Шифр вертикальной перестановки c. Простейшие методы шифрования с закрытым ключом

История

Точное время появления шифра перестановки не известно. Вполне возможно, что писцы в древности переставляли буквы в имени своего царя ради того, чтобы скрыть его подлинное имя или в ритуальных целях.

Одно из древнейших известных нам шифровальные устройство - Скитала. Бесспорно известно, что скитала использовалась в войне Спарты против Афин в конце V века до н. э.

Прародителем анаграммы считают поэта и грамматика Ликофрона, который жил в Древней Греции в III веке до н. э. Как сообщал византийский автор Иоанн Цец, из имени царя Птоломея он составил первую из известных нам анаграмм: Ptolemaios - Аро Melitos, что в переводе означает «из мёда», а из имени царицы Арсинои - как «Ion Eras » (фиалка Геры).

Шифры простой перестановки

Как правило, при шифровании и дешифровании шифра простой перестановки используется таблица перестановок:

1 {\displaystyle 1} 2 {\displaystyle 2} 3 {\displaystyle 3} ... n {\displaystyle n}
I 1 {\displaystyle I_{1}} I 2 {\displaystyle I_{2}} I 3 {\displaystyle I_{3}} ... I n {\displaystyle I_{n}}

Первая строка - позиция символа в открытом тексте, вторая строка - позиция в шифрограмме. Таким образом, при длине сообщения n {\displaystyle n} символов существует ровно n ! {\displaystyle n!\ } ключей.

Шифры маршрутной перестановки

Широкое распространение получили так называемые маршрутные перестановки, использующие некоторую геометрическую фигуру (плоскую или объемную). Преобразования состоят в том, что отрезок открытого текста записывается в такую фигуру по некоторой траектории, а выписывается по другой траектории. Пример данного шифра - шифр Скиталы.

Шифр табличной маршрутной перестановки

Наибольшее распространение получили маршрутные шифры перестановки, основанные на прямоугольниках (таблицах). Например, можно записать сообщение в прямоугольную таблицу по маршруту: по горизонтали, начиная с верхнего левого угла, поочередно слева направо. Сообщение будем списывать по маршруту: по вертикалям, начиная с верхнего правого угла, поочередно сверху вниз.

п р и м е
р м а р ш
р у т н о
й п е р е
с т а н о
в к и

КРИПТОГРАММА: ешоеомрнрниатеаирмупткпррйсв

Обращение описанных шагов не представит труда при расшифровании.

Шифр вертикальной перестановки

Широкое распространение получила разновидность маршрутной перестановки - вертикальная перестановка. В этом шифре также используется прямоугольная таблица, в которую сообщение записывается по строкам слева направо. Выписывается шифрограмма по вертикалям, при этом столбцы выбираются в порядке, определяемом ключом.

ОТКРЫТЫЙ ТЕКСТ: пример маршрутной перестановки

КЛЮЧ: (3, 1, 4, 2, 5)

п р и м е
р м а р ш
р у т н о
й п е р е
с т а н о
в к и

КРИПТОГРАММА: рмупткмрнрнпррйсвиатеаиешоео

Заполнять последнюю строку таблицы «нерабочими» буквами нецелесообразно, так как криптоаналитик, получивший данную криптограмму, получает сведения о длине числового ключа.

Шифр «поворотная решётка

В 1550 году итальянский математик Джероламо Кардано (1501-1576) в книге «О тонкостях» предложил новую технику шифрования сообщений - решётку.

Изначально решётка Кардано представляла собой трафарет с отверстиями, в которые записывали буквы, слоги или слова сообщения. Затем трафарет убирали, а свободное место заполняли более или менее осмысленным текстом. Такой метод сокрытия информации относится к стеганографии.

Позднее был предложен шифр «поворотная решётка» - первый транспозиционный (геометрический) шифр. Несмотря на то, что существует большая разница между изначальным предложением Кардано и шифром «поворотная решётка», методы шифрования, основанные на трафаретах, принято называть «решётками Кардано».

Для шифрования и дешифрования с помощью данного шифра изготовляется трафарет с вырезанными ячейками. При наложении трафарета на таблицу того же размера четырьмя возможными способами, его вырезы полностью должны покрывать все клетки таблицы ровно по одному разу.

При шифровании трафарет накладывают на таблицу. В видимые ячейки по определённому маршруту вписывают буквы открытого текста. Далее трафарет переворачивают три раза, каждый раз проделывая операцию заполнения.

Шифрограмму выписывают из получившейся таблицы по определённому маршруту. Ключом являются трафарет, маршрут вписывания и порядок поворотов.

Данный метод шифрования использовался для передачи секретной информации нидерландскими правителями в 1740-х годах. Во время Первой мировой войны армия кайзера Вильгельма использовала шифр «поворотная решётка». Немцы использовали решётки разных размеров, однако очень недолго (четыре месяца), к огромному разочарованию французских криптоаналитиков, которые только-только начали подбирать к ним ключи. Для решёток разных размеров французы придумали собственные кодовые имена: Анна (25 букв), Берта (36 букв), Дора (64 буквы) и Эмиль (81 буква).

Шифры перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов, т.е. преобразования приводят к изменению только порядка следования символов исходного сообщения. Рассмотрим некоторые наиболее часто встречающиеся разновидности этого метода - простую, усложненную по таблице и усложненную по маршрутам перестановку.

Шифрование простой перестановкой (вертикальной перестановкой) осуществляется следующим образом:

1) выбирается ключевое слово с неповторяющимися символами;

2) шифруемый текст записывается последовательными строками под символами ключевого слова;

3) зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если ключ цифровой).

В качестве иллюстрации приведем пример шифрования способом простой перестановки сообщения: «БУДЬТЕ ОСТОРОЖНЫ С ПРЕДСТАВИТЕЛЕМ ФИРМЫ "ФЕНИКС". При этом применим цифровой ключ 5 – 8 – 1 – 3 – 7 – 4 – 6 – 2. В исходном тексте вместо пробелов используется буква а.

Б У Д Ь Т Е а О
С Т О Р О Ж Н Ы
А С а П Р Е Д С
Т А В И Т Е Л Е
М а Ф И Р М Ы а
Ф Е Н И К С а а

Выписывая текст по колонкам и группируя символы по пять, получаем зашифрованный текст в виде:

ДО ВФ НОЫСЕ ЬРП ИИИЕЖ ЕЕМСБ С ТМФ НДЛЫ TOPT РКУТС A E .

Расшифрование выполняется в следующем порядке:

1) подсчитываем число знаков в зашифрованном тексте и делим на число знаков ключа;

2) выписываем ключевое слово и под его знаками в соответствующей последовательности выписываем символы зашифрованного текста в определенном выше количестве;

3) по строкам таблицы читаем исходный текст.

Число ключей не более m!, где m - число столбцов таблицы.

Слабость шифрования простой перестановкой обуславливается тем, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после зашифровки определенного числа знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и расшифрования.

Для получения и запоминания числового ключа существуют различные методы. Один из самых распространенных состоит в том, чтобы приписывать буквам числа в соответствии с алфавитным порядком букв. Возьмем, например, слово ПЕРЕСТАНОВКА. Присутствующая в нем буква А получает №1. Если какая-то буква входит несколько раз, то ее появления нумеруются последовательно слева направо. Поэтому второе вхождение буквы А получает №2. Буквы Б в этом слове нет, то буква В получает №3, и т.д.:

П Е Р Е С Т А Н О В К А

Усложнение перестановки по таблице заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Усложнение состоит в том, что определенное число клеток таблицы не используется (на рисунке они пусты). Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по m х n – s элементов (m х n – размеры таблицы,s – число неиспользуемых элементов) записывается в таблицу. Далее шифрование аналогична простой перестановке.

Б У Д Ь Т Е а О С
Т О Р О Ж Н Ы а
С а О Р Е Д С Т А
В И Т Е Л Е М а Ф
И Р М Ы а Ф Е Н И
К С а а а а А а а

Зашифрованный текст будет выглядеть так: ДОПР БСВИК РРТМ ОЫ Н ЕНСЕФ УТ И СС АФ И ЬОЕ ЕЫ Т МЕ ТЖ ДЛ .

При расшифровании знаки зашифрованного текста записываются столбцами таблицы в последовательности знаков ключа с пропуском неиспользуемых элементов. Исходный текст считывается по строкам. Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость зашифрованного текста.

Еще один вариант - шифр "Поворотная решетка" . предназначен для сообщений длины 4mk. Берется трафарет размером 2m*2k клеток, вырезается m*k клеток так, что при наложении его на лист бумаги того же размера 4 различными способами (поворачивая на 90°) его вырезы полностью покрывают всю площадь листа. Буквы сообщения последовательно вписываются в вырезы трафарета по строкам, в каждой строке слева направо, при каждом из 4-х его возможных положений в заранее установленном порядке. Число возможных трафаретов, т.е. количество ключей этого шифра составляет 4 mk (при размере трафарета 8*8 число вариантов превосходит 4 миллиарда).

Весьма высокую стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используется несколько различных маршрутов. Для примера рассмотрим шифрование по маршругам Гамильтона при n =3. Структура и три маршрута показаны на Рис. 7, а пример шифрования – на Рис. 8.объемной (многомерной) перестановки . В 1992 – 94 гг. идея применения объемной перестановки для шифрования открытого текста получила дальнейшее развитие. Усовершенствованная схема перестановок по принципу кубика Рубика, в которой наряду с открытым текстом перестановке подвергаются и функциональные элементы самого алгоритма шифрования, легла в основу системы «Рубикон». В качестве прообразов пространственных многомерных структур, на основании объемных преобразований которых осуществляются перестановки, в ней используются трехмерный куб и тетраэдр.

Шифр перестановки «скитала». В V в. до н.э. правители греческого государства Спарты имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки (рис. 1.6).

Рис. 1.6.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску кожи и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску - буквы на ней оказывались расположенными вразнобой.

Вестник обычно прятал сообщение, используя кожаную полосу как пояс, т.е. кроме шифрования применяли также и стеганографию. Чтобы получить исходное сообщение, полоску кожи надо намотать вокруг скиталы того же диаметра. Ключом этого шифра является диаметр стержн я - с к итал ы. Зная только вид шифра, но не имея ключа, расшифровать сообщение непросто. Шифр «скитала» многократно совершенствовался в последующие времена.

Способ взлома этого шифра предложен Аристотелем. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, постепенно сдвигая к вершине. В какой-то момент начнут просматриваться куски сообщения. Диаметр конуса в этом месте соответствует диаметру скиталы.

Шифрующие таблицы. Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования в простейшем варианте сходен с шифром «скитала». Например, текст сообщение записывается в таблицу определенного размера в столбик, а считывается но строкам.

Запишем фразу «Терминатор прибывает седьмого в полночь» в таблицу размером 5x7 (рис. 1.7) но столбцам. Выписав текст из таблицы построчно, получим шифр: «тннвеглеарадонртиеьвомобтмнчирысооь».

Рис. 1.7.

Отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. При расшифровке действия выполняют в обратном порядке (построчная запись, чтение по столбцам).

Этот шифр может быть несколько усложнен: например, столбцы могут быть переставлены в некоторой последовательности, определяемой ключом. Возможна двойная перестановка - столбцов и строк.

Решетка Кардано. Решетка Кардано (поворотная решетка) - это прямоугольная или квадратная карточка с четным числом строк и столбцов 2k X 2т. В ней проделаны отверстия таким образом, что при последовательном отражении или поворачивании и заполнении открытых клеток карточки постепенно будут заполнены все клетки листа.

Карточку сначала отражают относительно вертикальной оси симметрии, затем - относительно горизонтальной оси, и снова - относительно вертикальной (рис. 1.8).

Если решетка Кардано - квадратная, то возможен и другой вариант ее преобразований - поворот на 90° (рис. 1.9).

Рис. 1.8.

Рис. 1.9.

При записи обычным способом (слева направо и сверху вниз) словосочетания «шифрование текста» (без пробелов) в свободные клетки поворотной решетки, изображенной на рис. 1.9, получим текст в виде таблицы (рис. 1.10), или, записав текст в одну строку, - «кшииоесвтафатрен».

Рис. 1.10.

Получатель должен знать трафарет и наложить его в той же последовательности, что и при шифровании. Ключом является выбранный тип перемещения решетки (отражение или поворот) и трафарет - расположение отверстий, которые для квадратной решетки размером х могут быть выбраны 4""* способами (с учетом начальной ориентации трафарета). В этом случае среди трафаретов, считающихся различными, будут встречаться такие, которые являются зеркальным отражением или поворотами других трафаретов, т.е. трафареты, различающиеся только начальным расположением (ориентацией). Если пренебречь начальным расположением трафарета, то, очевидно, различных трафаретов будет в 4 раза меньше - 4""*"

Например, для решеток размером 4X4 существует 256 возможных вариантов трафарета (с учетом начальной ориентации) или всего 64 различных трафаретов.

Несмотря на то, что число трафаретов для больших решеток достаточно велико (порядка 4 млн (4- 10 е)), оно все же существенно меньше, чем случайных перестановок элементов таблицы, число которых равно (2т? 2k).

Например, для таблицы размером 4x4 число случайных перестановок составляет порядка 2 ? 10 13 , а для таблиц размером 8x8 - около 10 89 .

Решетки Кардано, так же как и шифрующие таблицы, являются частными случаями шифра маршрутной перестановки.

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Рассмотрим некоторые наиболее часто встречающиеся разновидности этого метода, которые могут быть использованы в автоматизированных системах.

Самая простая перестановка - написать исходный текст задом наперед и одновременно разбить шифрограмму на пятерки букв. Например, из фразы:

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ,

получится такой шифртекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЬ ТСУП

В последней группе (пятерке) не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, его следует дополнить незначащей буквой (например, О) до числа, кратного пяти:

ПУСТЬ-БУДЕТ-ТАККА-КМЫХО-ТЕЛИО.

Тогда шифрограмма, несмотря на столь незначительное изменение, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

Кажется ничего сложного, но при расшифровке возникнут серьезные неудобства.

Во время Гражданской войны в США использовался был такой шифр: исходную фразу писали в несколько строк. Например, по пятнадцать букв в каждой (с заполнением последней строки ничего не значащими буквами).

После этого вертикальные столбцы по порядку писали в строку с разбивкой на пятерки букв:

ПКУМС ЫТХЬО БТУЕД ЛЕИТК ТЛАМК НКОАП

Вариант этого шифра: сначала исходную фразу записать в столбики:

Потом разбить строки на пятерки букв:

ПСЬУЕ ТКАМХ ТЛАВД УТБДТ АККЫО ЕИБГЕ

Если строки укоротить, а их количество увеличить, то получится прямоугольник-решетка, в который можно записывать исходный текст. Но тут уже требуются предварительные договоренности между адресатом и отправителем посланий, поскольку сама решетка может быть различной длины-высоты, записывать в нее можно по строкам, по столбцам, по спирали туда или по спирали - обратно, можно писать и по диагоналям, а для шифрования можно брать тоже различные направления. В общем, вариантов масса.

Для примера возьмем решетку 6х6 (причем количество строк может увеличиваться или уменьшаться в зависимости от длины исходного сообщения) и заполним ее по строкам:

Если шифровать по стрелкам (диагоналям) сверху вниз с левого верхнего угла, то в итоге получится такая шифрограмма:

П УУ СДК ТЕКХ ЬТАОА БТКТБМ АМЕВЛ ЫЛГК ИДИ ЕЗ Ж

Для окончательного оформления шифртекст может быть разбит на группы по 6 символов:

ПУУСДК ТЕКХЬТ АОАБТК ТБМАМЕ ВЛЫЛГК ИДИЕЗЖ

Очень часто используют перестановки с ключом. Тогда правила заполнения решетки и шифрования из нее упрощаются, становятся стандартными. Единственное, что надо помнить и знать - это ключ, которым может быть любое слово, например, РАДИАТОР. В соответствии с расположением букв в алфавите, буква А получает номер 1, вторая буква А - 2, следующая по алфавиту буква Д - 3, потом И - 4, О – 5; первая буква Р - 6, вторая Р - 7 и буква Т - 8. Заполняем решетку:

Записываем столбики в соответствии с номерами букв ключа:

УТЫ ЬКТ СТХ ТАО УАЛ ПЕМО ДКИ БКЕ

Затем последовательность опять разбивается на пятерки:

УТЫЬК ТСТХТ АОУАЛ ПЕМОД КИБКЕ

Таким шифром простой перестановки колонок пользовались немецкие секретные агенты во время Второй мировой войны. В качестве ключа они использовали первые буквы строк на определенной странице какой-нибудь обыкновенной книги.

Развитием этого шифра является шифр перестановки колонок с пропусками, которые располагаются в решетке тоже в соответствии с ключом (в нашем случае через 6-1-3-4-2-8-5-7 ... символов):

Шифрограмма будет такой:

УДК Ь СЕХЛ ТТОМ АЕП ПКИ УКЛР БТТО

Из рассмотренных примеров видно, что все процедуры шифрования и расшифрования по методу перестановок являются в достаточной степени формальными и могут быть реализованы алгоритмически.

Простая перестановка без ключа - один из самых простых методов шифрования. Буквы перемешиваются по каким-либо правилам, но эти правила могут быть разными - и простыми и сложными.

Транспозиция

Допустим, у нас есть фраза: «МОЖНО, НО НЕЛЬЗЯ» . И мы хотим её зашифровать. Самый простой способ - это записать всю фразу задом наперёд: «ЯЗЬЛЕН ОН, ОНЖОМ» . Можно порядок слов в предложении оставить исходным, но каждое слово записать задом наперёд: «ОНЖОМ, ОН ЯЗЬЛЕН» . А можно менять местами каждые две буквы: «ОМНЖ,ООНЕНЬЛЯЗ» . Это называется «транспозиция» или простая перестановка в чистом виде.

Транспонирование

В этом шифре используется таблица. Сообщение записывается в таблицу по строкам, а для образования шифрованного текста считывается по столбцам. Ну или наоборот - записывается на столбцам, а считывается по строкам. Мы как бы переворачиваем таблицу относительно её диагонали, проходящей через верхний левый и нижний правый углы. Математики называют такой способ переворота таблицы транспонированием.

Для шифрования нужно нарисовать подходящего размера таблицу, вписать туда построчно шифруемый текст, а затем выписать его по столбцам в одну строку. Для расшифровки нужно лишь будет сообщить ключ шифра в виде размера таблицы. На рисунке ниже из ABCDEFGHIJKL получается ADGJBEHKCFIL . Согласитесь, понять без картинки, что это был алфавит, уже практически невозможно.

Итак, например, нам нужно зашифровать текст «Я памятник себе воздвиг нерукотворный, к нему не зарастёт народная тропа» . В нём 72 символа. 72 - удобное число, оно делится без остатка на 2,4,6,8,12,18,24,36, поэтому можно использовать таблицы 2х36, 3х24, 4х18, 6х12, 8х9, 9х8, 12х6, 18х4, 24х3, 36х2:). Определяемся с ключом (размером таблицы), вписываем текст по строкам, а затем переписываем его по столбцам.

На рисунке выше показаны варианты с таблицами 9×8, 8×9, 4×18 и 18×4. Для третьего варианта (таблица 4×18) получится вот такой текст:

«Ямиеввнкой у атрар якбоиеор,н зс ояопт езгртн енатнд панс д увыкмерёанта (4:18) »

В данном случае я взял текст «как есть», то есть с пропусками между словами и со знаками препинания. Но если текст осмысленный, то знаки препинания и пропуски между словами можно и не использовать.

Штакетник

Упрощённый вариант транспонирования (с двухстрочной таблицей) - «штакетник». Напоминает «по конструкции» забор-шахматку.

Это очень простой способ шифровки, часто применяемый школьниками. Фраза записывается в две строки: в верхней пишутся нечётные буквы, в нижней - чётные. Затем нужно выписать подряд сначала верхнюю строку, затем нижнюю. Такое шифрование легко проделать и в уме, не выписывая сначала две строки.

«Я памятник себе воздвиг нерукотворный» превращается в «ЯАЯНКЕЕОДИНРКТОНЙ ПМТИСБВЗВГЕУОВРЫ».

Скитала

Известно, что в V веке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью «скиталы», первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который и назывался «скитала», наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично. Для восстановления текста требовалась скитала такого же диаметра.

По сути скитала - это наша обычная плоская таблица, обёрнутая вокруг цилиндра.

Считается, что автором способа взлома шифра скиталы является Аристотель, который наматывал ленту на конусообразную палку до тех пор, пока не появлялись читаемые куски текста. Изначально древний аппарат использовался в качестве сохранения секретных рецептов. Сейчас вместо узкой полоски пергамента можно использовать серпантин, а роль скиталы выполнит карандаш.

Сдвиг

Похожий результат можно получить, если буквы сообщения писать через определенное число позиций до тех пор, пока не будет исчерпан весь текст. Ниже пример готовой головоломки, составленной по таким правилам. «Три дробь четыре» - это подсказка, что зашифровано три слова, читать надо каждую четвёртую букву (4-8-12-16-..), по достижению конца переходить снова к началу со сдвигом на 1 букву влево (3-7-11-15-..) и т.д. На рисунке ниже зашифровано «Идите назначенным маршрутом».

Одиночная перестановка по ключу

Более практический метод шифрования, называемый одиночной перестановкой по ключу, очень похож на предыдущий. Он отличается лишь тем, что колонки таблицы не сдвигаются, а переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы. Кодируемая фраза записывается в подходящую таблицу построчно. Затем над таблицей вставляется пустая строка и в неё вписывается ключевое слово/фраза/последовательность чисел. Затем это ключевое слово/фраза/последовательность сортируется по алфавиту/значению, вместе с ней сортируются столбцы, тем самым перемешивая всю таблицу. Затем зашифрованная фраза выписывается построчно из этой перемешанной таблицы.

Например, можно сделать головоломку на основе судоку. Разгадывающему даётся текст «-УРОМКУЛО ЬУЁЗЕБЯДЛ НЗЯАТЛЫЙА ЦЬБАДНЕПУ ЕММДНИТОЁ ИЧТЮКЬНОО УНЁЙВЫЧЁС ХИЕПОТОДЦ ПРМГОУИК-» и предлагается решить судоку, в которой одна из строк помечена.

Решать эту головоломку придётся так: сначала нужно записать текст в таблицу 9×9, затем разгадать судоку, нарисовать пустую таблицу 9×9, надписать над ней ключевую строку из помеченной строки, и затем в таблицу под номерами вписать столбцы согласно их порядковым номерам в исходной таблице.

Для детей можно использовать этот же метод, но попроще, даже без цифр, а сразу нарисовав порядок перестановки в виде путей.

Двойная перестановка

Для дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Этот способ известен под названием «двойная перестановка». Для этого размер второй таблицы подбирают так, чтобы длины её строк и столбцов были не такие, как в первой таблице. Лучше всего, если они будут взаимно простыми. Кроме того, в первой таблице можно переставлять столбцы, а во второй строки.

Маршрутная перестановка

Обычное транспонирование таблицы (заполняем по строкам, читаем по столбцам) можно усложнить и считывать не по столбцам, а змейкой, зигзагом, по спирали или каким-то другим способом, т.е. задавать маршрут обхода таблицы. Такие способы заполнения таблицы если и не усиливают стойкость шифра, то делают процесс шифрования гораздо более занимательным. Правда, процесс расшифровки при этом усложняется, особенно, если маршрут неизвестен, и его ещё надо узнать.

На рисунке сверху последовательность символов «АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ.,?» вписана построчно в таблицу 6×6, а затем считана по маршруту, указанному линиями. Получаются следующие шифровки:

    АЁЛСЧЭБЖМТШЮВЗНУЩЯГИОФЪ.ДЙПХЫ,ЕКРЦЬ?

    АЁЛСЧЭЮЯ.,?ЬЦРКЕДГВБЖМТШЩЪЫХПЙИЗНУФО

    АБЁЛЖВГЗМСЧТНИДЕЙОУШЭЮЩФПКРХЪЯ.ЫЦЬ,?

    АЁЛСЧЭЮШТМЖБВЗНУЩЯ.ЪФОИГДЙПХЫ,?ЬЦРКЕ

    НЗВБАЁЖМЛСТШЧЭЮЯЩУФЪ.,?ЬЫХЦРПЙКЕДГИО

А здесь нужно обходить таблицу «ходом коня», причём маршрут уже нарисован, так что это совсем для маленьких:)

Но если подать эту головоломку так, как показано ниже, то будет уже совсем не просто, так как вариантов обхода ходом коня может быть много, и нужно будет найти из всех этих вариантов единственный правильный.

Зашифровано «Пушкин. Медный всадник».

Перестановка "Волшебный квадрат"

Волшебными (или магическими) квадратами называются квадратные таблицы со вписанными в их клетки последовательными натуральными числами от 1 до n 2 (где n - размерность квадрата), которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

В известном ещё в Древнем Китае квадрате Ло-Шу третьего порядка (3×3) константа квадрата 15 повторяется 8 раз:

    по трём горизонталям: 2+9+4 = 7+5+3 = 6+1+8 = 15

    по трём вертикалям: 2+7+6 = 9+5+1 = 4+3+8 = 15

    по двум диагоналям: 2+5+8 = 4+5+6 = 15

Кстати, константу нечетного квадрата легко посчитать, умножив среднее число ряда, из которого составлен квадрат, на порядок квадрата. Для квадрата 3-го порядка (3×3) константа равна 1234 5 6789 *3=15.

Далее, чтобы зашифровать какое-то послание, нужно сначала подобрать или составить подходящий по размеру волшебный квадрат, затем нарисовать пустую таблицу такого же размера, и вписать буквы текста по очереди в таблицу в соответствии с номерами в волшебном квадрате. Затем просто выписываем построчно буквы из таблицы в одну длинную строку. Порядок квадрата должен быть равен округлённому в большую сторону корню из длины шифруемой строки, чтобы строка полностью вошла в квадрат. Если строка короче, то остаток можно заполнить произвольными буквами или цифрами.

На первый взгляд кажется, будто магических квадратов очень мало. Тем не менее, их число очень быстро возрастает с увеличением размера квадрата. Так, существует лишь один магический квадрат размером 3х3, если не принимать во внимание его повороты и отражения. Счёт волшебным квадратам 4-го порядка уже идёт на сотни, 5-го - на сотни тысяч. Поэтому магические квадраты больших размеров могли быть хорошей основой для надежной системы шифрования того времени, так как ручной перебор всех вариантов ключа для этого шифра был немыслим.

Есть очень простой метод составления нечётных волшебных квадратов, т.е. размером 3×3, 5×5, 7×7 и т.д. Это метод «террас» или «пирамидок».

Рисуется квадрат нужного размера и к нему пририсовываются ступенчатые «террасы» (обозначены пунктиром). Далее по диагоналям сверху вниз направо квадрат заполняется последовательными числами. После этого «террасы» переносятся внутрь квадрата: правые - налево, левые - направо, верхние - вниз, а нижние - наверх. Получается волшебный квадрат!

На базе этого метода можно составлять разные головоломки. Если использовать метод напрямую, то получится вот такая головоломка:

Чтобы решить эту головоломку, нужно буквы из «террас» перенести в квадрат, тогда в квадрате прочитается полное сообщение. Здесь зашифрована фраза «За мостом засада, пройти нельзя, переходите речку в брод.»

А если использовать метод наоборот, то получится головоломка типа такой.

Чтобы её решить, надо вытащить соответствующие буквы из квадрата в «террасы».

Для квадратов 4×4, 6×6 и т.д. таких простых способов их составления не существует, поэтому проще использовать готовые. Например, квадрат Дюрера.