования оперативной памяти.

В том случае, если программа показала улучшение показателей, продолжите уменьшать тайминги, изменив значение следующего пункта (RAS Prеcharge dеlay). Чтобы избежать постоянных перезагрузок компьютера при проверке памяти, воспользуйтесь специальными утилитами.

Установите программу memtest или Riva Tuner. При помощи этих утилит выполняйте проверку стабильности и производительности оперативной памяти. Последняя программа, кстати, обладает функцией уменьшения таймингов. Помните о том, что рекомендуют выполнять этот процесс именно через BIOS, потому что это позволит быстро восстановить заводские параметры компьютера в случае сбоя.