Самодельный датчик тока на эффекте холла. Преобразователи тока – верное решение. Наименование Диапазон, А

Современные датчики тока подразделяются на следующие типы:
— резистивные датчики (токовые шунты);
— датчики тока на эффекте Холла;
— трансформаторы тока;
— волоконно-оптические датчики тока (ВОДТ) на эффекте Фарадея;
— пояс Роговского;
— токовые клещи
Каждый обладает своими достоинствами и недостатками, которые и ограничивают сферу его применения.

да
Токоизмерительные резисторы Трансформаторы тока Датчики Холла
Измеряемый ток Постоянный Переменный Постоянный и переменный
Диапазон измеряемого тока До 20 А До 1000А До 1000А
Погрешность измерений 1% 5% 10%
Гальваническая развязка нет есть есть
Вносимые потери есть есть Нет
Частотный диапазон 100 кГц 50/60/400 Гц 200 кГц
Относительная стоимость низкая высокая средняя
Требуют внешний источник питания нет нет

Главным недостатком резистивного датчика тока является необходимость подключать датчик непосредственно в цепь измерения. Главным недостатком трансформатора тока является измерение только переменных токов промышленной частоты. Датчик тока на основе эффекта Холла обладает рядом преимуществ, которые заключаются в возможности измерения как постоянных, так и переменных токов, и малых размерах. К их главным достоинствам следует отнести отсутствие вносимых с систему потерь мощности, широкий диапазон частот. Недостатком является необходимость внешнего источника питания и зависимость от температуры.

Датчики тока Allegro Microsystems

Компания Allegro Microsystems специализируется на разработке и производстве аналого-цифровых силовых микросхем и датчиков тока на основе эффекта Холла. Для диапазона 5-200 А предлагаются интеллектуальные микросхемы, а для диапазона до 1000 А и выше - линейные микросхемы с дистанционным измерением тока. Датчики работают в расширенном диапазоне температур, что позволяет использовать их в жестких условиях эксплуатации.
Основными областями применения являются системы автомобильной и силовой электроники, промышленная автоматика, аппаратура общего применения.

Принцип работы

Датчики состоят из очень точного линейного датчика Холла, интегрированного на кристалл микросхемы, и медного проводника, размещенного близко к кристаллу. Электрический ток, протекая через проводник, создает магнитное поле, которое фиксируется датчиком Холла и преобразуется в напряжение, пропорциональное значению входного тока.

Корпуса датчиков

Для производства датчиков на 5-200 А применяется flip chip технология, которая предоставляет ряд значительных преимуществ для разработчика:
— повышенная чувствительность, датчик Холла расположен очень близко к проводнику тока
— высокая гальваническая изоляция, до 3600 В rms в течение 60 секунд
— низкое сопротивление первичной цепи, менее 1 мОм, снижение потерь мощности
— стандартные корпуса для поверхностного монтажа.

Датчики на диапазон 50-200 А выпускаются в корпусе собственной разработки - СВ. Этот корпус включает медный проводник и аналоговый датчик Холла и позволяет измерять постоянный ток до 200 А и импульсный до 1200 А. Датчики калибруются при производстве, выдерживают напряжение пробоя до 4800 В rms в течение 60 секунд, обеспечивают изоляцию до 700 В и усиленную изоляцию до 4500 В. Сопротивление проводника составляет 100 мОм, поэтому микросхемы имеют сверхнизкую потерю мощности при измерении максимального тока.

Термокомпенсация

В датчиках тока используется запатентованная технология цифровой термокомпенсации, которая позволяет значительно улучшить как погрешность чувствительности и выходного напряжения в рабочей точке. Оба параметра измеряются на этапе финального тестирования в двух режимах: при комнатной температуре и при 85…150°С. Эти данные хранятся в EEPROM памяти. В результате датчики Allegro имеют суммарную погрешность ±1% в диапазоне 25…150°С. Такая калибровка на последней стадии производства устраняет необходимость в температурной калибровке после монтажа на печатную плату.

Применение датчиков тока в электроприводе

Датчики тока Allegro могут применяться в нескольких узлах электропривода благодаря наличию гальванической развязки и хорошим параметрам скорости dV/dt.
Они могу использоваться для измерения постоянного тока шины (1), тока фазы (2) или на тока нижнего уровня.

Гальваническая изоляция позволяет использовать датчики Allegro для измерения тока фазы двигателя напрямую. Это упрощает блок управления и уменьшает шумы. Датчики ACS710, ACS711 и ACS716 имеют выходы ошибки, которые можно использовать для обнаружения короткого замыкания или других явлений, вызванных высоким током.
Основные датчики тока для электропривода:

Датчики тока в усилителях мощности

Правильное управление усилителем мощности в базовой станции или портативном радиоприемнике - основа для правильного компромисса между выходной мощностью и КПД.
Ток смещения - это ключевой параметр для контроля на большинстве выходных каскадов, поэтому компания Allegro предлагает несколько датчиков тока для решения данной задачи.

ACS711 Датчик тока 100 кГц в корпусе QFN/SOIC
ACS712 Датчик тока 80 кГц в корпусе SOIC

Преимущества датчиков тока Allegro

— возможность измерения постоянного тока, переменного тока и их комбинаций;
— малые потери энергии и, как следствие, малое выделение тепла, уменьшенные габариты и возможность контролировать большие токи;
— встроенная гальваническая развязка

Высокая точность, гальваническая изоляция измерительной схемы, термостабильность и малые габариты делают датчики хорошим решением для применения в преобразовательной технике, бытовой, автомобильной и промышленной электронике.

Датчики на 0-50 А

3000 SOICW-16 ACS716
Серия Тип датчика Напр-е питаия, В Диапазон измерений, А Напр-е изоляции, Вrms Полоса пропускания, кГц Темп. диапазон* Тип корпуса
ACS709 Двунапр. 3.3, 5 ±12 to 75 2100 120 L QSOP-24
ACS710 Двунапр. 5 ±12 to 75 120 K
ACS711 Двунапр. 3.3 ±12.5 to 25 <100 В пост.тока 100 E, K SOIC-8,
QFN-12
ACS712 Двунапр. p>5 ±5 to 30 2100 80 E SOIC-8
ACS713 Однонапр. 5 20 to 30 2100 80 E SOIC-8
ACS714 Двунапр. 5 ±5 to 30 2100 80 E, L SOIC-8
ACS715 Однонапр. 5 20 to 30 2100 80 E, L SOIC-8
Двунапр. 3.3 ±75 3000 120 K SOICW-16
ACS717 Двунапр. 3.3 ±10 to 20 4800 40 K SOICW-16
ACS718 Двунапр. 6 ±10 to 20 4800 40 K SOICW-16
ACS764 Однонапр. 3.3 16 or 32 <100 В пост.тока 2 X QSOP-24

Датчики тока 50-200 А

*Условное обозначение температурного диапазона:
Е = -40…85°C
K = -40…125°C
L = -40…150°C
S = -20…85°C

Система обозначений
ACS758 L CB TR -100 B-PFF-T
1 2 3 4 5 6 7
1. Серия
2. Температурный диапазон:
Е = -40…85°C
K = -40…125°C
L = -40…150°C
S = -20…85°C
3. Тип корпуса:
СВ - корпус СВ
LC - SOIC-8
4. Упаковка:
не обознач. - в пенале
TR - на ленте
5. Диапазон измеряемого тока, А
6. Тип датчика: В - двунаправленный, U - однонаправленный
7. Модификация корпуса для датчиков 50-200А, состоит из 3-буквенного обозначения:
Первая буква - пластиковый корпус
Вторая буква - токовый проводник, S - прямой, F - изогнутый
Третья буква - выводы, S - прямые, F - угловые

Дополнительная информация


Эффект Холла был открыт в 1879 г. американским ученым Эдвином Гербертом Холлом. Его сущность состоит в следующем (см. рисунок). Если через проводящую пластинку пропускать ток, а перпендикулярно пластинке направить магнитное поле, то в направлении поперечном току (и направлению магнитного поля) на пластинке появится напряжение: Uh = (RhHlsinw)/d, где Rh - коэффициент Холла, зависящий от материала проводника; Н - напряженность магнитного поля; I - ток в проводнике; w - угол между направлением тока и вектором индукции магнитного поля (если w = 90°, sinw = 1); d - толщина материала.

Благодаря тому, что выходной эффект определяется произведением двух величин (Н и I), датчики Холла имеют весьма широкое применение. В таблице приведены коэффициенты Холла для различных металлов и сплавов. Обозначения: Т - температура; В - магнитный поток; Rh - коэффициент Холла в единицах м3 /Кл.

Бесконтактные клавишные переключатели на основе эффекта Холла применялись за рубежом довольно широко уже с начала 70-х годов. Достоинства этого переключателя - высокая надежность и долговечность, малые габариты, а недостатки - постоянное потребление энергии и сравнительно высокая стоимость.

Принцип действия генератора Холла

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны - постоянный магнит.

В магнитном поле на движущиеся электроны воздействует сила. Вектор силы перпендикулярен направлению, как магнитной так и электрической составляющих поля.

Если внести в магнитное поле с индукцией В полупроводниковую пластинку (например, из арсенида индия или антимонида индия), через которую протекает электрический ток, то на боковых сторонах, перпендикулярно направлению тока, возникает разность потенциалов. Напряжение Холла (ЭДС Холла) пропорционально току и магнитной индукции.

Между пластинкой и магнитом имеется зазор. В зазоре датчика находится стальной экран. Когда в зазоре нет экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится экран, то магнитные силовые линии замыкаются через экран и на пластинку не действует, в этом случае разность потенциалов на пластинке не возникает.

Интегральная микросхема преобразует разность потенциалов, создающуюся на пластинке, в отрицательные импульсы напряжения определенной величины на выходе датчика. Когда экран находится в зазоре датчика, то на его выходе будет напряжение, если же в зазоре датчика экрана нет, то напряжение на выходе датчика близкое к нулю.

Об эффекте Холла написано много, этот эффект интенсивно используется в технике, но ученые продолжают его исследовать. В 1980 г. немецкий физик Клаус фон Клитцунг изучал работу эффекта Холла при сверхнизких температурах. В тонкой пластинке полупроводника фон Клитцунг плавно изменял напряженность магнитного поля и обнаружил, что сопротивление Холла изменяется не плавно, а скачками. Величина скачка не зависила от свойств материала, а являлась комбинацией фундаментальных физических констант, деленной на постоянное число. Получалось, что законы квантовой механики каким-то образом изменяли природу эффекта Холла. Это явление было названо интегральным квантовым эффектом Холла. За это открытие фон Клитцунг получил Нобелевскую премию по физике в 1985 г.

Два года спустя после открытия фон Клитцунга в лаборатории компании Bell Telephone (той самой, в которой был открыт транзистор) сотрудники Стормер и Тсуи изучали квантовый эффект Холла, используя исключительно чистый образец арсенида галлия большого размера, изготовленный в этой же лаборатории. Образец имел настолько высокую степень чистоты, что электроны проходили его из конца в конец, не встречая препятствий. Эксперимент Стормера и Тсуи проходил при гораздо более низкой температуре (почти абсолютный нуль) и с более мощными магнитными полями, чем в эксперименте фон Клитцунга (в миллион раз больше, чем ).

К своему большому удивлению Стормер и Тсуи обнаружили скачок в сопротивлении Холла в три раза больший, чем у фон Клитцунга. Затем они обнаружили еще большие скачки. Получалась та же комбинация физических постоянных, но деленная не на целое, а на дробное число. Заряд электрона у физиков считается константой, не делимой на части. А в этом эксперименте как бы участвовали частицы с дробными зарядами. Эффект был назван дробным квантовым эффектом Холла.

Год спустя после этого открытия сотрудник лаборатории Ла-флин дал теоретическое объяснение эффекта. Он заявил, что комбинация сверхнизкой температуры и мощного магнитного поля заставляет электроны образовывать несжимаемую квантовую жидкость. Но рисунке с помощью компьютерной графики показан поток электронов (шары), протыкающих плоскость. Неровности плоскости представляют распределение заряда одного из электронов в присутствии магнитного поля и заряда других электронов. Если электрон добавляется к квантовой жидкости, то образуется некоторое количество квазичастиц с дробным зарядом (на рисунке это показано как набор стрелок у каждого электрона).
В 1998 г. Хорст Стормер, Даниэль Тсуи и Роберт Лафлин были удостоены Нобелевской премии по физике. В настоящее время Х.Стормер - профессор физики Колумбийского университета, Д.Тсуи - профессор Принстонского университета, Р.Лафлин - профессор Стенфордского университета.

Металл (сплав)

Алюминий

Морганец-сурьмо

Хром-теллур

В 1879 году, работая над своей докторской диссертацией в университете Джонса Хопкинса, американский физик Эдвин Герберт Холл проводил эксперимент с золотой пластинкой. Он пропускал по пластинке ток, разместив саму пластинку на стекле, причем дополнительно пластинка была подвергнута действию магнитного поля, направленного перпендикулярно ее плоскости, и, соответственно, перпендикулярно току.

Справедливости ради следует отметить, что Холл занимался в тот момент решением вопроса о том, зависит ли сопротивление катушки, по которой течет ток, от наличия рядом с ней , и в рамках этой работы ученым были проведены тысячи опытов. В результате же эксперимента с золотой пластинкой было обнаружено возникновение некоторой разности потенциалов на боковых краях пластинки.

Это напряжение получило название напряжения Холла . Можно грубо описать процесс следующим образом: сила Лоренца приводит к накоплению отрицательного заряда возле одного края пластинки, и положительного - возле противоположного края. Отношение же возникающего напряжения Холла к величине продольного тока, является характеристикой материала, из которого изготовлен конкретный элемент Холла, и эта величина получила название «холловское сопротивление».


Служит достаточно верным методом определения типа носителей заряда (дырочный или электронный) в полупроводнике или металле.

На основе эффекта Холла теперь изготавливают датчики Холла , приборы для измерения напряженности магнитного поля и определения силы тока в проводнике. В отличие от трансформаторов тока, датчики Холла дают возможность измерять и постоянный ток. Таким образом, области применения датчика Холла в целом весьма обширны.


Так как напряжение Холла мало, вполне логично, что к выводам напряжения Холла подключают . Для подключения к цифровым узлам, схему дополняют триггером Шмита, и получается пороговое устройство, которое срабатывает при заданном уровне напряженности магнитного поля. Такие схемы называют переключателями Холла.

Часто датчик Холла используется в паре с постоянным магнитом, и срабатывание происходит при приближении постоянного магнита к датчику на определенное, заданное заранее расстояние.

Довольно широко распространены датчики Холла в бесколлекторных, или вентильных, электродвигателях (сервомоторах), где датчики устанавливаются прямо на статоре двигателя и играют роль датчика положения ротора (ДПР), который обеспечивает обратную связь по положению ротора, примерно как коллектор в коллекторном двигателе постоянного тока.

Закрепив постоянный магнит на валу, получим простой счетчик оборотов, а иногда достаточно экранирующего воздействия самой ферромагнитной детали на магнитный поток от . Магнитный поток, от которого обычно срабатывают датчики Холла, составляет 100-200 Гауссов.


Выпускаемые современной электронной промышленностью, трехвыводные датчики Холла имеют в своем корпусе n-p-n транзистор с открытым коллектором. Зачастую ток через транзистор такого датчика не должен превышать 20 мА, поэтому для подключения мощной нагрузки необходимо устанавливать усилитель тока.

Магнитное поле проводника с током, обычно, недостаточно интенсивное для срабатывания датчика Холла, поскольку чувствительность таких датчиков составляет 1-5 мВ/Гс, и поэтому для измерения слабых токов проводник с током навивают на тороидальный сердечник с зазором, а в зазор уже устанавливают датчик Холла. Так при зазоре в 1,5 мм магнитная индукция составит уже 6 Гс/А.

Всем привет!

Пожалуй, стоит представиться немного - я обычный инженер-схемотехник, который интересуется также программированием и некоторыми другими областями электроники: ЦОС, ПЛИС, радиосвязь и некоторые другие. В последнее время с головой погрузился в SDR-приемники. Первую свою статью (надеюсь, не последнюю) я сначала хотел посвятить какой-то более серьезной теме, но для многих она станет лишь чтивом и не принесет пользы. Поэтому тема выбрана узкоспециализированная и исключительно прикладная. Также хочу отметить, что, наверное, все статьи и вопросы в них будут рассматриваться больше со стороны схемотехника, а не программиста или кого-либо еще. Ну что же - поехали!

Не так давно у меня заказывали проектирование «Система мониторинга энергоснабжения жилого дома», заказчик занимается строительством загородных домов, так что кто-то из вас, возможно, даже уже видел мое устройство. Данный девайс измерял токи потребления на каждой вводной фазе и напряжение, попутно пересылая данные по радиоканалу уже установленной системе «Умный дом» + умел вырубать пускатель на вводе в дом. Но разговор сегодня пойдет не о нем, а о его небольшой, но очень важной составляющей - датчике тока. И как вы уже поняли из названия статьи, это будут «бесконтактные» датчики тока от компании Allegro - ACS758-100 .
________________________________________________________________________________________________________________________

Даташит, на датчик о котором я буду рассказывать, можно посмотреть . Как несложно догадаться, цифра «100» в конце маркировки - это предельный ток, который датчик может измерить. Скажу честно - есть у меня сомнения по этому поводу, мне кажется, выводы просто не выдержат 200А долговременно, хотя для измерения пускового тока вполне подойдет. В моем устройстве датчик на 100А без проблем пропускает через себя постоянно не менее 35А + бывают пики потребления до 60А.

Рисунок 1 - Внешний вид датчика ACS758-100(50/200)

Перед тем, как перейду к основной части статьи, я предлагаю вам ознакомиться с двумя источниками. Если у вас есть базовые знания по электронике, то они будут избыточными и смело пропускайте этот абзац. Остальным же советую пробежаться для общего развития и понимания:

1) Эффект Холла. Явление и принцип работы
2) Современные датчики тока
________________________________________________________________________________________________________________________

Ну что же, начнем с самого важного, а именно с маркировки. Покупаю комплектующие в 90% случаев на www.digikey.com . В Россию компоненты приезжают через 5-6 дней, на сайте есть пожалуй все, также очень удобный параметрический поиск и документация. Так что полный список датчиков семейства можно посмотреть там по запросу "ACS758 ". Датчики мои были куплены там же - ACS758LCB-100B .

Внутри даташита по маркировке все расписано, но я все равно обращу внимание на ключевой момент "100В ":

1) 100 - это предел измерения в амперах, то есть мой датчик умеет измерять до 100А;
2) "В " - вот на эту букву стоит обратить внимание особо, вместо нее может быть также буква "U ". Датчик с буквой B умеет измерять переменный ток, а соответственно и постоянный. Датчик с буквой U умеет измерять только постоянный ток.

Также в начале даташита есть отличная табличка на данную тему:


Рисунок 2 - Типы датчиков тока семейства ACS758

Также одной из важнейших причин использования подобного датчика стала - гальваническая развязка . Силовые выводы 4 и 5 не связаны электрически с выводами 1,2,3. В данном датчике связь лишь в виде наведенного поля.

Еще в данной таблицы появился еще один важный параметр - зависимости выходного напряжения от тока. Прелесть данного типа датчиков в том, что у них выход напряжения, а не тока как у классических трансформаторов тока, что очень удобно. Например, выход датчика можно подсоединить напрямую ко входу АЦП микроконтроллера и снимать показания.

У моего датчика данное значение равно 20 мВ/А . Это означает, что при протекании тока 1А через выводы 4-5 датчика напряжение на его выходе увеличится на 20 мВ . Думаю логика ясна.

Следующий момент, какое же напряжение будет на выходе? Учитывая, что питание «человеческое», то есть однополярное, то при измерение переменного тока должна быть «точка отсчета». В данном датчике эта точка отсчета равна 1/2 питания (Vcc). Такое решение часто бывает и это удобно. При протекании тока в одну сторону на выходе будет "1/2 Vcc + I*0.02V ", в другом полупериоде, когда ток протекает в обратную сторону напряжение на выходе будет уже "1/2 Vcc - I*0.02V ". На выходе мы получаем синусоиду, где «ноль» это 1/2Vcc . Если же мы измеряем постоянный ток, то на выходе у нас будет "1/2 Vcc + I*0.02V ", потом при обработке данных на АЦП просто вычитаем постоянную составляющую 1/2 Vcc и работаем с истинными данными, то есть с остатком I*0.02V .

Теперь пришло время проверить на практике то, что я описал выше, а вернее вычитал в даташите. Чтобы поработать с датчиком и проверить его возможности, я соорудил вот такой «мини-стенд»:


Рисунок 3 - Площадка для тестирования датчика тока

Первым делом я решил подать на датчик питание и измерить его выход, чтобы убедиться в том, что за «ноль» у него принято 1/2 Vcc . Схему подключения можно взять в даташите, я же, желая лишь ознакомиться, не стал тратить время и лепить фильтрующий конденсатор по питанию + RC цепочку ФНЧ на выводе Vout. В реальном же устройстве без них никуда! Получил в итоге такую картинку:


Рисунок 4 - Результат измерения «нуля»

При подаче питания с моей платки STM32VL-Discovery я увидел вот такие результаты - 2.38В . Первый же вопрос, который возник: "Почему 2,38, а не описанные в даташите 2.5? " Вопрос отпал практически мгновенно - измерил я шину питания на отладке, а там 4.76-4.77В. А дело все в том, что питание идет с USB, там уже 5В, после USB стоит линейный стабилизатор LM7805, а это явно не LDO с 40 мВ падением. Вот на нем это 250 мВ примерно и падают. Ну да ладно, это не критично, главное знать, что «ноль» это 2.38В. Именно эту константу я буду вычитать при обработке данных с АЦП.

А теперь проведем первое измерение, пока лишь с помощью осциллографа. Измерять буду ток КЗ моего регулируемого блока питания, он равен 3.06А . Это и встроенный амперметр показывает и флюка такой же результат дала. Ну что же, подключаем выходы БП к ногам 4 и 5 датчика (на фото у меня витуха брошена) и смотрим, что получилось:


Рисунок 5 - Измерение тока короткого замыкания БП

Как мы видим, напряжение на Vout увеличилось с 2.38В до 2.44В . Если посмотреть на зависимость выше, то у нас должно было получиться 2.38В + 3.06А*0.02В/А , что соответствует значению 2.44В. Результат соответствует ожиданиям, при токе 3А мы получили прибавку к «нулю» равную 60 мВ . Вывод - датчик работает, можно уже работать с ним с помощью МК.

Теперь необходимо подключить датчик тока с одному из выводов АЦП на микроконтроллере STM32F100RBT6. Сам камушек очень посредственный, системная частота всего 24 МГц, но данная платка у меня пережила очень много и зарекомендовала себя. Владею ею уже, наверное, лет 5, ибо была получена нахаляву во времена, когда ST их раздавали направо и налево.

Сначала по привычке я хотел после датчика поставить ОУ с коэф. усиления «1», но, глянув на структурную схему, понял, что он внутри уже стоит. Единственное стоит учесть, что при максимальном токе выходное питание будет равно питанию датчика Vcc, то есть около 5В, а STM умеет измерять от 0 до 3.3В, так что необходимо в таком случае поставить делитель напряжения резистивный, например, 1:1,5 или 1:2. У меня же ток мизерный, поэтому пренебрегу пока этим моментом. Выглядит мое тестовое устройство примерно так:


Рисунок 6 - Собираем наш «амперметр»

Также для визуализации результатов прикрутил китайский дисплей на контроллере ILI9341, благо валялся под рукой, а руки до него никак не доходили. Чтобы написать для него полноценную библиотеку, убил пару часов и чашку кофе, благо даташит на удивление оказался информативным, что редкость для поделок сыновей Джеки Чана.

Теперь необходимо написать функцию для измерения Vout с помощью АЦП микроконтроллера. Рассказывать подробно не буду, по STM32 уже и так море информации и уроков. Так что просто смотрим:

Uint16_t get_adc_value() { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); return ADC_GetConversionValue(ADC1); }
Далее, чтобы получить результаты измерения АЦП в исполняемом коде основного тела или прерывания, надо прописать следующее:

Data_adc = get_adc_value();
Предварительно объявив переменную data_adc:

Extern uint16_t data_adc;
В итоге мы получаем переменную data_adc, которая принимает значение от 0 до 4095, т.к. АЦП в STM32 идет 12 битный. Далее нам необходимо превратить полученный результат «в попугаях» в более привычный для нас вид, то есть в амперы. Поэтому необходимо для начала посчитать цену деления. После стабилизатора на шине 3.3В у меня осциллограф показал 3.17В, не стал разбираться, с чем это связано. Поэтому, разделив 3.17В на 4095, мы получим значение 0.000774В - это и есть цена деления. То есть получив с АЦП результат, например, 2711 я просто домножу его на 0.000774В и получу 2.09В.

В нашей же задачи напряжение лишь «посредник», его нам еще необходимо перевести в амперы. Для этого нам надо вычесть из результата 2.38В, а остаток поделить на 0.02 [В/А]. Получилась вот такая формула:

Float I_out = ((((float)data_adc * presc)-2.38)/0.02);
Ну что же, пора залить прошивку в микроконтроллер и посмотреть результаты:


Рисунок 7 - Результаты измерения данных с датчика и их обработка

Измерил собственное потребление схемы как видно 230 мА. Измерив тоже самое поверенной флюкой, оказалось, что потребление 201 мА. Ну что же - точность в один знак после запятой это уже очень круто. Объясню, почему… Диапазон измеряемого тока 0..100А, то есть точность до 1А это 1%, а точность до десятых ампера это уже 0,1%! И прошу заметить, это без каких либо схемотехнических решений. Я даже поленился повесить фильтрующие кондеры по питанию.

Теперь необходимо замерить ток короткого замыкания (КЗ) моего источника питания. Выкручиваю ручку на максимум и получаю следующую картину:


Рисунок 8 - Измерения тока КЗ

Ну и собственно показания на самом источнике с его родным амперметром:


Рисунок 9 - Значение на шкале БП

На самом деле там показывало 3.09А, но пока я фотографировал, витуха нагрелась, и ее сопротивление выросло, а ток, соответственно, упал, но это не так страшно.

В заключение даже и не знаю, чего сказать. Надеюсь, моя статья хоть как-то поможет начинающим радиолюбителям в их нелегком пути. Возможно, кому-то понравится моя форма изложения материала, тогда могу продолжить периодически писать о работе с различными компонентами. Свои пожелания по тематике можно высказать в комментариях, я постараюсь учесть.

При проведении измерений в автомобильной электрике часто приходится снимать осциллограммы величин тока. Другими словами, не просто измерять, а подробно изучать. Классически для таких целей используются токовые трансформаторы или резисторы. Однако последние имеют частотные ограничения и влияют на изучаемую схему. Токовой датчик, основанный на регуляторе Холла, призван решить эту проблему.

Все бы хорошо, но стоят такие датчики недешево. Если же суметь собрать такой вариант своими руками, то можно неплохо сэкономить. Чтобы суметь изготовить модель собственного производства, можно использовать несколько эффективных схем.

Схема на микросхеме 711

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.

Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.

Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.

Проверенный «бюджетный» вариант

Вот, что надо предпринять для изготовления такого варианта:

  • в ферритовом кольце пропилить канавку по толщине корпуса;
  • на эпоксидный клей посадить МС;
  • сделать определенное количество витков на кольце (кол-во витков будет зависеть от конкретного напряжения);
  • в итоге получится бесконтактный вариант реле, функционирующий на электромагнитной основе.

Точность срабатывания такого ДТ и регулярность достаточно высокая. Единственным недостатком схемы можно назвать кол-во витков, определяемых чисто эмпирически. На самом деле расчетов конкретного типа нигде и нет. Приходится определять число витков для конкретного сердечника.

Готовый ДТ MLX91206

Кумулятивная схема, где используется тончайший слой ферромагнитоструктуры или ИМС. Последний выступает в качестве коммутатора магнитполя, обеспечивая тем самым, высокое усиление и наладку эквивалентности шумосигнала. Более актуален этот вариант ДТ для измерения постоянно-переменного напряжения до 90 кгц с изоляцией омического свойства, что характеризуется незначительными внедряемыми потерями и малым временем отклика.

Кроме того, из преимуществ можно выделить простоту сборки и маленькие размеры фюзеляжа.

ДТ MLX91206 – это регулятор, который пока удовлетворяет спрос в автопромышленности. Помимо этого, ДТ этого типа применяется в других источниках питания: для защиты от перегрузки, в двигательных системах и т.д.

Чаще всего ДТ на микросхеме MLX91206 применяется в гибридных автомобильных системах, как автоинверторы.

Интересно и то, что датчик этот оснащен качественной защитной системой от перенапряжения, что позволяет использовать его в качестве отдельного регулятора, интегрированного к кабелю.

Принцип функционирования датчика подобного типа основан на преобразовании магнитполя, возникаемого от токов, проходящих сквозь проводник. Схема не имеет верхнего ограничения измеряемого уровня напряжения, так как выход и его параметры в данном случае зависят от проводникового размера и непосредственной дистанции от ДТ.

Что касается отличий этого типа ДТ от аналогичных:

  1. Скорость аналогового выхода, которая выше (этому способствует ЦАП 12 бит).
  2. Наличие программируемого переключателя.
  3. Надежная защита от переплюсовки и перенапряжения.
  4. Выход ШИМ с разрешением АЦП 12 бит.
  5. Большущая полоса пропускания, параметры которой равны 90 кГц и многое другое.

Одним словом, ДТ этого типа является компактным и эффективным датчиком, изготовленным по технологии Триасис Холл. Технология подобного типа считается классической и традиционной, она чувствительна к плотности потока, который приложен четко параллельно поверхности.

Измерения, которые удается провести с помощью готового датчика, изготовленного по технологии Триасис Холл, делятся на измерения небольшого напряжения до 2 А, тока средн. величины до 30 А и токов до 600 А (больших).

Рассмотрим подробнее возможности этих измерений.

  • Малые токи измеряются с помощью датчика за счет повышения параметров магнитполя через катушку вокруг ДТ. В данном случае чувствительность измерения будет обусловлена габаритами катушки и кол-вами витков.
  • Токи в диапазоне до 30 А или средние токи измеряются с учетом допустимости напряжения и общей рассеиваемости мощности дорожки. Последние обязаны быть довольно толстыми и широкими, иначе непрерывной обработки среднего тока достичь не удастся.
  • Наконец, измерение больших токов – это использование медных и толстых дорожек, способных приводить напряжение на обратной стороне печатной платы.

ДТ на эффекте Холла: общий взгляд

Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.

Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.

Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).

Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.

Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.

Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.

Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.

Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.

Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.

Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.

Выходное напряжение ДТ бывает четко соизмерно вычисляемым параметрам тока. 0-е значение напряжения равняется половинной величине тока питания. Тем самым, диапазон выхода тока составляет 0,25-0,75 В.

Настройку чувствительности ДТ легко провести методом трансформации числа витков тестируемого проводника по кругу магнитопровода регулятора.

Корпус ДТ обязан быть устроен из прочного РВТ пластика.

РВТ пластик – это пластиковый материал, получаемый посредством однородного сваривания.

Что касается жестких выводов корпуса ДТ, то их бывает 3. Предназначены они для пайки на плату.

Цепь выхода ДТ – пара комплектарно-биополярных транзисторов. Другими словами, это не что иное, как полупроводниковый прибор, в котором сформировано два перехода, а перенос заряда осуществляется носителями 2-х полярностей или иначе – электронами и квазичастицами.

ДТ на эффекте Холла бывают также оригинального и неоригинального производства. Первые выделяются привлекательным дизайном, надежны и способны давать высочайшую точность показаний. А вот ДТ неоригинального производства таких параметров не имеют, хотя тоже способны предоставить свои преимущества. К ним относится разборный корпус и низкая стоимость.

Внимание. Если ДТ легко разбирается путем вывинчивания 4-х винтиков, то перед вами не оригинальный прибор.

Разборка корпуса оригинального ДТ обязательно приведет к неудаче, так как они изготовлены в закрытом варианте. Конечно, можно постараться и добраться до внутренностей, однако это обязательно приводит к поломкам. Корпус таких приборов запаян со всех сторон, по всем стыкам.

Для сравнения внутренностей заводского ДТ и последующего собирания самодельной схемы рекомендуется воспользоваться, как и было написано выше, неоригинальным устройством. Например, пусть это будет китайский ДСТ-500. Он легко разбирается, схема срисовывается на ура, так как она простая, не содержит сложных заковырок.

Что касается функционирования, то она одинакова во всех типах ДТ:

  • силовой проводник под напряжением идет через магнитопровод;
  • образуется циклотронное поле;
  • ток идет по выравнивающей обмотке магнитопровода, чтобы стабилизировать поле;
  • компенсируемое напряжение должно быть ровно пропорционально напряжению в сил. проводнике.

Помимо этого, для компенсирования магнитпровода датчика, требуется измерять величинные и знаковые значения ДТ. Для этих целей в магнитопроводе следует прорезать отверстие, через которое, собственно говоря, и вставляется датчик Холла. Сигнал прибора будет форсироваться, снабжать мощностный эндотрон, выход которого интегрирован со стабилизирующей обмоткой.

Данным образом, основной целью подобной схемы станет пропуск такой доли напряжения сквозь обмотку, которая бы воздействовала на магнитное поле так, чтобы в разрыве магнитопровода значение приближалось к 0.

В целой зоне измеряемого напряжения при этом сохранится ювелирная точность КПД соизмеримости. Для измерения точного напряжения компенс. обмотки используется низкоомный резистор-прецизион. Величина падения тока на таком резисторе будет равна значению напряжения в силовой цепи.

ДТ подобного типа можно легко изготовить своими силами. Потребность в таких регуляторах постоянно растет, стоят они, как и говорилось, недешево.

Датчик Холла в конкретном случае желательно использовать специфический, бескорпусный. Установить его можно на узкую полоску тонкого фольго-стеклотекстолита. Под ним должно быть предусмотрено посадочное углубление, где он будет посажен на эпоксидный клей очень плотно.

Внимание. Толщина полоски текстолита в 0,8 мм будет считаться нормальной, так как зайдет в зазор без излишнего трения о стенки и без эффекта болтания.

ДТ — эталонная установка для вычисления напряжения высоковольтажного пульсара питания. Например, ток, потребляемый стартером или генератором. И с помощью датчика Холла осуществить это удается, используя всего лишь одну микросхему.

Напоследок интересное видео про датчик тока на основе датчика холла