Разложение прямоугольного сигнала в ряд фурье. Примеры разложения в ряд фурье

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.

В частности:

1. Гармонические сигналы инвариантны относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колебаний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой.

2. Техника генерирования гармонических сигналов относительно проста.

Если какой-либо сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, - что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала образуют его спектр.

2.1. Периодические сигналы и ряды Фурье

Математической моделью процесса, повторяющегося во времени, является периодический сигнал со следующим свойством:

Здесь Т - период сигнала.

Ставится задача найти спектральное разложение такого сигнала.

Ряд Фурье.

Зададим на отрезке времени рассмотренный в гл. I ортонормированцый базис, образованный гармоническими функциями с кратными частотами;

Любая функция из этого базиса удовлетворяет условию периодичности (2.1). Поэтому, - выполнив ортогональное разложение сигнала в этом базисе, т. е. вычислив коэффициенты

получим спектральное разложение

справедливое на всей бесконечности оси времени.

Ряд вида (2.4) называется рядом Фурье даннрго сигнала. Введем основную частоту последовательности, образующей периодический сигнал. Вычисляя коэффициенты разложения по формуле (2.3), запишем ряд Фурье для периодического сигнала

с коэффициентами

(2.6)

Итак, в общем случае периодический сигнал содержит не зависящую от времени постоянную составляющую и бесконечный набор гармонических колебаний, так называемых гармоник с частотами кратными основной частоте последовательности.

Каждую гармонику можно описать ее амплитудой и начальной фазой Для этого коэффициенты ряда Фурье следует записать в виде

Подставив эти выражения в (2.5), получим другую, - эквивалентную форму ряда Фурье:

которая иногда оказывается удобнее.

Спектральная диаграмма периодического сигнала.

Так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы (рис. 2.1).

Здесь по горизонтальной оси в некотором масштабе отложены частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.

Рис. 2.1. Спектральные диаграммы некоторого периодического сигнала: а - амплитудная; б - фазовая

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала.

Изучим несколько конкретных примеров.

Пример 2.1. Ряд Фурье периодической последовательности прямоугольных видеоимпульсов с известными параметрами , четной относительно точки t = 0.

В радиотехнике отношение называют скважностью последовательности. По формулам (2.6) находим

Окончательную формулу ряда Фурье удобно записать в виде

На рис. 2.2 представлены амплитудные диаграммы рассматриваемой последовательности в двух крайних случаях.

Важно отметить, что последовательность коротких импульсов, следующих друг за другом достаточно редко , обладает богатым спектральным составом.

Рис. 2.2. Амплитудный спектр периодической последовательности ррямоугольных видеоимпульсов: а - при большой скважности; б - при малой скважности

Пример 2.2. Ряд Фурье периодической последовательности импульсов, образованной гармоническим сигналом вида ограниченным на уровне (предполагается, что ).

Введем специальный параметр - угол отсечки , определяемый из соотношения откуда

В соотаетствии с этим величина равна длительности одного импульса, выраженной в угловой мере:

Аналитическая запись импульса, порождающего рассматриваемую последовательность, имеет вид

Постоянная составляющая последовательности

Амплитудный коэффициент первой гармоники

Аналогично вычисляют амплитуды - гармонических составляющих при

Полученные результаты обычно записывают так:

где так называемые функции Берга:

Графики некоторых функций Берга приведены на рис. 2.3.

Рис. 2.3. Графики нескольких первых функций Берга

Комплексная форма ряда Фурье.

Спектральное разложение периодического сигнала можно выполнить и несколько ионному, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом ортонормированы на отрезке времени так как

Ряд Фурье произвольного периодического сигнала в данном случае принимает вид

с коэффициентами

Обычно используют следующую форму записи:

Выражение (2.11) представляет собой ряд Фурье в комплексной форме.

Спектр сигнала в соответствии с формулой (2.11) содержит компоненты на отрицательной полуоси частот, причем . В ряде (2.11) слагаемые с положительными и отрицательными частотами объединяются в пары, например: и строят суммы векторов - в сторону увеличения фазового угла, в то время как векторы вращаются в противоположном направлении. Конец результирующего вектора в каждый момент времени определяет текущее значение сигнала.

Такая наглядная интерпретация спектрального разложения периодического сигнала будет использована в последующем параграфе.

Цель работы: ознакомление со спектральным описанием периодических функций с помощью рядов Фурье.

Необходимые теоретические сведения. Разложение в ряд Фурье

Первым рассматриваемым сигналом будет последовательность прямоугольных импульсов с амплитудой А , длительностью и периодом повторенияТ . Начало отсчета времени примем расположенным в середине импульса (рис.1).

Рис 1. - Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье- в ней будут присутствовать только косинусные слагаемые , равные

Введем скважность
в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону
(см. рис. 2).График функции
имеет лепестковый характер. Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при
имеем
, если
). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов - в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

Рис. 2 - Коэффициенты ряда Фурье для последовательности прямоугольных импульсов.

Расстояние по частоте между соседними гармониками равно частоте следования импульсов -
. Ширина лепестков спектра, измеренная в единицах частоты, равна
, то есть обратно пропорциональна длительности импульсов, т.е. чем короче сигнал, тем шире его спектр.

Важным частным случаем предыдущего сигнала является меандр (рис. 3) - последова­тельность прямоугольных импульсов со скважностью, равной
, когда дли­тельности импульсов и промежутков между ними становятся равными.

Рис. 3 - Меандр

,

где m – произвольное целое число.

Таким образом, в спектре меандра присутствуют только нечетные гармоники. Представление меандра в виде ряда Фурье с учетом этого может быть записано следующим образом:

Гармонические составляющие, из которых складывается меандр, имеют ампли­туды, обратно пропорциональные номерам гармоник, и чередующиеся знаки. На примыкающих к разрыву участках сумма ряда Фурье дает заметные пульса­ции. Это явление, присущее ря­дам Фурье для любых сигналов с разрывами первого рода (скачками), называет­ся эффектом Гиббса. Можно показать, что амплитуда первого (самого большого) выброса составляет примерно 9 % от величины скачка.

Рисунок 4. Эффект Гиббса.

Пилообразный сигнал (рис. 5). в пре­делах периода описывается линейной функцией:

,
.

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

Рис. 5 - Пилообразный сигнал.

Периодическая последовательность треугольных импульсов имеет симметричную форму (рис. 6):

,
.

Рис. 6 - Последовательность треугольных импульсов.

Ряд Фурье имеет следующий вид:

Рассмотрим программу, реализующую разложение в ряд Фурье прямоугольной последовательности импульсов.

ЗАДАНИЕ1.


ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов ;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системе MatLab и построить графики.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала , равному . Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда и рассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для . Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.
Если
является четной функцией , то все будут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если является нечетной функцией , равны нулю будут, наоборот, косинусные коэффициенты и в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ



Последовательность прямоугольных импульсов с амплитудой , длительностью и периодом повторения .

Рис. 1 Периодическая последовательность прямоугольных импульсов
Данный сигнал является четной функцией , поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР



Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим


Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал
Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов
Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N = 8; % число ненулевых гармоник

t = -1:0.01:1; % вектор моментов времени

A = 1; % амплитуда

harmonics = cos(2*pi*nh"*t/T);

Am = 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

s2 = cumsum(s1);

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии : repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков. repmat(Am", 1, length(t)) – матрица состоит из 1 блока по вертикали и length(t) блоков по горизонтали, каждый блок является матрицей Am".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющей Rows строк, Cols – столбцов, и N клетка становится текущей.

Варианты


варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

1

7

3

2

10

2

5

4

3

12

3

4

5

4

14

4

3

6

5

16

5

2

8

6

18

6

5

3

2

14

7

4

4

3

16

8

3

5

4

18

9

2

6

5

10

10

7

8

6

12

11

4

4

3

18

12

3

5

4

10

13

2

6

5

12

14

7

8

6

14

15

5

3

2

16

16

7

3

2

12

17

5

4

3

14

18

4

5

4

16

19

3

6

5

18

20

2

8

6

10

21

5

3

2

16

22

4

4

3

18

23

3

5

4

10

24

2

6

5

12

25

7

8

6

14

26

4

4

3

10

27

3

5

4

12

28

2

6

5

14

29

7

8

6

16

30

5

3

2

18
5. Линейные электрические цепи в режиме периодических негармонических воздействий. Теория электрических цепей

5. Линейные электрические цепи в режиме периодических негармонических воздействий

5.1. Негармонические периодические сигналы

При передаче информации по каналам связи в процессе преобразования сигналов в различных устройствах, как правило, используют негармонические колебания, поскольку чисто гармонические колебания не могут являться носителями информации. Для передачи сообщений осуществляют модуляцию гармонического колебания по амплитуде – амплитудная модуляция (AM), частоте – частотная модуляция (ЧМ) или фазе – фазовая модуляция (ФМ), либо используют импульсные сигналы, модулируемые по амплитуде – амплитудно-импульсная модуляция (АИМ), ширине – широтно-импульсная модуляция (ШИМ), временному положению – время-импульсная модуляция (ВИМ). Существуют и другие, более сложные сигналы, формируемые по специальным законам. Отличительной чертой указанных сигналов является сложный негармонический характер. Несинусоидальный вид имеют токи и напряжения, формируемые в различных импульсных и цифровых устройствах (19. Дискретные сигналы и цепи), несинусоидальный характер приобретают гармонические сигналы, проходящие через различные нелинейные устройства (11. Нелинейные электрические цепи при гармонических воздействиях) и т. д. Все это приводит к необходимости разработки специальных методов анализа и синтеза электрических цепей, находящихся под воздействием периодических несинусоидальных и непериодических токов и напряжений. В основе этих методов лежат спектральные представления несинусоидальных воздействий, базирующиеся на разложении в ряд или интеграл Фурье.

Из математического анализа известно, что периодическая негармоническая функция f(t) , удовлетворяющая условиям Дирихле, может быть разложена в ряд Фурье:
(5.1)
где a k , b k - коэффициенты разложения, определяемые уравнениями
(5.2)

Величина представляет среднее за период значение функции f(t) и называется постоянной составляющей.

В теоретических исследованиях обычно вместо формулы (5.1) используют другую, основанную на замене независимой переменной :
(5.3)
где
(5.4)

Уравнение (5.3) есть тригонометрическая форма ряда Фурье. При анализе цепей часто удобней пользоваться комплексной формой ряда Фурье, которая может быть получена из (5.3) с помощью формул Эйлера:
(5.5)

Подставив (5.5) в уравнение (5.3), после несложных преобразований получим комплексную форму ряда Фурье:
(5.6)
где A k - комплексная амплитуда k -й гармоники:
(5.7)
где – амплитуда; – начальная фаза k -й гармоники.

Подставив значения a k и b k из (5.4) в (5.7), получим:
(5.8)

Совокупность амплитуд 0,5А k = 0,5А k в разложении (5.6), отложенных против соответствующих положительных и отрицательных частот, образует симметричный относительно оси координат (вследствие четности коэффициентов а k ) линейчатый амплитудный спектр .

Совокупность ординат k = – –k из (5.7), входящих в разложение (5.6) и отложенных против соответствующих положительных и отрицательных частот, образует симметричный относительно начала оси координат (вследствие нечетности коэффициентов b k ) линейчатый фазовый спектр .

Разложение (5.3) можно представить и в другой форме. Если учесть, что а k = А k cos k и b k = А k sin k , то после подстановки в (5.3) получим:
(5.9)

Если рассматривать постоянную составляющую a 0 /2 как нулевую гармонику с начальной фазой 0 = 0, то разложение (5.9) примет вид
(5.10)

В частном случае, когда функция f (a) симметрична относительно оси ординат (рис. 5.1, а ), в разложении (5.3) окажутся только четные (косинусоидальные) гармоники:

(5.11)

а при симметричности f (a) относительно начала координат (рис. 5.1, б ) нечетные гармоники
(5.12)

При сдвиге начала отсчета функции f (a) ее амплитудный спектр не изменяется, а меняется только фазовый спектр. Действительно, сдвинем функцию f (a) по оси времени влево на t 0 и обозначим .

Тогда разложение (5.9) примет вид
(5.13)

Пример. Разложить в ряд Фурье прямоугольные колебания (рис. 5.1, б ). Учитывая, что f (a) симметрична относительно начала координат в разложении (5.3) останутся только синусоидальные гармоники (5.12), где b k определится согласно (5.4):

Подставив b k в (5.12), получим разложение в ряд Фурье:
(5.14)

Далее сдвинем f (a) на p/2 влево (см. рис. 5.1, а ). Тогда согласно (5.13) получим

(5.15)

Т. е. получили разложение по косинусоидальным составляющим как и должно быть для симметричного относительно оси ординат сигнала.

В ряде случаев, когда периодичная функция f (a) задана графически и имеет сложную форму, ее разложение в ряд Фурье можно осуществить графо-аналитическим способом. Его суть заключается в том, что период сигнала Т (рис. 5.2) разбивают на m интервалов, равных , причем точки разрыва f (a) не должны попадать на середину участков разбиения; определяют значение сигнала f (a n ) в середине каждого участка разбиения.

Находят коэффициенты разложения а k и b k путем замены интеграла в (5.2) конечной суммой
(5.16)

Уравнение (5.16) легко программируется и при вычислении а k и b k , может использоваться ЭВМ.

5.2. Действующее, среднее значение и мощность периодического негармонического сигнала

Для определенности положим, что f (t ) имеет смысл тока i (t ). Тогда действующее значение периодического негармонического тока определяется согласно (3.5), где i (t ) определяется уравнением (5.10):
(5.17)

Подставив это значение тока в (3.5), после интегрирования получим
(5.18)

т. е. действующее значение периодического негармонического тока I полностью определяется действующими значениями его гармоник I k и не зависит от их начальных фаз k .

Аналогичным образом находим действующее значение периодического несинусоидального напряжения:
(5.19)

Среднее значение тока определяется согласно общему выражению (3.9). Причем обычно берут среднее значение i (t ) по абсолютной величине
(5.20)

Аналогично определяется U ср(2) .

С точки зрения теории цепей, большой интерес представляет средняя активная мощность негармонического сигнала и распределение ее между отдельными гармониками.

Средняя активная мощность периодического несинусоидального сигнала
(5.21)
где
(5.22)

k - фазовый сдвиг между током и напряжением k -й гармоники.

Подставляя значения i (t ) и u (t ) из (5.22) в уравнение (5.21), после интегрирования получаем:
(5.23)
т, е. средняя за период активная мощность периодического негармонического сигнала равна сумме мощностей отдельных гармоник. Формула (5.23) является одной из форм широко известного равенства Парсеваля .

Аналогично находим реактивную мощность
(5.24)
и полную мощность
(5.25)

Следует подчеркнуть, что в отличие от гармонических сигналов для негармонических сигналов
(5.26)

Величина P иcк = носит название мощности искажений и характеризует степень различия в формах тока i (t ) и напряжения u (t ).

Кроме мощности искажений периодические негармонические сигналы характеризуются еще рядом коэффициентов : мощности, k м = P/S; формы K ф = U/U ср(2) ; амплитуды K a = U m /U; искажений k и = U 1 /U; гармоник k г = и др.

Для синусоидального сигнала k ф = /21,11; k a = 1,41; k и = 1; k г = 0.

5.3. Спектры периодических негармонических сигналов

Рассмотрим последовательность прямоугольных импульсов, изображенную на рис. 5.3, а . Сигналы подобной формы находят очень широкое применение в радиотехнике и электросвязи: телеграфия, цифровые системы передачи, системы многоканальной связи с временным разделением каналов, различные импульсные и цифровые устройства и др. (см. гл. 19). Импульсная последовательность характеризуется следующими основными параметрами: амплитудой импульса A и и может иметь смысл как напряжения, так и тока."> , его длительностью t и и периодом следования Т . Отношение периода Т к длительности t и называется скважностью импульсов и обозначается через q = T/t и . Обычно значения скважности импульсов лежат в пределах от нескольких единиц (в измерительной технике, устройствах дискретной передачи и обработки информации), до нескольких сотен или тысяч (в радиолокации).

Для нахождения спектра последовательности прямоугольных импульсов воспользуемся рядом Фурье в комплексной форме (5.6). Комплексная амплитуда k -й гармоники равна согласно (5.8) после возвращения к исходной переменной t .



(5.27)

Подставив значение A k в уравнение (5.6), получим разложение в ряд Фурье:
(5.28)

На рис. 5.4 изображен спектр комплексных амплитуд для q = 2 и q = 4. Как видно из рисунка, спектр последовательности прямоугольных импульсов представляет собой дискретный спектр с огибающей (штриховая линия на рис. 5.4), которая описывается функцией
(5.29)
носящей название функции отсчетов (см. гл. 19). Число спектральных линий между началом отсчета по оси частот и первым нулем огибающей равно q- 1. Постоянная составляющая сигнала (среднее значение) , а действующее значение A = , т.е. чем больше скважность, тем меньше уровень постоянной составляющей и действующее значение сигнала. С увеличением скважности q число дискретных составляющих увеличивается - спектр становится гуще (см. рис. 5.4, б ), и амплитуда гармоник убывает медленнее. Следует подчеркнуть, что в соответствии с (5.27) спектр рассматриваемой последовательности прямоугольных импульсов вещественный.

Из спектра комплексных амплитуд (5.27) можно выделить амплитудный A k = |A k | и фазовый спектр k = argA k , изображенный на рис. 5.5 для случая q = 4. Из рисунков видно, что амплитудный спектр является четной, а фазовый - нечетной функцией частоты. Причем, фазы отдельных гармоник принимают либо нулевое значение между узлами, где синус положительный, либо ±, где синус отрицательный (рис. 5.5, б )

На основании формулы (5.28) получим тригонометрическую форму разложения в ряд Фурье по четным гармоникам (сравни с (5.15)):
(5.30)

При сдвиге импульсной последовательности по оси времени (рис. 5.2, б ) в соответствии с (5.13) ее амплитудный спектр останется прежним, а фазовый спектр изменится:
(5.31)

В случае, когда периодическая последовательность имеет разнополярную форму (см. рис. 5.1), в спектре будет отсутствовать постоянная составляющая (сравните (5.30) и (5.31) с (5.14) и (5.15)).

Аналогичным образом можно исследовать спектральный состав периодических негармонических сигналов другой формы. В табл.5.1 приведено разложение в ряд Фурье некоторых наиболее распространенных сигналов.

Таблица 5.1

Типы сигнала Разложение в ряд Фурье
1
2
3
4
5
6

5.4. Расчет цепей при периодических негармонических воздействиях

В основе расчета линейных электрических цепей, находящихся под воздействием периодических негармонических сигналов, лежит принцип наложения. Его суть применительно к негармоническим воздействиям заключается в разложении негармонического периодического сигнала в одну из форм ряда Фурье (см. 5.1. Негармонические периодические сигналы. Разложение в ряд Фурье) и определении реакции цепи от каждой гармоники в отдельности. Результирующая реакция находится путем суперпозиции (наложения) полученных частичных реакций. Таким образом, расчет цепей при периодических негармонических воздействиях включает в себя задачу анализа спектрального состава сигнала (разложение его в ряд Фурье), расчет цепи от каждой гармонической составляющей и задачу синтеза, в результате которого определяется результирующий выходной сигнал как функция времени (частоты) или его действующее (амплитудное значение).

При решении задачи анализа обычно пользуются тригонометрической (5.3) или комплексной (5.6) формой ряда Фурье с ограниченным числом членов разложения, что приводит к некоторой погрешности аппроксимации истинного сигнала. Коэффициенты разложения a k и b k в (5.3) или A k и k в (5.6) определяются с помощью уравнений (5.4), (5.7) и (5.8). При этом входной сигнал f (a) должен быть задан аналитически. В случае, если сигнал задается графически, например в виде осциллограммы, то для нахождения коэффициентов разложения a k и b k можно использовать графоаналитический метод (см. (5.16)).

Расчет цепи от отдельных гармоник ведется обычно символическим методом. При этом необходимо иметь в виду, что на k -й гармонике индуктивное сопротивление X L (k ) = kL , а емкостное сопротивление X C (k ) = 1/(), т. е. на k -й гармонике индуктивное сопротивление в k раз больше, а емкостное в k раз меньше, чем на первой гармонике. Этим в частности объясняется то обстоятельство, что высокие гармоники в емкости выражены сильнее, а в индуктивности слабее, чем в приложенном к ним напряжении. Активное сопротивление R на низких и средних частотах можно считать не зависящим от частоты.

После определения искомых токов и напряжений от отдельных гармоник методом наложения находят результирующую реакцию цепи на негармоническое периодическое воздействие. При этом либо определяют мгновенное значение результирующего сигнала на основании расчета амплитуд и фаз отдельных гармоник, либо его амплитудные или действующие значения согласно уравнениям (5.18), (5.19). При определении результирующей реакции необходимо помнить, что в соответствии с представлением периодических негармонических колебаний на комплексной плоскости векторы различных гармоник вращаются с различной угловой частотой.

Пример. К цепи, изображенной на рис. 5.6, приложено напряжение u (t ) в форме прямоугольных импульсов с периодом повторения T = 2t и и амплитудой A и = 1В (см. рис. 5.3, б ). Определить мгновенное и действующее значения напряжения на емкости.

Разложение данного напряжения в ряд Фурье определяется по формуле (5.31). Ограничимся первыми тремя членами разложения (5.31):k -й гармонике называется такое состояние электрической цепи, состоящей из разнохарактерных реактивных элементов, при котором фазовый сдвиг между входным током и приложенным напряжением k -x гармоник равен нулю. Явление резонанса может быть использовано для выделения отдельных гармоник из периодического несинусоидального сигнала. Следует подчеркнуть, что в цепи может одновременно быть достигнут резонанс токовна одной частоте и резонанс напряжений на другой.

Пример. Для цепи, изображенной на рис. 5.7, при заданной 1 , L 1 найти значение C 1 и C 2 , при которых одновременно возникает резонанс напряжений на 1-й и резонанс токов на 5-й гармонике.

Из условия резонанса напряжений находим, что входное реактивное сопротивление цепи на первой гармонике должно равняться нулю:
(5.32)

а на пятой - бесконечности (входная реактивная проводимость на пятой гармонике должна быть равна нулю):
(5.33)

Из условий (5.32) и (5.33) находим искомое значение емкостей: