Система космической лазерной связи. Атмосферная лазерная связь

24Ќар

На этой неделе аэрокосмическое агентство NASA опубликовало результаты работы демонстратора технологии космической лазерной связи (LLCD), установленного на «Исследователе лунной атмосферы и пылевого окружения» (или LADEE), запущенного в сентябре этого года и в настоящий момент кружащего вокруг нашего естественного спутника. Со слов космического агентства, система LLCD показала очень высокую эффективность передачи данных на расстоянии около 400 тысяч километров и уже сейчас способна работать не хуже, а возможно даже и лучше обычных радиопередатчиков.

Для тех, кто не знает, миссия LLCD направлена на демонстрацию возможности практического использования лазеров для передачи сообщений между объектами на очень удаленном расстоянии друг от друга и намного более высокой скоростью по сравнению с той, что могут предложить стандартные радиопередатчики. Продемонстрировав способность передавать данные на Землю со скоростью 622 Мб/с и получать со скоростью 20 Мб/с, LLCD установила 20 октября рекорд скорости передачи данных с лунной орбиты. Данные, переданные лазерным лучом, были получены основной наземной LLCD-станцией, расположенной в Нью-Мексико. В мире находятся три подобные станции. Оставшиеся две расположены в Испании и США.

Важнейшие преимущества лазеров над радиопередатчиками заключаются в том, что они предлагают намного более высокую пропускную способность и, кроме того, возможность передавать информацию кратковременными лазерными пучками, что в перспективе позволит снизить общие затраты потребления питания при передаче информации на сверхудаленные дистанции.

В NASA отмечают, что система LLCD работает в течение 30-дневного тестового режима даже лучше, чем того от нее ожидали. Лазер без проблем передавал сообщения на наземные станции при дневном свете и даже тогда, когда угол отклонения Луны по отношению к Солнцу составлял четыре градуса. Система также работала без каких-либо ошибок, когда Луна находилась очень низко к горизонту, тем самым заставляя лазер проходить через более плотные слои атмосферы и при некотором воздействии эффектов турбулентности. Астрономы также были удивлены узнав, что легкие перистые облака не оказались для лазера проблемой.

Помимо проверки на ошибки, LLCD показала возможность переключения от одной наземной станции к другой, продемонстрировав способность фиксироваться на определенной станции без необходимости использования радиосигнала.

«Мы запрограммировали LADEE таким образом, чтобы она в автоматическом режиме активировала и направляла систему LLCD в нужную точку для передачи лазерного сигнала на Землю, без какой-либо необходимости в предварительно отправленных на зонд радиосигналов с командой», - говорит Дон Корнуэлл, менеджер проекта LLCD из Центра космических полетов имени Годдарда.
«Успех этой миссии позволяет с оптимизмом смотреть на возможность использования подобных систем в качестве основных систем коммуникаций при будущих миссиях NASA».
В NASA отмечают не только успешность передачи сигнала, но и высокую скорость передачи информации с зонда на Землю. Все собранные за это время данные (а это, на минуточку, гигабайты информации), были переданы на Землю менее чем за пять минут. Обычно для передачи данных такого объема требуется несколько дней.

Агентство сообщает, что LLCD миссия завершена и следующей фазой тестирования станет проверка системы спутника Laser Communications Relay Demonstration (LRCD), запуск которого намечен на 2017 год. По своей сути система станет усовершенствованной версией LLCD, способной на передачу данных со скоростью до 2880 Гб/с с геостационарной орбиты и станет частью пятилетней программы тестирования систем коммуникаций нового поколения.

Категории: / / от

Александр Лобинcкий

В прошлом номере "СР" мы поэкспериментировали с новой методой изложения новостей "с обсуждениями и комментариями" и, похоже, начинание пришлось нашим читателям по душе. На сей раз под прицел опять попадает опубликованный на небезызвестном новостном портале ZDNet материал, посвященный лазерным системам связи. А своими соображениями по данной теме с вами делится специалист белорусской компании Belana.

публикация на ZDNet:

Лазеры решают проблему полосы пропускания


Операторы связи и производители аппаратуры уже несколько месяцев испытывают технологию высокоскоростной передачи данных для предприятий, называемую "лазерами в открытом пространстве", или "оптической беспроводной связью", которая вплоть до недавнего времени оставалась предметом теоретических споров, научных разработок и опытных проектов.
В ближайшее время компании Terabeam и FSONA Communications планируют представить первые коммерческие продукты и услуги на базе этой технологии. "Уже очевидно, что она готова к широкому применению", - говорит независимый аналитик телекоммуникационной индустрии Джефф Каган (Jeff Kagan). - "Пора предложить ее рынку и посмотреть, во что это выльется. Понятно, что без проблем не обойдется. Но если это заработает, можно рассчитывать на огромный успех".

Лазеры невидимого оптического диапазона безвредны для человеческого глаза и позволяют обеспечить высокоскоростной доступ в Интернет и корпоративные сети через луч, проходящий сквозь окно офиса.
Эта технология обеспечивает более высокое быстродействие по сравнению с существующими беспроводными сетями и дешевле, чем волоконно-оптическая связь, для которой нужно прокладывать кабель через улицы. Лазеры способны решить важную проблему, стоящую перед телекоммуникационной индустрией.

Если крупные общенациональные сети уже существуют, то строительство и модернизация внутригородских сетей только начинается. Поэтому предприятиям часто приходится месяцами ждать, пока их обеспечат доступом в Интернет или связью с удаленным офисом. Однако успех лазерной технологии отнюдь не гарантирован. Во-первых, лазерный луч подвержен влиянию густого тумана, который может помешать распространению и уменьшить надежность связи. Кроме того, аналитики утверждают, что лазерная связь столкнется с такими трудностями, как скептическое отношение к ней рынка и ограниченная по сравнению со стационарной радиосвязью и прямыми волоконно-оптическими каналами область применения.

опасный конкурент


И все же руководители компаний, работающих с лазерной технологией, верят в ее готовность конкурировать с альтернативными средствами передачи данных. "Мы чувствуем, что пора выходить на рынок", - говорит СЕО компании Terabeam Дэн Гессе (Dan Hesse), который покинул высокооплачиваемую работу в AT&T Wireless, чтобы возглавить "лазерную" компанию. Terabeam предлагает в Сиэтле каналы передачи данных со скоростью до 1 Гбит/с и в ближайший месяц готовится развернуть широкую маркетинговую кампанию. Terabeam обслуживает двух местных заказчиков - агентство по цифровой рекламе Avenue A и компанию Simpson Investment, к которым в ближайшие дни присоединится третий. До конца года планируется начать реализацию услуг еще в пяти городах США. "Для других технологий требуется длительное оформление разрешения и прокладка кабелей.

Мы же можем прямо через окно пустить оптический сигнал, который обычно передается по толстым кабелям. Мы рассматриваем свою технологию как продолжение волоконно-оптической", - говорит Гессе.
Стратегия компании отличается тем, что она планирует работать и как сервис-провайдер, и как производитель лазерного оборудования. Такой же стратегии придерживалась и AT&T в первые годы своей деятельности, когда работала и как оператор связи, и как производитель телефонного оборудования. Tera-beam подписала соглашение о совместной разработке аппаратуры с Lucent Technologies. Lucent принадлежит 30% акций Terabeam Labs, совместного предприятия по разработке аппаратуры, руководители которого мечтают через несколько лет отделиться и стать самостоятельной компанией. FSONA планирует анонсировать первые лазерные продукты для операторов связи на будущей неделе.
В апреле компания начнет продавать свою лазерную систему SONAbeam 155-2, способную передавать данные со скоростью 155 Мбит/с на расстояние до 2 км по цене $20 тыс. за передающее и приемное оборудование. "Мы выпустим первый массовый продукт оптической бескабельной связи", - говорит главный инженер FSONA Стивен Мешерл (Stephen Mecherle). - "Он должен стать пробным камнем данной технологии".
Недавно FSONA втрое увеличила свои производственные мощности, освоив новый корпус в Ванкувере площадью около 27 тыс. кв. м.
Планируя расширяться и дальше, компания провела предварительные переговоры с потенциальными заокеанскими партнерами. В этом году она намерена выпустить удешевленную версию лазерной системы 155 Мбит/с, действующую на более короткие расстояния, а также систему с пропускной способностью 622 Мбит/с.

Многие аналитики одобряют достоинства этой технологии, но не уверены в ее надежности. По оценке FSONA, вероятность бесперебойной работы составляет 99%, что недостаточно по стандартам телекоммуникационной индустрии. Но компания намерена предложить дополнительные резервные системы, позволяющие довести надежность до 99,9%.
Руководители Terabeam уверены, что их сеть способна обеспечить бесперебойную работу в 99,9% случаев, что в совокупности эквивалентно примерно одному дню простоя в год.
Возможностей лазерной технологии и ее надежности оказалось достаточно, чтобы заинтересовать Lucent. Avenue A тоже пока довольна сервисом Terabeam, особенно тем, как быстро - по сравнению со временем ожидания подключения к службам телефонных компаний и других сетевых сервисов, таких как WorldCom и Sprint, - компания его получила. "Каналов приходится ждать вечно", - говорит директор по информационным технологиям Avenue A Джеми Марра (Jamie Marra). - "Как услышишь о сроке в 90 дней, охота обращаться к этим сервис-провайдерам отпадает". Вместо них Avenue A обратилась к Terabeam. "С момента, как мы спросили: "Что вы можете предложить?" и до окончания установки оборудования прошло всего три недели", - говорит Марра. - "Нас обслужили быстро и по цене, сопоставимой с ценами телефонных компаний".
Terabeam и FSONA не одиноки в своем стремлении на рынок телекоммуникаций. В числе других поставщиков услуг лазерной связи - компания AirFiber, подписавшая соглашения с Nortel Networks, Optical Access (о решениях этой компании подробно рассказывалось в предыдущем номере "СР" - прим. ред.) и LightPointe Communications.

Все эти компании могут стать серьезной угрозой для поставщиков услуг стационарной радиосвязи и гигабитных сетей Ethernet. Благодаря возможности пропускать лазерный луч прямо через окно сервис-провайдеры могут обходиться без приобретения дорогостоящих лицензий на радиочастоты и переговоров с владельцами недвижимости о правах доступа на крышу. "Такая степень свободы конкурента вполне может заставить нервничать Teligent, Winstar и других поставщиков услуг стационарной радиосвязи", - говорит заместитель директора аналитической фирмы The Precursor Group Пэт Броуган (Pat Brogan).
Это мнение разделяют и другие аналитики. Технология лазерных сетей, считают они, может стать популярной при условии, что эти первые примеры ее применения окажутся надежными и понравятся заказчикам. "Если эта технология работает так, как обещают, она, возможно, придется ко двору", - говорит Каган. - "При высоких скоростях передачи данных, коротких сроках установки, отсутствии необходимости возиться с разрешениями это вполне реально".
Кори Грайс, ZDNet

Обсуждение статьи: мнение специалиста компании Веlana


"Идея передачи информации при помощи лазерного луча отнюдь не нова. Я сам в конце 80-х, еще будучи школьником, видел опытную установку в БГУИР (тогда еще МРТИ), в которой луч лазера использовался для передачи голоса. Попытки использовать подобные системы (т.н. "атмосферный лазер") для передачи данных продолжаются столько, сколько существуют сети передачи данных. Результаты многочисленных экспериментов, часть из которых даже заканчивалась выпуском коммерческих продуктов, оказались весьма противоречивыми. Мнения специалистов и пользователей разделились.
Одни утверждают, что "атмосферная" технология весьма перспективна, но требует доработки, другие говорят, что это пустая трата времени и денег. Вот типичный пример скептического отношения: "Ага... Очень круто. Канал упал.
Возможные причины - ветер листву гонит, смог на дворе (КРАЗ под окном проехал), дождик, снег, уборщица окно давно не мыла, пролетающий за окном самоубийца пересек луч:), плакат на улице вывесили, птички летают. Отличная, надежная связь, нечего добавить. Мне, уж пожалуйста, кабель "прокладите".

Кроме того, "лазеры невидимого оптического диапазона безвредны для человеческого глаза" - это чушь. То, что глазные колбочки не реагируют на излучение ниже определенной частоты, еще не значит, что ткани глаза не поглощают излучение.
Наоборот, невидимое излучение тем и опасно, что проходит некоторое время, прежде чем человек чувствует, что что-то не так. Можно спокойно глаза лишиться. Что касается настройки, - на расстоянии 100 метров (10 000 см) для отклонения луча на 10 см достаточно углового возмущения 10/10 000 = 0,001 рад. Не вполне представляю, как такую стабильность обеспечить."
В принципе, представленное мнение не лишено логики, равно как и то оптимистичное, что представлено в обсуждаемой статье.
Давайте, однако, попробуем разобраться. Тот факт, что беспроводные оптические системы до сих пор не получили массового признания (отсутствие необходимости прокладки дорогостоящих ВОЛС делает их весьма привлекательными в экономическом отношении), объясняется рядом причин. Попытаемся их проанализировать.

1. Рассматриваемая технология эффективна только при передаче данных на большие расстояния. При малых расстояниях (десятки метров) используется, и весьма эффективно, ненаправленная инфракрасная технология. Лазерная система ей проигрывает на порядок как по стоимости, так и по гибкости. На больших расстояниях у лазерной технологии возникают сложности со средой передачи данных - атмосферой, которая, к сожалению, далеко не всегда оказывается прозрачной, особенно в городских условиях. Преодоление этой проблемы заключается в увеличении мощности лазера.
Несколько лет назад это решение приводило к созданию устройств, потреблявших уйму энергии, стоивших огромные деньги и выглядевших, как турболазерные пушки из "Звездных войн". Сегодня эта проблема во многом решена, так как изобретены новые виды компактных, мощных и недорогих лазерных излучателей.

2. Пучок может прерываться всякими подвижными объектами, как то: птицы, низко летящие самолеты, листья, капли и проч. На заре сетевых технологий даже кратковременное прерывание пучка вызывало обрыв канала передачи данных, что и поспособствовало присуждению лазерной связи звания "крайне неустойчивой". На заре, но не сегодня.
С тех пор были разработаны целые серии протоколов канального уровня, предназначенные для беспроводных средств связи и способные автоматически восстанавливать канал после кратковременного обрыва. А непрерывность потоков данных обеспечивается протоколами более высокого уровня (например TCP/IP).
Таким образом, миф о неустойчивости лазерной связи сегодня может быть опровергнут.

3. Лазерная система связи сложна в настройке. Действительно, при диаметре пучка в несколько миллиметров (а то и долей миллиметра), колебания светового пятна с амплитудой в несколько сантиметров могут серьезно осложнить всю процедуру наведения на приемник. На сегодняшний день это одна из самых серьезных технических проблем атмосферной лазерной связи. Правда, в последнее время стали появляться сообщения о разработке высокочувствительных оптических сенсоров, работающих в узких спектральных диапазонах, что позволяет создать относительно дешевые панели площадью несколько десятков квадратных сантиметров, нечувствительные к дневной засветке, а потому позволяющие обеспечить устойчивый прием луча.


Сомневаюсь, что технология атмосферной лазерной связи в ближайшее время окажется достаточно дешевой, чтобы ее можно было использовать в домашних условиях (да и не все живут в высотных домах, где можно обеспечить прямую видимость).
Однако эта технология может стать вполне достойным конкурентом стационарной радиосвязи в корпоративных сетях передачи данных. При примерно равной стоимости оборудования лазерная технология не потребует проведения мучительных (и весьма дорогостоящих) процедур выделения радиочастотных каналов, проведения работ по высотному монтажу тяжелого и громоздкого оборудования и, как было сказано ранее, оказывается менее вредной для здоровья окружающих.

У проводных систем передачи данных появился конкурент – лазер. По лазерному лучу можно передавать до 10 Гбит информации в секунду: в сетях радиосвязи такая скорость невозможна. Лазерная связь совершенно безвредна для человека и имеет множество других достоинств. Правда, лазерный луч не может пробиться сквозь туман.

У лазерной связи своя ниша – она применяется на коротких дистанциях в местах, где возникают сложности с прокладкой кабеля. Операторам лазерной связи не нужно получать разрешение на ввоз оборудования и на использование частот.

Свет в окошке

В Москве и Петербурге все офисные центры поделены между различными операторами связи. Если, к примеру, здание обслуживает «Совинтел», то «Комстару» провести линию в этот офисный комплекс крайне трудно (лишь в очень редких случаях одно здание обслуживают два оператора связи). При этом владельцы офисных комплексов, как правило, не разрешают ставить на крышах своих домов радиосистемы для связи с другими операторами. Лазерная связь помогает преодолеть эти сложности. В офисе можно установить беспроводной оптический аппарат, который направит луч через окно на ближайший ретранслятор «своего» оператора связи и будет по этому лучу передавать информацию. Это позволяет пользователям обходиться без дорогого сервиса, навязываемого арендодателем, и самостоятельно налаживать более удобную и дешевую связь. При смене офиса оборудование можно демонтировать и перевезти на новое место.

Лазер может решить и проблемы крупных предприятий. Установить связь между офисом и производственными площадками – дело хлопотное. В условиях плотной городской застройки проложить кабель по территории завода и прилегающих улиц очень трудно. Но даже если кабель проложен, это не значит, что все проблемы позади. Коммунальные службы то и дело вскрывают асфальт для ремонта городских коммуникаций, частенько при этом перерубая проложенные кабели. Подвесные же кабели часто становятся жертвой подъемных кранов и штормового ветра. Лазерному лучу экскаватор не страшен. Кроме того, световой луч невозможно украсть и сдать как цветной металлолом, поэтому лазерной связи неопасны воры, промышляющие выкапыванием кабелей из-под земли.

Да и подслушивание лазерных систем – дело очень сложное. Если на пути луча поставить несанкционированное приемное устройство, то связь мгновенно прервется. Разместить подслушивающие устройства рядом с приемником и передатчиком тоже нельзя: они будут видны невооруженным взглядом.

20 лет без научной переписки

Попытки построить беспроводную связь при помощи лазерного луча предпринимались в Москве еще в конце 1960-х. Передатчики были установлены в здании МГУ на Ленинских горах и в одном из домов на Зубовской площади, неподалеку от станции метро «Парк культуры». Установка размером с комнату передавала сигнал успешно, но только в ясную погоду. Специалисты решили, что зависимость от состояния атмосферы слишком высока. Связь при помощи инфракрасного луча была признана бесперспективным направлением, и исследования были свернуты на 20 лет. Эта пауза дорого обошлась отечественной науке. В конце 1980-х советские исследователи вернулись к теме, но довести свои испытания до коммерческих образцов не успели. За них это сделали западные конкуренты.

Системы передачи данных при помощи инфракрасного луча появились на мировом рынке в начале 1990-х. Одним из первопроходцев была канадская A.T.Schindler. Вслед за ней свои разработки вывели фирмы Jolt и SilCom. В конце 1990-х на Западе среди производителей оборудования для лазерной связи в лидеры выбилась PAV Data Systems, а пионерам SilCom и A.T.Schindler пришлось слегка потесниться. Кроме того, в области лазерной связи свои разработки имеют американо-германская Lightpointe Communications (бывш.Eagle Optoelectronics), американские Astroterra, LSA Photonics, Lucent Technologies.

Дождь и туман

Поначалу зарубежные системы обеспечивали передачу данных на дистанциях до 500 м и обслуживали локальные сети передачи данных. В конце 1990-х появились системы следующего поколения – более надежные и «дальнобойные», позволяющие обслуживать сети городского масштаба.

На расстоянии до 1600 м системы работают прекрасно. Однако при передаче данных на большее расстояние качество связи снижается. Кроме того, лазерные системы не освободились от метеозависимости. Самая страшная преграда для лазерной связи – туман.

В свою очередь, радиорелейные системы «падают» во время дождя. В этой связи разработчики предлагают строить высоконадежные каналы связи на основе двух линий, одна из которых передает информацию по радио, а другая – по лазерному лучу. Соответственно одна «падает» в дождь, а другая – в туман. «Если нужно получить канал высокой надежности на дистанции до 3 км, то это идеальный вариант», – утверждает Александр Клоков, технический директор представительства американской MicroMax , дистрибутора и интегратора беспроводных оптических систем.

Случаются и другие естественные преграды. Например, говорят, что одна из сотовых компаний до сих пор размышляет, как поступить с выросшим на пути лазерного луча деревом – то ли срубать его, то ли аппарат переставить…

Западные и российские производители не конкурируют друг с другом

Источник: MicroMax Computer Intelligence, Inc

Плюнь в колодец

Преимущества лазерного луча оценил «Транстелеком». У этой компании возникли трудности с «Ростелекомом» и местными «Электросвязями»: конкуренты, владеющие инфраструктурой связи, не подпускают «Транстелеком» к кабельным колодцам. В итоге «Транстелеком» махнул рукой на колодцы и собирается подключать корпоративных клиентов к своим магистралям посредством лазерного луча.

Кроме того, лазерным лучом как каналом передачи сигнала пользуются операторы сотовой связи. Они применяют лазер в тех местностях, где в радиоэфире множество помех – например, в аэропортах.

Заместитель технического директора компании «Соник Дуо» (сеть «МегаФон») Игорь Парфенов

рассказал «Ко», что в московской сети «МегаФон» работают более 10 оптических систем. Компания намерена в течение 2003 года следить за их работой и по результатам наблюдений принять решение о целесообразности массового использования этого оборудования. Пока претензий к работе техники у «Соник Дуо» нет.

В свою очередь, руководитель группы инсталляции радиорелейного оборудования «Вымпелкома» Георгий Павленко сообщил, что его компания использует лазерные установки исключительно для временной работы, пока не получено разрешение на установку радиорелейной аппаратуры. «На постоянной основе эти системы лучше использовать на расстоянии до 500 м. Помимо тумана помехой для них является солнечный свет, поэтому необходимо устанавливать специальные фильтры», – говорит Павленко.

В МТС корреспонденту «Ко» рассказали, что сейчас лазерные приборы обеспечивают связь на участках, суммарная длина которых не превышает 1% от общей протяженности сети. Скорее всего, лазерная связь не превысит этого порога. «Оптические сети хороши для построения микросетей, на использование лазера не требуется разрешения Госсвязьнадзора. Но, к сожалению, практика нашей компании показала, что лазер пока обеспечивает надежную связь на расстоянии не более 500 метров».

В России оборудование для беспроводной связи на основе инфракрасного луча производят НИИ прецизионного приборостроения, компания «Катарсис» из Санкт-Петербурга, Рязанский государственный приборный завод, компании «НТЦ» из Новосибирска и «Сцептор» (последняя создана на базе Московского энергетического института), а также Воронежский институт связи.

Никто из производителей, кроме «Катарсиса», не продвинулся дальше опытного производства. В России хорошие инженеры, которые создают правильную технику, но совершенно не умеют ее продавать. «Например, простейший разъем должен быть стандартным. А у отечественных аппаратов разъемы многоштырьковые. Это, конечно, хороший разъем, но он больше подходит для ракет, – рассказывает Александр Клоков. – Установка российских систем требует распайки кабеля на месте, но какой здравомыслящий оператор пошлет своих работников паять что-нибудь на крышу?»

Отечественные и зарубежные системы пока не конкурируют друг с другом, поскольку находятся в разных «весовых категориях» (см. таблицу). По мнению Александра Клокова, в 2002 году в России будет продано в общей сложности около 400 систем лазерной связи.

Преимущества лазерного канала перед радиоканалом заключаются в том, что он, во – первых, не создаёт радиопомех; во – вторых, является более конфиденциальным; в – третьих, может применяться в условиях воздействия высокого уровня электромагнитных излучений.

Принципиальная схема передатчика представлена на Рис.1. Передатчик состоит из шифратора команд, выполненного на микроконтроллере ATtiny2313 (DD1), выходного блока – на транзисторах ВС847В (VT1, VT2) и интерфейса RS-232, который, в свою очередь, состоит из разъёма DB9-F (на кабель) (ХР1) и преобразователя уровней – на MAX3232 (DD3).

Цепь сброса микроконтроллера состоит из элементов DD2 (CD4011B), R2, C7. Выходной блок представляет собой электронный ключ, выполненный на транзисторе VT1, в коллекторную цепь которого через ограничитель тока на транзисторе VT2 включена лазерная указка. Питание передатчика осуществляется постоянным стабилизированным напряжением 9 – 12 В. Микросхемы DD1, DD2, DD3 питаются от напряжения 5В, которое определяется стабилизатором 78L05 (DA1).

Контроллер DD1 запрограммирован в среде BASCOM, что позволяет подавать ему команды с персонального компьютера (ПК) через интерфейс RS-232, с терминала Bascom, используя функцию «эхо».

Микроконтроллер имеет тактовую частоту 4Мгц от внутреннего генератора. Пачки импульсов частотой около 1,3 Кгц с вывода ОС0А (РВ2) поступают на выходной блок. Количество импульсов в пачке определяется номером команды, поступившей с ПК.
Для ввода команды необходимо нажать на клавиатуре ПК любую клавишу, затем при появлении надписей «Write command» и «Enter №1…8» ввести цифру от 1 до 8 и нажать клавишу «Enter».

Программа для микроконтроллера передатчика «TXlaser» состоит из основного цикла (DO…LOOP) и двух подпрограмм обработки прерываний: по приёму (Urxc) и по переполнению таймера 0 (Timer0).

Для получения выходной частоты 1,3 КГц таймер сконфигурирован с коэффициентом деления частоты (Prescale) = 1024. Кроме того, счёт начинается с нижнего значения Z = 253 (при высоком уровне на РВ2) и доходит до 255. Происходит прерывание по переполнению таймера, при обработке которого осуществляется переключение вывода РВ2, а таймеру вновь задаётся значение Z = 253. Таким образом, на выходе РВ2 появляется сигнал частотой 1,3 КГц (см. Рис.2). В этой же подпрограмме количество импульсов на РВ2 сравнивается с заданным, и в случае их равенства таймер останавливается.

В подпрограмме обработки прерывания по приёму задаётся количество импульсов, которое необходимо передать (1 – 8). В случае, если это количество будет больше 8, в терминал выдаётся сообщение «ERROR».

Во время работы подпрограммы на выводе PD6 присутствует низкий уровень (светодиод HL1 выключен), а работа таймера остановлена.
В основном цикле на выводе PD6 – высокий уровень, и светодиод HL1 включён.
Текст программы «TXlaser»:

$regfile = "attiny2313a.dat"
$crystal = 1000000
$hwstack = 40
$swstack = 16
$framesize = 32

Config Pind.0 = Input "UART - RxD
Config Portd.1 = Output "UART - TxD
Config Portd.6 = Output "светодиод HL1
Config Portb.2 = Output "выход OC0A

"конфигурац.таймера0-коэфф.деления=1024:
Config Timer0 = Timer , Prescale = 1024
Stop Timer0 "останов таймера

Dim N As Byte "определение переменных "
Dim N0 As Byte

Const Z = 253 "нижниий предел счёта таймера для вых.частоты=1,3КГц
Timer0 = Z

On Urxc Rxd "подпрограмма обраб.прерывания по приёму
On Timer0 Pulse "подпрограмма обраб.прерывания по переполнению


Enable Urxc
Enable Timer0

Do "основной цикл
Set Portd.6 "включение светодиода HL1
Loop

Rxd: "подпрограмма обработки прер. по приёму
Stop Timer0
M1:
Print "Write commad"
Input "Enter № 1...8:" , N0 "ввод команды
If N0 > 8 Then "ограничение номера команд
Print "Error"
Goto M1
End If
N0 = N0 * 2
N0 = N0 - 1 "заданное значение кол-ва импульсов в пачке
Toggle Portb.2
Start Timer0 "запуск таймера
Return

Pulse: "подпрограмма обработки прерыв.по переполнению
Stop Timer0
Toggle Portb.2
Reset Portd.6 "выключение светодиода
Timer0 = Z
N = N + 1 "приращение кол-ва импульсов
If N = N0 Then "если число импульсов = заданному
N = 0
N0 = 0
Waitms 500 "задержка 0,5с
Else
Start Timer0 "иначе, продолжить счёт
End If
Return
End "end program

Передатчик выполнен на печатной плате размерами 46х62 мм (см. Рис.3). Все элементы, кроме микроконтроллера, SMD – типа. Микроконтроллер ATtiny2313 применён в корпусе типа DIP. Его рекомендуется располагать в панели для DIP микросхем TRS (SCS) – 20, чтобы иметь возможность «безболезненно» перепрограммировать.

Печатная плата передатчика TXD.PCB находится в папке «FILE PCAD» .
Принципиальная схема приёмника лазерного канала представлена на рис.4. На входе первого усилителя DA3.1 (LM358N) фильтр низкой частоты, образованный элементами СЕ3, R8, R9 и имеющий частоту среза 1КГц, ослабляет фоновые помехи 50 -100 КГц от осветительных приборов. Усилители DA3.2 и DA4.2 усиливают и увеличивают длительность принятых импульсов полезного сигнала. Компаратор на DA4.1 формирует выходной сигнал (единица), который поступает через инверторы микросхемы CD4011D (DD2) - DD2.1, DD2. Cигнал синхронно приходит на контакты микроконтроллера ATtiny2313 (DD1) – T0 (PB4) и РВ3. Таким образом, Timer0, работающий в режиме счёта внешних импульсов и Timer1, отмеряющий время этого счёта, запускаются синхронно. Контроллер DD1, выполняющий функцию дешифратора, отображает принятые команды 1…8 установкой лог.1 на выводах PORTB соответственно РВ0…РВ7, при этом приход последующей команды сбрасывает предыдущую. При приходе команды «8» на РВ7 появляется лог.1, которая с помощью электронного ключа на транзисторе VT1, включает реле К1.

Питание приёмника осуществляется постоянным напряжением 9 -12В. Аналоговая и цифровая части питаются от напряжений 5В, которые определяются стабилизаторами типа 78L05 DA5 и DA2.

В программе «RXlaser» Timer0 сконфигурирован, как счётчик внешних импульсов, а Timer1, как таймер, считающий период прохождения максимально возможного количества импульсов (команда 8).

В основном цикле (DO…LOOP) Timer1 включается при принятии первого импульса команды (К=0), происходит сброс условия разрешения включения таймера Z=1.
В подпрограмме обработки прерывания по совпадению cчёта Timer1 со значением максимально возможного счёта считывается и устанавливается в PORTB номер команды. Устанавливается так же условие разрешения включения Timer1- Z=0.
Текст программы «RXlaser»:

$regfile = "attiny2313a.dat"
$crystal = 4000000
$hwstack = 40
$swstack = 16
$framesize = 32

Ddrb = 255 "PORTB-все выхода
Portb = 0
Ddrd = 0 "PORTD-входа
Portd = 255 "подтяжка PORTD
Config Timer0 = Counter , Prescale = 1 , Edge = Falling "как счётчик импульсов
Config Timer1 = Timer , Prescale = 1024 , Clear Timer = 1 "как таймер
Stop Timer1
Timer1 = 0
Counter0 = 0

"определение переменных:
Dim X As Byte
Dim Comm As Byte
Dim Z As Bit
Dim K As Bit

X =80
Compare1a = X "кол-во имп. в регистре совпадения
Z = 0

On Compare1a Pulse "подпрограмма прерывания по совпадению

Enable Interrupts "разрешение прерываний
Enable Compare1a

Do "основной цикл
If Z = 0 Then "первое условие включения таймера
K = Portd.3
If K = 0 Then "второе условие включения таймера
Start Timer1
Z = 1
End If
End If
Loop

Pulse: "подпрограмма обраб.прерыв.по совпадению
Stop Timer1
Comm = Counter0 "считывание из счётчика внешних импульсов
Comm = Comm - 1 "определение номера бита в порту
Portb = 0 "обнуление порта
Set Portb.comm "установка бита,соответ.номеру команды
Z = 0
Counter0 = 0
Timer1 = 0
Return
End "end program

Программы «TXlaser» и «RXlaser» находятся в папке Lazer_prog .

Приёмник расположен на плате размерами 46х62 мм (см. Рис 5). Все компоненты – SMD типа, за исключением микроконтроллера, который необходимо разместить в панели для микросхем DIP типа TRS(SCS) – 20.

Настройка приёмника сводится к установке сквозного коэффициента передачи и порога срабатывания компаратора. Для решения первой задачи необходимо подключить осциллограф к выводу 7 DA4.2 и подбором величины R18 установить такой сквозной коэффициент передачи, при котором максимальная амплитуда шумовых выбросов, наблюдаемых на экране, не будет превышать 100 мВ. Затем осциллограф переключается на вывод 1 DA4.1 и подбором резистора (R21) устанавливается нулевой уровень компаратора. Включив передатчик и направив луч лазера на фотодиод, необходимо убедиться в появлении прямоугольных импульсов на выходе компаратора.
Печатная плата приёмника RXD.PCB находится также в папке FILE PCAD .

Повысить помехозащищённость лазерного канала возможно с помощью модуляции сигнала поднесущей частотой 30 – 36 КГц. Модуляция пачек импульсов происходит в передатчике, приёмник же содержит полосовой фильтр и амплитудный детектор.

Схема такого передатчика (передатчик 2) изображена на Рис.6. В отличии от рассмотренного выше передатчика 1 передатчик 2 имеет генератор поднесущей, настроенный на частоту 30 КГц и собранный на слотах DD2.1, DD2.4.. Генератор обеспечивает модулирование пачек положительных импульсов.

Приёмник лазерного канала с поднесущей частотой (приёмник 2) собран на отечественной микросхеме К1056УП1 (DA1). Схема приёмника изображена на Рис.7. Для выделения командных импульсов к выходу микросхемы DA1 10 подключены амплитудный детектор с фильтром низкой частоты и нормализатор импульсов, собранные на логических элементах DD3.1, DD3.2, диодной сборке DA3 и C9, R24. В остальном схема приёмника 2 совпадает со схемой приёмника 1.

Оптические волокна и лазерная связь

Со времен античности свет использовался для передачи сообщений. В Китае, Египте, и в Греции использовали днем дым, а ночь огонь для передачи сигналов. Среди первых исторических свидетельств оптической связи мы можем вспомнить осаду Трои. В своей трагедии «Агамемнон», Эсхил дает детальное описание цепочки сигнальных огней на вершинах гор Ида, Антос. Масисто, Египланто и Аракнея, а также на утесах Лемно и Кифара, для передачи в Арго весть о захвате Трои ахейцами.

В более поздние, но в античные времена, римский император Тиберий, находясь на Капри, использовал световые сигналы для связи с побережьем.

На Капри до сих пор можно видеть руины античного «Фаро» (свет) вблизи виллы императора Тиберия на Тиберио Маунт.

В Северной Америке одна из первых оптических систем связи была установлена около 300 лет назад в колонии Новая Франция (ныне провинция Квебек в Канаде). Региональное правительство, опасаясь возможности нападения английского флота, установило ряд позиций для сигнальных огней во многих деревнях вдоль реки Святого Лаврентия. В этой цепи, которая начиналась с Иль Верте, на расстоянии около 200 км от Квебека ниже по течению, было не менее 13 пунктов. С начала 1700-х гг. в каждой из этих деревень, каждую ночь периода навигации, был караульный, задачей которого было наблюдать за сигналом, посылаемым из деревни ниже по течению, и передавать его далее. С помощью такой системы сообщение о британской атаке в 1759 г. достигло Квебека прежде, чем было слишком поздно.

В 1790 г. французский инженер, Клод Шапп, изобрел семафоры (оптический телеграф), располагаемые на башнях, установленных в пределах видимости одна от другой, что позволяло посылать сообщения от одной башни к другой. В 1880 г. Александр Грэхем Белл (1847-1922) получил патент на «фотофон» устройство, в котором использовался отраженный солнечный свет для передачи звука к приемнику. Отраженный свет модулировался по интенсивности путем колебаний отражающей мембраны, помещенной в конце трубки, в которую Белл говорил. Свет проходил расстояние около 200 м и попадал на селеновую ячейку (фотоприемник), связанную с телефоном. Хотя Белл рассматривал фотофон как наиболее важное свое изобретение, его применение ограничивалось погодными условиями. Однако это обстоятельство не помешало Беллу написать отцу:

«Я услышал разборчивую речь, произведенную солнечным светом!... Можно вообразить, что этому изобретению обеспечено будущее!... Мы сможем разговаривать с помощью света на любом расстоянии в пределах видимости без каких бы то ни было проводов...В условиях войны такую связь нельзя прервать или перехватить».

Изобретение лазера стимулировало возросший интерес к оптической связи. Однако, вскоре было продемонстрировано, что атмосфера Земли нежелательным образом искажает распространение лазерного света. Рассматривались различные системы, такие, как трубки с газовыми линзами и диэлектрические волноводы, но все они были оставлены в конце 1960-х гг., когда были разработаны оптические волокна с малыми потерями.

Понимание, что тонкие стеклянные волокна могут проводить свет за счет полного внутреннего отражения, было старой идеей, известной с XIX в. благодаря английскому физику Джону Тиндалю (1820-1893) и использованной в инструментах и для освещения. Однако в 1960-х гг. даже лучшие стекла обладали большим ослаблением света, пропускаемого через волокно, что сильно ограничивало длину распространения. В то время типичным значением ослабления был один децибел на метр, означающим, что после прохода 1 м пропущенная мощность уменьшается до 80%. Поэтому было возможным лишь распространение по волокну длиной несколько десятков метров, и единственным применением была медицина, например эндоскопы. В 1966 г. Чарльз Као и Джордж Хокхэм из Standard Telecommunications Laboratory (Великобритания) опубликовали фундаментальную работу, в которой показали, что если в плавленом кварце тщательно устранить примеси, а волокно окружить оболочкой с меньшим показателем преломления, то можно добиться уменьшения ослабления до -20 дБ/км. Это означает, что при прохождении длины 1 км мощность пучка ослабляется до одной сотой входной мощности. Хотя это и очень малое значение, оно приемлемо для ряда применений.

Как часто бывает в таких ситуациях, в Великобритании, Японии и США начались интенсивные усилия с целью получить волокна с улучшенными характеристиками. Первый успех был достигнут в 1970 г. Е. П. Капроном, Дональдом Кеком и Робертом Майером их Компании Корнинг Глас. Они изготовили волокна, которые имели потери 20 дБ/км на длине волны 6328 А° (длина волны He-Ne-лазера). В том же году И. Хаяши с сотрудниками сообщили о лазерном диоде, работающем при комнатной температуре.

В 1971 г. И. Джакобс был назначен директором Лаборатории цифровой связи в AT&T Bell Laboratories (Холмдел, Нью-Джерси, США), и ему было поручено разработать системы с высокой скоростью передачи информации. Его начальники У. Даниельсон и Р. Компфнер перевели часть персонала в другую лабораторию, руководимую С. Миллером, чтобы «не спускать глаз» с того, что происходит в области оптических волокон. Тремя годами позднее Даниельсон и Компфнер поручили Джакобсу сформировать исследовательскую группу для изучения практической возможности связи с помощью волокон. Было ясно, что наиболее экономичным, первоначальным применением систем, использующих свет, является связь телефонных станций в крупных городах. Тогда для этого использовались кабели, а информация передавалась в цифровом виде, путем кодирования ее серией импульсов. Волокна, с их способностью передавать огромное количество информации, представлялись идеальной заменой электрических кабелей. Офисы и телефонные станции в больших городах расположены на расстояниях несколько километрах друг от друга, и их уже в то время можно было связать без проблем, даже используя волокна с относительно большими потерями.

Итак, предварительный эксперимент был сделан в середине 1976 г. в Атланте с оптическими волоконными кабелями, помещаемыми в трубы обычных кабелей. Первоначальный успех этих попыток привел к созданию системы, которая связала две телефонные станции в Чикаго. На основе этих первых результатов, осенью 1977 г., в Bell Labs было решено разработать оптическую систему для широкого пользования. В 1983 г. связь была установлена между Вашингтоном и Бостоном, хотя это и было связано с многими трудностями. Эта система связи работала со скоростью передачи 90 Мбит/с. В ней использовалось многомодовое волокно на длине волны 825 нм.

Между тем NTTC (японская телеграфная и телефонная компания) сумела вытягивать волокна с потерями лишь 0,5 дБ/км на длинах волн 1,3 и 1,5 мкм, а Линкольновская лаборатория в MIT продемонстрировала работу InGaAsP лазерного диода, способного непрерывно работать в диапазоне между 1,0 и 1,7 мкм при комнатной температуре. Использование волокон с малыми потерями на 1,3 мкм позволило создать более совершенные системы. Были построены системы с пропусканием 400 Мбит/с в Японии и 560 Мбит/с в Европе. Европейская система могла пропускать одновременно 8000 телефонных каналов. В США было произведено более 3,5 миллионов километров волокна. Единственной частью, которая все еще использует медный провод, является связь между домом и телефонной станцией. Эта «последняя миля», как ее стали называть, также становится объектом волоконной связи.

Первый трансатлантический телеграфный кабель был введен в действие в 1858 г. Почти сто лет спустя, в 1956 г., был проложен первый телефонный кабель, получивший название ТАТ-1. В 1988 г. начало действовать первое поколение трансатлантических кабелей на оптических волокнах (их стали называть ТАТ-8). Они работают на длине волны 1,3 мкм и связывают Европу, Северную Америку и Восточную часть Тихого океана. В 1991 г. началось установление второго поколения волоконно-оптической связи, ТАТ-9, которая работает на 1,3 мкм и связывает США и Канаду с Великобританией, Францией и Испанией. Другая линия работает между США и Канадой и Японией.

В мире имеется ряд других волоконно-оптических линий. Для примера, оптическая подводная линия между Англией и Японией покрывает 27 300 км в Атлантическом океане, Средиземном море, Красном море, Индийском океане, в Тихом океане, и имеет 120 000 промежуточных усилителей на пару волокон. Для сравнения, первый трансатлантический телефонный кабель 1956 г. использовал 36 преобразователей, а первый оптический кабель, проложенный через Атлантический океан, использовал 80 000.

Сегодня, после 30 лет исследований, оптические волокна достигли своих физических пределов. Кварцевые волокна могут пропускать инфракрасные импульсы на длине волны 1,5 мкм с минимальными потерями 5% на километр. Нельзя уменьшить эти потери из-за физических законов распространения света (законы Максвелла) и фундаментальной природы стекла.

Однако имеется одно достижение, которое может радикально улучшить ситуацию. Это возможность непосредственно усиливать оптические сигналы в волокне, т.е. без необходимости сперва извлекать их из волокон. Путем добавления в материал волокна примесей подходящих элементов, например эрбия, и возбуждения их с помощью подходящего света накачки, пропускаемого через само волокно, можно получить инверсную населенность между двумя уровнями эрбия с переходом, который точно соответствует 1,5 мкм. В результате можно получить усиление импульса света на этой длине волны при его распространении через волокно. Кусок такого активного волокна помещается между двумя концами волокон, через которые распространяется сигнал. С помощью оптического ответвителя в этот кусок направляется и излучение накачки. На выходе остаток излучения накачки выходит наружу, а усиленный сигнал продолжает распространение в волокне. С помощью такого подхода можно исключить промежуточные электронные усилители. В старых системах электронных усилителей свет выходил из волокна, регистрировался фотоэлектрическим приемником, сигнал усиливался и преобразовывался в свет, который продолжал распространяться в следующей секции волокна.

Из книги Космоземные связи и НЛО автора Дмитриев Алексей Николаевич

Из книги Физическая химия: конспект лекций автора Березовчук А В

3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями CP и Cv Формулировки первого закона термодинамики.1. Общий запас энергии в изолированной системе остается постоянным.2. Разные формы энергии переходят друг в друга в строго эквивалентных

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Тайны пространства и времени автора Комаров Виктор

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Глава 4. Связь массы и энергии Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Наблюдения Сириуса и его связь с календарем. Наблюдения Сириуса играли особую роль в истории древнеегипетского календаря. Наиболее ранние свидетельства о них восходят ко времени I династии (начало III тыс. до н. э.). Сохранилась табличка из слоновой кости, датируемая этим

Из книги Эволюция физики автора Эйнштейн Альберт

Оптические спектры Мы уже знаем, что все вещество состоит из частиц, число разновидностей которых невелико. Электроны были теми элементарными частицами вещества, которые были открыты первыми. Но электроны являются также и элементарными квантами отрицательного

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

II - СВЯЗЬ МЕЖДУ НЕПРОНИЦАЕМОСТЬ Ю И ПЛОТНОСТЬ Ю Рентген указывал на то, что непроницаемость тела для лучей тем выше, чем выше его плотность, что подтвердило последующее исследование. Это важное обстоятельство можно убедительно объяснить единственным и никаким иным

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

РАЗВИТИЕ НОВОГО ПРИНЦИПА - ЭЛЕКТРИЧЕСКИЙ ОСЦИЛЛЯТОР - ПРОИЗВЕДЕНИЕ КОЛОССАЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ДВИЖЕНИЙ - ЗЕМЛЯ ОТВЕЧАЕТ ЧЕЛОВЕКУ - МЕЖПЛАНЕТНАЯ СВЯЗЬ ТЕПЕРЬ СТАЛА ВОЗМОЖНОЙ Я решил сконцентрировать свои усилия на этой несколько рискованной задаче, хотя и сулившей

Из книги История лазера автора Бертолотти Марио

Электронно-оптические преобразователи света Опишем кратко один из способов преобразования инфракрасного света в видимый, с помощью так называемых электронно-оптических преобразователей.На рис. 43 дана простейшая схема такого преобразователя. Он представляет собой

Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

Оптические считыватели информации в торговле В настоящее время в каждом супермаркете и в большинстве магазинов используется система чтения универсального кода. Лазерная система читает код, записанный на товарах в виде системы линий (штрих-код). Преимущества этой

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

2.3. Связь и различия между малыми телами Порой в великой книге тайн природы Мне удается кое-что прочесть. У. Шекспир. «Антоний и Клеопатра» Как было отмечено ранее, согласно общепринятой гипотезе, кометы являются остатками протопланетного вещества, не вошедшего в