Системы и языки программирования. Языки программирования. Системы программирования. Среды визуального проектирования

Языки и системы программирования

Понятие о машинном языке

Машинный язык - система команд, непосредственно понимаемых аппаратурой данной электронно-вычислительной системы. Как следствие этого, машинный язык однозначно определяется системой команд процессора и архитектурой компьютера.

Набор команд процессора содержит:

· арифметико-логические команды - команды арифметических действий над двоичными числами и логических действий над двоичными векторами;

· команды управления - команды перехода, ветвлений, повторений, и некоторые другие команды;

· команды пересылки данных - команды, с помощью которых обмениваются данными ОЗУ и ЦП;

· команды ввода-вывода данных - команды, с помощью которых обмениваются данными ЦП и внешние устройства.

Каждая команда содержит код операции, ею выполняемой и информацию об адресах данных, над которыми эта операция выполняется. Кроме этого, команда (непосредственно - команды управления и косвенно - другие команды) содержит информацию об адресе команды, которая будет выполняться следующей. Таким образом, любая последовательность команд, размещенная в ОЗУ, фактически представляет из себя алгоритм, записанный в системе команд процессора - машинную программу.

Наиболее распространенной сейчас является архитектура ЭВМ с общей шиной. Общая шина - это центральная информационная магистраль, связывающая внешние устройства с центральным процессором. Она состоит из шины данных, шины адреса и шины управления. Шина данных предназначена для обмена данными между ОЗУ и внешними устройствами. По шине адреса передаются адреса данных. Эта шина однонаправлена. Шина управления служит каналом обмена управляющими сигналами между внешними устройствами и центральным процессором.

Таким образом, машинный язык (язык процессора) - это набор команд, каждая из которых описывает некоторое элементарное действие по преобразованию информации, представленной в двоичном коде. Универсальное использование двоичного кода представления информации самых разнообразных форм приводит к тому, что программа решения даже достаточно простой задачи содержит сотни машинных команд. Написать такую программу, используя машинные команды, весьма непросто даже квалифицированному программисту. Реальные программы состоят из десятков и сотен тысяч машинных команд. Поэтому любая технология проектирования программы должна опираться на приемы, характерные для человеческого мышления, оперировать привычными для человека понятиями из той предметной области, которой принадлежит задача.

Иными словами, программист (проектировщик алгоритмов) должен иметь возможность сформулировать свой алгоритм на языке привычных понятий; затем специальная программа должна выразить эти понятия с помощью машинных средств, осуществляя перевод (трансляцию) текста алгоритма на язык машины.

Эта необходимость и привела к появлению языков программирования высокого уровня как языков записи алгоритмов, предназначенных для исполнения на ЭВМ.

Машинно-ориентированные языки

Предшественниками языков высокого уровня стали так называемые машинно-ориентированные языки или языки автокодов. Одним из самых ярких представителей машинно-ориентированных языков является Ассемблер. Ассемблер очень близок к машинному языку, большинство его инструкций является точным символическим представлением машинных команд. Преимущество состоит в том, что уже нет необходимости помнить числовые коды команд процессора, достаточно знать их символическое представление. Кроме этого, впервые в машинно-ориентированных языках появляется понятие переменной, как именованной области памяти для хранения данных, а вместе с ним и понятие типа данных. В программах на машинно-ориентированном языке появляется возможность использовать как числовую так и текстовую информацию в привычной для человека форме.

Несмотря на явные преимущества машинно-ориентированных языков перед сугубо машинным языком, написание программ на этих языках по прежнему сопряжено со значительными трудностями. Программы получаются очень громоздки и трудно читаемы.

Языки программирования высокого уровня

Языки программирования высокого уровня играют роль средства связи между программистом и машиной, а также между программистами. Это обстоятельство накладывает на язык многие обязательства:

Язык должен быть близок к тем фрагментам естественных языков, которые обеспечивают конкретную предметную область деятельности человека; (Язык, ориентированный на деловые сферы применений, должен содержать понятия, используемые в этом виде деятельности: документ, счет, база данных и т.п.).

Все средства языка должны быть формализованы в такой степени, чтобы их можно было реализовать как машинные программы.

Язык программирования - нечто большее, чем средство описания алгоритмов: он несет в себе систему понятий, на основе которых человек может обдумывать свои задачи, и нотацию, с помощью которой он может выразить свои соображения по поводу решения задачи.

Модели трансляции программ. Трансляторы

Вообще ЭВМ не рассчитана на то, чтобы понимать языки программирования высокого уровня. Аппаратура распознает и исполняет только машинный язык, программа на котором представляет из себя не более чем последовательность двоичных чисел.

Появление языков программирования было связано с осознанием того факта, что перевод алгоритма, написанного на “почти” естественном (алгоритмическом) языке, на машинный язык может быть автоматизирован и, следовательно, возложен на плечи машины. Здесь важно различать язык и его реализацию. Сам язык - это система записи, регламентируемая набором правил, определяющих его лексику и синтаксис. Реализация языка - это программа, которая преобразует эту запись в последовательность машинных команд в соответствии с семантическими правилами, определенными в языке.

Имеются два основных способа реализации языка: компиляторы и интерпретаторы. Компиляторы транслируют весь текст программы, написанной на языке программирования, в машинный код в ходе одного непрерывного процесса. При этом создается полная программа в машинных кодах, которую затем можно исполнять без участия компилятора.

Интерпретатор в каждый момент времени распознает и выполняет по одному предложению (оператору) программы, по ходу дела превращая обрабатываемое предложение в машинную программу. Разница между компилятором и интерпретатором подобна разнице между синхронным переводом устной речи и письменным переводом текста.

В принципе любой язык может быть и компилируем, и интерпретируем, однако в большинстве случаев у каждого языка есть свой, предпочтительный способ реализации. По видимому, такое предпочтение - нечто большее, чем дань традиции. Выбор определен самим языком. Fortran, Pascal, Modula-2 в основном компилируют. Такие языки как Logo, Fort почти всегда интерпретируют. BASIC и Lisp широко используется в обеих формах.

По типу выходных данных различают два основных вида компиляторов:

· компилирующие окончательный выполнимый код;

· компилирующие интерпретируемый код, для выполнения которого требуется дополнительное программное обеспечение.

Окончательным выполнимым кодом являются приложения, реализованные как EXE-файлы, DLL-библиотеки, COM-компоненты. К интерпретируемому коду можно отнести байт-код JAVA-программ, выполняемый посредством виртуальной машины JVM.

Объектный код, создаваемый компилятором, представляет собой область данных и область машинных команд, имеющих адреса, которые в дальнейшем "согласуются" редактором связи (иногда называемым загрузчиком). Редактор связи размещает в едином адресном пространстве все по отдельности откомпилированные объектные модули и статически подключаемые библиотеки.

В дельнейшем будем называть выполнимой формой программы код, получаемый в результате компиляции исходной программы.

Процесс трансляции (компиляции)

Программу, написанную на языке программирования высокого уровня, называют исходной программой, а каждую самостоятельную программную единицу, образующую данную программу, - программным модулем. Для преобразования исходной программы в ее выполняемую форму (выполнимый файл) транслятор выполняет некоторую последовательность действий. Эта последовательность зависит как от языка программирования, так и от конкретной реализации самого транслятора. В ходе трансляции важно не просто откомпилировать программу, а получить при этом достаточно эффективный код.

В процессе трансляции выполняется анализ исходной программы, а затем синтез выполнимой формы данной программы. В зависимости от числа просмотров исходной программы, выполняемых компилятором, трансляторы разделяются на однопроходные, двухпроходные и трансляторы, использующие более двух проходов.

К достоинствам однопроходного компилятора можно отнести высокую скорость компиляции, а к недостаткам - получение, как правило, не самого эффективного кода.

Широкое распространение получили двухпроходные компиляторы. Они позволяют при первом проходе выполнить анализ программы и построить информационные таблицы, используемые при втором проходе для формирования объектного кода.

На рисунке представлены основные этапы, выполняемые в процессе трансляции исходной программы.

Фаза анализа программы состоит из:

· лексического анализа;

· синтаксического анализа;

· семантического анализа.

При анализе исходной программы транслятор последовательно просматривает текст программы, представимой как набор символов, выполняя разбор структуры программы.

На этапе лексического анализа выполняется выделение основных составляющих программы – лексем. Лексемами являются ключевые слова, идентификаторы, символы операций, комментарии, пробелы и разделители. Лексический анализатор не только выделяет лексемы, но и определяет тип каждой лексемы. При этом на этапе лексического анализа составляется таблица символов, в которой каждому идентификатору сопоставлен свой адрес. Это позволяет при дальнейшем анализе вместо конкретного значения (строки символов) использовать его адрес в таблице символов.

Процесс выделения лексем достаточно трудоемок и требует применения сложных контекстно-зависимых алгоритмов.

На этапе синтаксического анализа выполняется разбор полученных лексем с целью получения семантически понятных синтаксических единиц, которые затем обрабатываются семантическим анализатором. Так, синтаксическими единицами выступают выражения, объявление, оператор языка программирования, вызов функции.

На этапе семантического анализа выполняется обработка синтаксических единиц и создание промежуточного кода. В зависимости от наличия или отсутствия фазы оптимизации результатом семантического анализа может быть оптимизируемый далее промежуточный код или готовый объектный модуль.

К наиболее общим задачам, решаемым семантическим анализатором, относятся:

· обнаружение ошибок времени компиляции;

· заполнение таблицы символов, созданной на этапе лексического анализа, конкретными значениями, определяющими дополнительную информацию о каждом элементе таблицы;

· замена макросов их определениями;

· выполнение директив времени компиляции.

Макросом называется некоторый предварительно определенный код, который на этапе компиляции вставляется в программу во всех местах указания вызова данного макроса.

На фазе синтеза программы производится:

· генерация кода;

· редактирование связей.

Процесс генерации кода состоит из преобразования промежуточного кода (или оптимизированного кода) в объектный код. При этом в зависимости от языка программирования получаемый объектный код может быть представлен в выполнимой форме или как объектный модуль, подлежащий дальнейшей обработке редактором связей.

Так, процесс генерации кода является неотъемлемой частью фазы синтеза программы, а необходимость выполнения редактора связей зависит от конкретного языка программирования. Следует учесть, что на практике термин «генерация кода» часто применяют ко всем действиям фазы синтеза программы, ведущим к получению выполнимой формы программы.

Редактор связей приводит в соответствие адреса фрагментов кода, расположенных в отдельных объектных модулях: определяются адреса вызываемых внешних функций, адреса внешних переменных, адреса функций и методов каждого модуля. Для редактирования адресов редактор связей использует специальные, создаваемые на этапе трансляции, таблицы загрузчика. После обработки объектных модулей редактором связей генерируется выполнимая форма программы.

Здравствуйте, я отвечу на часть вопроса:
Программированием никогда не занимался, поэтому хотелось бы получить развернутый ответ, с чего лучше начать и что изучать, чтобы было полегче, заранее благодарю.

Писал быстро, возможны ошибки.
Или, Какие языки выбрать, что бы впоследствии без труда писать на 10-ти языках. (важно, проверно, не теряется время).

************************************************************************************************************

Я несколько лет обучаю языку программирования.
Наблюдал за разными людьми. Как правило выбранная тематика приводит человека к языку.
Кому-то нравятся игры, кому-то программы. кто-то хочет писать ботов и т.д.

Как правило, после начала изучения языка наступает момент, когда человек узнаёт больше о языке и ему уже хочется писать совсем другие приложения.
Это не значит, что он передумал, просто начинает понимать возможности.

Тогда и начинаются сомнения, а тот ли язык программирования выбрал и т.д.

Я думал над этим вопросом несколько лет и пришёл к такому выводу.

1. Ошибка. Нельзя выбирать узкопрофильный язык.
Нужно выбирать язык общего назначения первый для изучения. Более подходит для этого Пайтон.
Пайтон откроет дорогу к любому софту, так как содержит большое количество библиотек.
Например, можно писать сайты используя Джанго. Или можно писать графические программы, например, использую PyQt (библиотека написанная на С++, под управлением пайтон).
Можно заняться тестированием или машинным обучением (то есть делать сайты и программы умными, которые способны принимать решения сами. Все эти пакеты используют библиотеку NumPy написанную на Си. И их ряд большой.
Skipy - пакет, которые собирает в себе сборку программ, для любой сколь сложной обработки всего чего угодно.

Я надеюсь возможности понятны.

Пайтон язык с динамической типизацией. то есть пол работы делает за вас.
Изучив пайтон, вы вообще въедете в программирование и уже будете делать софт, возможно зарабатывать.

Если, вы поймёте, что вам это интересно, то можно идти дальше.
Помните я говорил в начале, что важно выбрать язык общего назначения.

Так вот второе правило, если всё-таки решите стать профессионалом высокого уровня, второй язык нужно выбрать, который лежит в основе большинства других языков.

Это язык Си.
Си довольно просто, понятный язык, очень лаконичный и быстрый.
Нужен он для того, что бы открыть дорогу ко всем другим Си подобным языкам.
По сути, например, что бы понять С++ нужно будет просмотреть только отличия.

Я к этому пришёл сам за многие годы, не так давно наткнулся на одно видео с Гарварда, меня очень порадовало, что я был прав.
Этот подход использует во многих университетах.

Почему работает эта схема?

1. Пайтон, как язык общего назначения, даст вам познакомится с разным программным обеспечением.
Вы разберётесь, что вы хотите не выходя за рамки языка. Я говорю именно о времени, так как его потеря слишком дорого обходится.

2. Вы познакомитесь с парадигмами, которые есть в каждом языке, тип объекта (например список, строка и т.д).
Вы познакомитесь с переменными. с операциями над объектами и вам станет понятно, что есть язык изнутри.

Объясню проще. Каждый день мы свою голову используем, как компьютер.
Например, жена послала в магазин, так как собралась варить борщ.
Как правило большинство людей записывают, купить свеклу, морковь и т.д.
То есть в голове вы быстро расставили все действия.
Пойти в магазин. Достать список, прочитать, найти прилавки с продуктами, положить в карзину, оплатить, принести домой. отдать жене.

В вашей голове прошло много операций.

Тоже самое и в компьютере, только компьютеру нужно объяснить.
Например, если б мы писали программу. похода в магазин, то нам бы понадобилось нечто что способно объяснить компьютеру, что делать.

Именно, для этого и были придуманы языки программирования.

Часто говорю, своим ученикам, что каждый уже программист, так как совершает некие действия, каждый день.
Для программы был тот же список, вернее тип данных, или тип объекта, который и называется список.
Просто в язык он обозначается, например, в пайтон двумя квадратными скобками ["свекла", "морковь"]

Обратите внимание, язык программирование, как правило уже придуман под нужны людей.
В список можно добавить что угодно, например соль.
Это область называется операции над объектами.
Если в голове мы быстро просчитали, подошли к прилавку, протянули руку и положили, например морковь в корзину.
То, компьютеру нужно объяснить. То есть мы понимаем. что нужно добавить ту же морковь в корзину, но компьтео поймёт только свою команду, например добавить в пайтон звучало бы add .

Процесс думаю понятен.

Тогда вернусь к выше утверждениям.
Так вот Пайтон даст возможность начать писать всё что угодно, программы. игры, программы под андроид, сайты.
Если вам кто-то скажет (повторюсь), что пайтон медленный, не верьте.
Вы пользуетесь Ютуб? Так вот в большинстве он написан на пайтон. (источник М. Лутц).
Второе, как я говорил ранее, пайтон имеет огромное количество библиотек, к примеру, возьмём PyQt, написание графических программ. Сама библиотека написана на С++ (самый быстрый язык на сегодня). А управляем мы при помощи Пайтон.
Суть программирования проста. Взял виджет, в котором уже заложена много действий и программа готова.

Но есть ещё одна важная вещь, которая вам нужна.
До начала программирования у вас есть только желание, но остаются внутри вопросы, а какой язык выбрать, потом сомнения, а тот ли язык выбран??
Именно для этого и важно взять первый пайтон. Это будет уже точно тот язык, потому что приведёт вас к пониманию, а что собственно вы будете программировать.

После написания приложений на пайтон, примерно через 1-1,5 года, вы начнёте понимать себя самого, то есть понимать, что вы вообще хотите.

У вас начнут проявляться реальные конкретные желания.
То есть вы точно например будете понимать, что вы будет писать сайты. вам больше чем достаточно будет Фреймворка Джанго.

Здесь остановлюсь.
Связка Джанго пайтон очень опасный подход.
так как Джанго это настолько большой мир, что увлекаясь им, человек начинает обретать, такую склонность, как фреймворко зависимость. Что это такое?
Человек начинает терять способность писать на пайтон, так как Джанго это полностью автономный фреймфорк имеет свои модули, классы, архитектуру и структуру.

И начинает забываться сам пайтон.

Важно. Изучать например Джанго и PyQt. В чём суть?
Обязательно изучать то, что будет вас развивать в чистом пайтон. Я рекомендую android, так как не только полезно, но и перспективно.

Кстати, попутно отвечу на вопрос, нужно ли изучать пайтон, для Джанго?
Да нужно. Что нужно изучать? По минимуму типы объектов и начальное понимание ООП.
Типы объектов нужны, чтобы по минимуму не терять время.
Например, я наблюдал как новичок неделю боролся. а потом заявил, что не поставил одинарную кавычку.

Если б он изучил типы объектов, то сразу бы увидел, что в фрагменте кода, строки (тип объекта), они обозначаются одинарными или двойными кавычками.

Второе, не будет понятна справка джанго, потому что там объясняется именно типами данных.

И наконец закончу. так как уже несколько раз подвожу вк Си, но всё откладываю.

К тому времени, как вы будете писать на пайтон, у вас будет понимание что вы хотите.
Поэтому следующий язык программирования вы будете выбирать уже осознано.

Что бы не прогадать после пайтон нужно изучить Си.
Так как такие языки. как PHP, Джава. С++, Си шарп и многие другие имею в своей основе Си подобный синтаксис.
Само изучение следующего Языка это просто просмотр и сразу применение отличий.

Вот так изучение всего двух языков даст выход к десятку языков.

Повторяю, важное в этом подходе - это прогресс без потери времени.

Начать можно с просмотра бесплатного курса,
методика моментально понимания python.
Прочитайте на картинке, что это

Выше рассказывал процесс похода в магазин. И не просто так. Многие не понимают, что язык придуман для облегчения жизни. (вот что написала девушка Анна , как она выразилась это от неё ускользало.).

А ведь непонимание этого простого момента не даёт выучить язык большинсту людей. У них разлад в голове, язык сам по себе, а мышление изучающего само по себе. И человек начинает думать, а как же мыслить, как программист, в то время. как он уже мыслит, как программист.

Я высказал своё мнение, принимать решение вам.
Я показал вам многие факторы. которые вы ранее не учитывали..
Но по крайне мере, для меня это работает.

Надеюсь статья получилась простой и всеобъемлющей.

Ещё одна деталь.
Важно сделать язык частью жизни.
Как происходит понимание языка с ноля, до промышленного программирования? ()

Успехов Вам.

Спасибо за доверие.

СИСТЕМЫ И ЯЗЫКИ ПРОГРАММИРОВАНИЯ

1. Системы программирования

Системы программирования - это комплекс инструментальных программных средств, предназначенный для работы с программами на одном из языков программирования. Системы программирования предоставляют сервисные возможности программистам для разработки их собственных компьютерных программ.

В настоящее время разработка любого системного и прикладного программно обеспечения осуществляется с помощью систем программирования, в состав которых входят:

    трансляторы с языков высокого уровня;

    средства редактирования, компоновки и загрузки программ;

    макроассемблеры (машинно-ориентированные языки);

    отладчики машинных программ.

Системы программирования, как правило, включают в себя

    текстовый редактор (Edit), осуществляющий функции записи и редактирования исходного текста программы;

    загрузчик программ (Load), позволяющий выбрать из директория нужный текстовый файл программы;

    запускатель программ (Run), осуществляющий процесс выполнения программы;

    компилятор (Compile), предназначенный для компиляции или интерпретации исходного текста программы в машинный код с диагностикой синтаксических и семантических (логических) ошибок;

    отладчик (Debug), выполняющий сервисные функции по отладке и тестированию программы;

    диспетчер файлов (File), предоставляющий возможность выполнять операции с файлами: сохранение, поиск, уничтожение и т.п.

Ядро системы программирования составляет язык.

Широкое распространение среди разработчиков программ, а также при обучении программированию, получили системы программирования «Турбо» (Turbo) фирмы Borland, ядром которых являются трансляторы с языков программирования Бейсик, Паскаль, Си, Пролог и др. Интерфейс Турбо-оболочки для любых систем программирования внешне совершенно одинаков и предоставляет пользователю стандартный набор функций и команд.

Технология разработки программ с использованием популярной системы программирования Турбо-Паскаль 7 будет рассмотрена позже. В подобных интегрированных системах программирования сделана попытка предоставить разработчику программ максимум сервисных возможностей.

2. Классификация языков программирования

На заре компьютерной эры машинный код был единственным средством общения человека с компьютером. Огромным достижением создателей языков программирования было то, что они сумели заставить сам компьютер работать переводчиком с этих языков на машинный код.

Существующие языки программирования можно разделить на две группы: процедурные и непроцедурные (см. рис. 1).

Процедурные (или алгоритмические) программы представляют из себя систему предписаний для решения конкретной задачи. Роль компьютера сводится к механическому выполнению этих предписаний.

Процедурные языки разделяют на языки низкого и высокого уровня.

Разные типы процессоров имеют разные наборы команд. Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня. Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.

Языки низкого уровня (машинно-ориентированные) позволяют создавать программы из машинных кодов, обычно в шестнадцатеричной форме. С ними трудно работать, но созданные с их помощью высококвалифицированным программистом программы занимают меньше места в памяти и работают быстрее. С помощью этих языков удобнее разрабатывать системные программы, драйверы (программы для управления устройствами компьютера), некоторые другие виды программ.

Языком низкого уровня (машинно-ориентированным) является Ассемблер , который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью условных символьных обозначений, называемыхмнемониками.

С помощью языков низкого уровня создаются очень эффективные и компактные программы, так как разработчик получает доступ ко всем возможностям процессора.

Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка. Разрабатывать программы на языках высокого уровня с помощью понятных и мощных команд значительно проще, а ошибок при создании программ допускается гораздо меньше.

Основное достоинство алгоритмических языков высокого уровня - возможность описания программ решения задач в форме, максимально удобной для восприятия человеком. Но так как каждое семейство ЭВМ имеет свой собственный, специфический внутренний (машинный) язык и может выполнять лишь те команды, которые записаны на этом языке, то для перевода исходных программ на машинный язык используются специальные программы-трансляторы.

Работа всех трансляторов строится по одному из двух принципов: интерпретация или компиляция.

Интерпретация подразумевает пооператорную трансляцию и последующее выполнение оттранслированного оператора исходной программы. В связи с этим можно отметить два недостатка метода интерпретации: во-первых, интерпретирующая программа должна находиться в памяти ЭВМ в течение всего процесса выполнения исходной программы, т.е. занимать определенный объем памяти; во-вторых, процесс трансляции одного и того же оператора повторяется столько раз, сколько раз должна исполняться эта команда в программе, что резко снижает производительность работы программы.

Несмотря на указанные недостатки, трансляторы-интерпретаторы получили достаточное распространение, так как они удобны при разработке и отладке исходных программ.

При компиляции процессы трансляции и выполнения разделены во времени: сначала исходная программа полностью переводится на машинный язык (после чего наличие транслятора в оперативной памяти становится ненужным), а затем оттранслированная программа может многократно исполняться. Следовательно, для одной и той же программы трансляция методом компиляции обеспечивает более высокую производительность вычислительной системы при сокращении требуемой оперативной памяти.

Большая сложность в разработке компилятора по сравнению с интерпретатором с того же самого языка объясняется тем, что компиляция программы включает два действия: анализ, т.е. определение правильности записи исходной программы в соответствии с правилами построения языковых конструкций входного языка, и синтез - генерирование эквивалентной программы в машинных кодах. Трансляция методом компиляции требует неоднократного "просмотра" транслируемой программы, т.е. трансляторы-компиляторы являются многопроходными: при первом проходе они проверяют корректность синтаксиса языковых конструкций отдельных операторов независимо друг от друга, при последующем проходе - корректность синтаксических взаимосвязей между операторами и т.д.

Полученная в результате трансляции методом компиляции программа называется объектным модулем , который представляет собой эквивалентную программу в машинных кодах, но не "привязанную" к конкретным адресам оперативной памяти. Поэтому перед исполнением объектный модуль должен быть обработан специальной программой операционной системы (редактором связей – Link) и преобразован взагрузочный модуль , т.е. программный модуль с относительными адресами.

Наряду с рассмотренными выше трансляторами-интерпретаторами и трансляторами-компиляторами на практике используются также трансляторы интерпретаторы-компиляторы, которые объединяют в себе достоинства обоих принципов трансляции: на этапе разработки и отладки программ транслятор работает в режиме интерпретатора, а после завершения процесса отладки исходная программа повторно транслируется в объектный модуль (т.е. уже методом компиляции). Это позволяет значительно упростить и ускорить процесс составления и отладки программ, а за счет последующего получения объектного модуля обеспечить более эффективное исполнение программы.

Рис. 1. Общая классификация языков программирования

Классическое процедурное программирование требует от программиста детального описания того, как решать задачу, т.е. формулировки алгоритма и его специальной записи. При этом ожидаемые свойства результата обычно не указываются. Основные понятия языков этих групп - оператор и данные. При процедурном подходе операторы объединяются в группы - процедуры. Структурное программирование в целом не выходит за рамки этого направления, оно лишь дополнительно фиксирует некоторые полезные приемы технологии программирования.

Принципиально иное направление в программировании связано с методологиями (иногда говорят «парадигмами») непроцедурного программирования. К ним можно отнести объектно-ориентированное и декларативное программирование. Объектно-ориентированный язык создает окружение в виде множества независимых объектов. Каждый объект ведет себя подобно отдельному компьютеру, их можно использовать для решения задач как «черные ящики», не вникая во внутренние механизмы их функционирования. Из языков объектного программирования, популярных среди профессионалов, следует назвать прежде всего Си++, для более широкого круга программистов предпочтительны среды типа Delphi и Visual Basic

При использовании декларативного языка программист указывает исходные информационные структуры, взаимосвязи между ними и то, какими свойствами должен обладать результат. При этом процедуру его получения («алгоритм») программист не строит (по крайней мере, в идеале). В этих языках отсутствует понятие «оператор» («команда»). Декларативные языки можно подразделить на два семейства - логические (типичный представитель - Пролог) и функциональные (Лисп).

Охарактеризуем наиболее известные языки программирования.

    Фортран (FORmula TRANslating system - система трансляции формул); старейший и по сей день активно используемый в решении задач математической ориентации язык. Является классическим языком для программирования на ЭВМ математических и инженерных задач

    Бейсик (Beginner"s All-purpose Symbolic Instruction Code – универсальный символический код инструкций для начинающих); несмотря на многие недостатки и изобилие плохо совместимых версий - самый популярный по числу пользователей. Широко употребляется при написании простых программ.

    Алгол (ALGOrithmic Language - алгоритмический язык); сыграл большую роль в теории, но для практического программирования сейчас почти не используется.

    ПЛ/1 (PL/1 Programming Language - язык программирования первый); многоцелевой язык; сейчас почти не используется.

    Паскаль (Pascal - назван в честь ученого Блеза Паскаля); чрезвычайно популярен как при изучении программирования, так и среди профессионалов. Создан в начале 70-х годов швейцарским ученым Никлаусом Виртом. Язык Паскаль первоначально разрабатывался как учебный, и, действительно, сейчас он является одним из основных языков обучения программированию в школах и вузах. Однако, качества его в совокупности оказались столь высоки, что им охотно пользуются и профессиональные программисты. Не менее впечатляющей, в том числе и финансовой, удачи добился Филип Кан, француз, разработавший систему Турбо-Паскаль. Суть его идеи состояла в объединении последовательных этапов обработки программы - компиляции, редактирования связей, отладки и диагностики ошибок - в едином интерфейсе. Версии Турбо-Паскаля заполонили практически все образовательные учреждения, программистские центры и частные фирмы. На базе языка Паскаль созданы несколько более мощных языков (Модула, Ада, Дельфи).

    Кобол (COmmon Business Oriented Language - язык, ориентированный на общий бизнес); в значительной мере вышел из употребления. Был задуман как основной язык для массовой обработки данных в сферах управления и бизнеса.

    АДА ;является языком, победившим (май 1979 г.) в конкурсе по разработке универсального языка, проводимым Пентагоном с 1975 г. Разработчики - группа ученых во главе с Жаном Ихбиа. Победивший язык окрестили АДА, в честь Огасты Ады Лавлейс. Язык АДА - прямой наследник языка Паскаль. Этот язык предназначен для создания и длительного (многолетнего) сопровождения больших программных систем, допускает возможность параллельной обработки, управления процессами в реальном времени и многое другое, чего трудно или невозможно достичь средствами более простых языков.

    Си (С - «си»); широко используется при создании системного программного обеспечения. Наложил большой отпечаток на современное программирование (первая версия - 1972 г.), является очень популярным в среде разработчиков систем программного обеспечения (включая операционные системы). Си сочетает в себе черты как языка высокого уровня, так и машинно-ориентированного языка, допуская программиста ко всем машинным ресурсам, чего не обеспечивают такие языки, как Бейсик и Паскаль.

    Си++ (С++);объектно-ориентированное расширение языка Си, созданное Бьярном Страуструпом в 1980 году. Множество новых мощных возможностей, позволивших резко повысить производительность программистов, наложилось на унаследованную от языка Си определенную низкоуровневость.

    Дельфи (Delphi); язык объектно-ориентированного «визуального» программирования; в данный момент чрезвычайно популярен. Созданный на базе языка Паскаль специалистами фирмыBorlandязыкDelphi, обладая мощностью и гибкостью языков Си и Си++, превосходит их по удобству и простоте интерфейса при разработке приложений, обеспечивающих взаимодействие с базами данных и поддержку различного рода работ в рамках корпоративных сетей и сети Интернет.

    Ява (Java); платформенно-независимый язык объектно-ориентированного программирования, чрезвычайно эффективен для создания интерактивных веб-страниц. Этот язык был создан компаниейSunв начале 90-х годов на основе СИ++. Он призван упростить разработку приложений на основе Си++ путем исключения из него всех низкоуровневых возможностей.

    Лисп (Lisp) - функциональныйязык программирования. Ориентирован на структуру данных в форме списка и позволяет организовать эффективную обработку больших объемов текстовой информации.

    Пролог (PROgramming in LOGic – логическое программирование). Главное назначение языка - разработка интеллектуальных программ и систем. Пролог - это язык программирования, созданный специально для работы с базами знаний, основанными на фактах и правилах (одного из элементов систем искусственного интеллекта). В языке реализован механизм возврата для выполнения обратной цепочки рассуждений, при котором предполагается, что некоторые выводы или заключения истинны, а затем эти предположения проверяются в базе знаний, содержащей факты и правила логического вывода. Если предположение не подтверждается, выполняется возврат и выдвигается новое предположение. В основу языка положена математическая модель теории исчисления предикатов.

Языки программирования для Интернета:

    HTML . Общеизвестный язык для оформления документов. Он очень прост и содержит элементарные команды форматирования текста, добавления рисунков, задания шрифтов и цветов, организации ссылок и таблиц.

    PERL . Он задумывался как средство эффективной обработки больших текстовых файлов, генерации текстовых отчетов и управления задачами. По мощностиPerlзначительно превосходит языки типа Си. В него введено много часто используемых функций работы со строками, массивами, управление процессорами, работа с системной информацией.

    Tcl / Tk . Этот язык ориентирован на автоматизацию рутинных процессов и состоит из мощных команд. Он независим от системы и при этом позволяет создавать программы с графическим интерфейсом.

    VRML . Создан для организации виртуальных трехмерных интерфейсов в Интернете. Он позволяет описывать в текстовом виде различные трехмерные сцены, освещение и тени, текстуры.

Из универсальных языков программирования сегодня наиболее популярны:

    Бейсик – для освоения требует начальной подготовки;

    Паскаль – требует специальной подготовки;

    Си++, Ява – требуют проффесиональной подготовки.

Для каждого из этих языков программирования сегодня имеется немало систем программирования, выпускаемых различными фирмами и ориентированных на различные модели ПК и операционной системы. Наиболее популярны следующие визуальные среды быстрого проектирования программы для Windows:

      Basic: Microsoft Visual Basic

      Pascal: Borland Delphi

      C++: Borland C++Bulider

      Java: Symantec Cafe

Для разработки серверных и распределенных приложений можно использовать систему программирования MicrosoftVisualC++, продукты фирмыInpriseпод маркойBorland. Практически любые средства программирования наJava.

Выбор языка программирования зависит от многих факторов: назначения, удобства написания исходных программ, эффективности получаемых объектных программ и т.п. Разнотипность решаемых компьютером задач и определяет многообразие языков программирования. По все видимости, в программировании наилучший результат достигается при индивидуальном подходе, исходящем из класса задачи, уровня и интересов программиста.

Введение ……………………………………………………………………....2

1 Язык и система программирования – понятие, сущность ……………….4

2 Классификация языков программирования……………………………….6

2.1 Машинно – ориентированные языки ………………………………....6

2.1.1 Машинные языки ………………………………………………...6

2.1.2 Языки символического кодирования …………………………...7

2.1.3 Автокоды …………………………………………………………8

2.1.4 Макрос …………………………………………………………….9

2.2 Машинно – независимые языки ………………………………………..9

2.2.1 Машинно – независимые языки …………………………………10

2.2.2 Универсальные языки ……………………………………………10

2.2.3 Диалоговые языки ………………………………………………...11

2.2.4 Непроцедурные языки ……………………………………………12

3 Современные языки и системы программирования ………………………13

3.1 Basic ………………………………………………………………………13

3.2 Pascal ……………………………………………………………………...14

3.3 Delphi ……………………………………………………………………..15

3.4 Fortran …………………………………………………………………….17

3.5 СиС++ …………………………………………………………………...18

3.6 Java………………………………………………………………………..20

Заключение ……………………………………………………………………..22

Список использованных источников...............................................................23

Введение

Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов – языков программирования. Смысл появления такого языка – оснащенный набор вычислительных формул дополнительной информации, превращает данный набор в алгоритм. Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать. Первой цели идеально отвечает язык, который настолько "близок к машине", что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом. Второй цели идеально отвечает язык, который настолько "близок к решаемой задаче", чтобы концепции ее решения можно было выражать прямо и коротко. Связь между языком, на котором мы думаем/программируем, и задачами и решениями, которые мы можем представлять в своем воображении, очень близка. По этой причине ограничивать свойства языка только целями исключения ошибок программиста в лучшем случае опасно. Как и в случае с естественными языками, есть огромная польза быть, по крайней мере, двуязычным. Язык предоставляет программисту набор концептуальных инструментов, если они не отвечают задаче, то их просто игнорируют. Например, серьезные ограничения концепции указателя заставляют программиста применять вектора и целую арифметику, чтобы реализовать структуры, указатели и т.п. Хорошее проектирование и отсутствие ошибок не может гарантироваться чисто за счет языковых средств.Может показаться удивительным, но конкретный компьютер способен работать с программами, написанными на его родном машинном языке. Существует почти столько же разных машинных языков, сколько и компьютеров, но все они суть разновидности одной идей простые операции производятся со скоростью молнии на двоичных числах. Персональные компьютеры IBM используют машинный язык микропроцессоров семейства 8086, т.к. их аппаратная часть основывается именно на данных микропроцессорах. Можно писать программы непосредственно на машинном языке, хотя это и сложно. На заре компьютеризации(в начале 1950-х г.г.), машинный язык был единственным языком, большего человек к тому времени не придумал. Для спасения программистов от сурового машинного языка программирования, были созданы языки высокого уровня (т.е. немашинные языки), которые стали своеобразным связующим мостом между человеком и машинным языком компьютера. Языки высокого уровня работают через трансляционные программы, которые вводят "исходный код" (гибрид английских слов и математических выражений, который считывает машина), и в конечном итоге заставляет компьютер выполнять соответствующие команды, которые даются на машинном языке. Существует два основных вида трансляторов: интерпретаторы, которые сканируют и проверяют исходный код в один шаг, и компиляторы, которые сканируют исходный код для производства текста программы на машинном языке, которая затем выполняется отдельно.

1 Язык и система программирования – понятие, сущность

В настоящее время наблюдается стремительное развитие научной дисциплины, называемой программированием. При этом появляются не просто новые языки, появляются новые идеи, увеличивающие мощность и эффективность языков. Можно, не вдаваясь в подробности любого из существующих или только разрабатываемых языков, отметить следующую тенденцию: развитие языков идет в сторону повышения выразительности исходного текста программы. Это способствует сокращению размера программы и повышению ее надежности.

Для повышения выразительности языка необходимо, чтобы язык содержал средства для выражения абстрактных понятий. Это помогает сделать большие программы более простыми для понимания. Поэтому поддержка абстракций является обязательным условием для любого современного языка программирования. При этом базис языка (множество предоставляемых языком возможностей, смысловых конструкций) должен иметь минимальную мощность.

К наиболее общим понятиям, которыми оперирует программист при использовании конкретного языка программирования, относятся понятия программы и виртуальной машины. Программа должна удовлетворять требованиям (спецификациям) конкретного языка программирования и служит контейнером для хранения последовательности действий и множества данных. Виртуальная машина выступает в роли интерпретатора основных понятий, используемых в языке программирования и является средой существования программы. Все остальные абстракции, рассматриваемые в статье, группируются вокруг этих базовых абстракций.

В ряде случаев можно рассматривать процесс программирования как процесс моделирования. При этом создается программа-модель, способная реализовывать поведение оригинала, описываемого в постановке задачи. Поэтому в дальнейшем заменителем для понятия программа будет выступать понятие модель, а для понятия виртуальная машина - понятие моделирующая среда.

2 Классификация языков программирования

2.1 Машинно – ориентированные языки

Машинно – ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.). Машинно –ориентированные языки позволяют использовать все возможности и особенности Машинно – зависимых языков:

Высокое качество создаваемых программ (компактность и скорость

выполнения);

Возможность использования конкретных аппаратных ресурсов;

Предсказуемость объектного кода и заказов памяти;

Для составления эффективных программ необходимо знать систему

команд и особенности функционирования данной ЭВМ;

Трудоемкость процесса составления программ (особенно на

машинных языках и ЯСК), плохо защищенного от появления

Низкая скорость программирования;

Невозможность непосредственного использования программ,

составленных на этих языках, на ЭВМ других типов.

Машинно-ориентированные языки по степени автоматического программирования подразделяются на классы.

2.1.1 Машинный язык

Как я уже упоминал, в введении, отдельный компьютер имеет свой определенный Машинный язык (далее МЯ), ему предписывают выполнение указываемых операций над определяемыми ими операндами, поэтому МЯ является командным. Однако, некоторые семейства ЭВМ (например, ЕС ЭВМ, IBM/370/ и др.) имеют единый МЯ для ЭВМ разной мощности. В команде любого из них сообщается информация о местонахождении операндов и типе выполняемой операции.

В новых моднлях ЭВМ намечается тенденция к повышению внутренних языков машинно – аппаратным путем реализовывать более сложные команды, приближающиеся по своим функциональным действиям к операторам алгоритмических языков программирования.

2.1.2 Языки Символического Кодирования

Продолжим рассказ о командных языках, Языки Символического Кодирования (далее ЯСК), так же, как и МЯ, являются командными. Однако коды операций и адреса в машинных командах, представляющие собой последовательность двоичных (во внутреннем коде) или восьмеричных (часто используемых при написании программ) цифр, в ЯСК заменены на символы (идентификаторы), форма написания которых помогает программисту легче запоминать смысловое содержание операции. Это обеспечивает существенное уменьшение числа ошибок при составлении программ.

Использование символических адресов – первый шаг к созданию ЯСК. Команды ЭВМ вместо истинных (физических) адресов содержат символические адреса. По результатам составленной программы определяется требуемое количество ячеек для хранения исходных промежуточных и результирующих значений. Назначение адресов, выполняемое отдельно от составления программы в символических адресах, может проводиться менее квалифицированным программистом или специальной программой, что в значительной степени облегчает труд программиста.

2.1.3Автокоды

Есть также языки, включающие в себя все возможности ЯСК, посредством расширенного введения макрокоманд - они называются Автокоды.

В различных программах встречаются некоторые достаточно часто использующиеся командные последовательности, которые соответствуют определенным процедурам преобразования информации. Эффективная реализация таких процедур обеспечивается оформлением их в виде специальных макрокоманд и включением последних в язык программирования, доступный программисту. Макрокоманды переводятся в машинные команды двумя путями –расстановкой и генерированием. В постановочной системе содержатся «остовы» - серии команд, реализующих требуемую функцию, обозначенную макрокомандой. Макрокоманды обеспечивают передачу фактических параметров, которые в процессе трансляции вставляются в «остов» программы, превращая её в реальную машинную программу.

В системе с генерацией имеются специальные программы, анализирующие макрокоманду, которые определяют, какую функцию необходимо выполнить и формируют необходимую последовательность команд, реализующих данную функцию.

Обе указанных системы используют трансляторы с ЯСК и набор макрокоманд, которые также являются операторами автокода.

Развитые автокоды получили название Ассемблеры. Сервисные программы и пр., как правило, составлены на языках типа Ассемблер. Более полная информация об языке Ассемблера см. ниже.

2.1.4 Макрос

Язык, являющийся средством для замены последовательности символов описывающих выполнение требуемых действий ЭВМ на более сжатую форму - называется Макрос (средство замены).

В основном, Макрос предназначен для того, чтобы сократить запись исходной программы. Компонент программного обеспечения, обеспечивающий функционирование макросов, называется макропроцессором. На макропроцессор поступает макроопределяющий и исходный текст. Реакция макропроцессора на вызов-выдача выходного текста.

Макрос одинаково может работать, как с программами, так и с данными.

2.2 Машинно – независимые языки

Машинно – независимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке . Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и ВС.

Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка(задачи, сегменты, блоки и т.д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на МЯ.

Т.о., командные последовательности (процедуры, подпрограммы), часто используемые в машинных программах, представлены в высокоуровневых языках отдельными операторами. Программист получил возможность не расписывать в деталях вычислительный процесс на уровне машинных команд, а сосредоточиться на основных особенностях алгоритма.

2.2.1 Проблемно – ориентированные языки

С расширением областей применения вычислительной техники возникла необходимость формализовать представление постановки и решение новых классов задач. Необходимо было создать такие языки программирования, которые, используя в данной области обозначения и терминологию, позволили бы описывать требуемые алгоритмы решения для поставленных задач, ими стали проблемно – ориентированные языки. Эти языки, языки ориентированные на решение определенных проблем, должны обеспечить программиста средствами, позволяющими коротко и четко формулировать задачу и получать результаты в требуемой форме.

Проблемных языков очень много, например:

Фортран, Алгол – языки, созданные для решения математических задач;

Simula, Слэнг - для моделирования;

Лисп, Снобол – для работы со списочными структурами.

2.2.2 Универсальные языки

Универсальные языки были созданы для широкого круга задач: коммерческих, научных, моделирования и т.д. Первый универсальный язык был разработан фирмой IBM, ставший в последовательности языков Пл/1. Второй по мощности универсальный язык называется Алгол-68. Он позволяет работать с символами, разрядами, числами с фиксированной и плавающей запятой. Пл/1 имеет развитую систему операторов для управления форматами, для работы с полями переменной длины, с данными организованными в сложные структуры, и для эффективного использования каналов связи. Язык учитывает включенные во многие машины возможности прерывания и имеет соответствующие операторы. Предусмотрена возможность параллельного выполнение участков программ.

Программы в Пл/1 компилируются с помощью автоматических процедур. Язык использует многие свойства Фортрана, Алгола, Кобола. Однако он допускает не только динамическое, но и управляемое и статистическое распределения памяти.

2.2.3 Диалоговые языки

Появление новых технических возможностей поставило задачу перед системными программистами – создать программные средства, обеспечивающие оперативное взаимодействие человека с ЭВМ их назвали диалоговыми языками .

Эти работы велись в двух направлениях. Создавались специальные управляющие языки для обеспечения оперативного воздействия на прохождение задач, которые составлялись на любых раннее неразработанных (не диалоговых) языках. Разрабатывались также языки, которые кроме целей управления обеспечивали бы описание алгоритмов решения задач.

Необходимость обеспечения оперативного взаимодействия с пользователем потребовала сохранения в памяти ЭВМ копии исходной программы даже после получения объектной программы в машинных кодах. При внесении изменений в программу с использованием диалогового языка система программирования с помощью специальных таблиц устанавливает взаимосвязь структур исходной и объектной программ. Это позволяет осуществить требуемые редакционные изменения в объектной программе.

Одним из примеров диалоговых языков является Бейсик.

Бейсик использует обозначения подобные обычным математическим выражениям. Многие операторы являются упрощенными вариантами операторов языка Фортран. Поэтому этот язык позволяет решать достаточно широкий круг задач.

2.2.4 Непроцедурные языки

Непроцедурные языки составляют группу языков, описывающих организацию данных, обрабатываемых по фиксированным алгоритмам (табличные языки и генераторы отчетов), и языков связи с операционными системами.

Позволяя четко описывать как задачу, так и необходимые для её решения действия, таблицы решений дают возможность в наглядной форме определить, какие условия должны быть выполнены прежде чем переходить к какому-либо действию. Одна таблица решений, описывающая некоторую ситуацию, содержит все возможные блок-схемы реализаций алгоритмов решения.

Табличные методы легко осваиваются специалистами любых профессий.

Программы, составленные на табличном языке, удобно описывают сложные ситуации, возникающие при системном анализе.

3 Современные языки и системы программирования

3.1 Basic

Как знаменитые гамбургеры, бейсбол и баскетбол, Бейсик - это продукт Новой Англии . Как я говорил, созданный в 1964г., как язык обучения программированию. Бейсик является общепринятым акронимом от"Beginner"s All-purpose Symbolic Insruction Code" (BASIC) - Многоцелевой Символический Обучающий Код для Начинающих".

Вскоре как обучаемые, так и авторы программ обнаружили, что Бейсик может делать практически все то, что делает скучный неуклюжий Фортран. А так как Бейсику было легко обучиться и легко с ним работать, программы на нем писались обычно быстрее, чем на Фортране. Бейсик был также доступен на персональных компьютерах, обычно он встроен в ПЗУ. Так Бейсик завоевал популярность. Интересно, что спустя 20 лет после изобретения Бейсика, он и сегодня самый простой для освоения из десятков языков общецелевого программирования, имеющихся в распоряжении любителей программирования. Более того, он прекрасно справляется с работой.

Несмотря на высказывания снобов - сторонников языков Си и Паскаля, Бейсик считается деловым языком, снабженным мощными средствами решения специфических задач, которые обычно большинство пользователей решают при помощи небольших компьютеров, а именно: работая с файлами и выводя текстовое и графическое изображение на экране дисплея.

Несмотря на отдельные недостатки Бейсика, никто не будет отрицать, что Кемени и Куртс достигли основной цели: сделать программирование доступнее для большего числа людей.

Исторически Бейсик обычно реализовался как интерпретатор (знакомым изомером является сам интерпретаторный Бейсик). Причинами перехода от любительского уровня к профессиональному являются многочисленные расширения классической версии языка: возможность отключения нумерации строк, многостроковые структурированные программные конструкции, структуры типа "запись", поименованные подпрограммы с параметрами и локальные переменные.

Более того, с появлением транслятора QuickBasic фирмы Microsoft разработчики получили возможность строить на Бейсике приложения из раздельно откомпилированных модулей, некоторые из которых могут быть написаны на других языках. Теперь, как и в случае других ведущих языков программирования, разработчик имеет выбор из нескольких промышленных библиотек подпрограмм, которые содержат готовые решения для распространенных задач программирования.

3.2 Pascal

Язык Паскаль был создан как учебный язык программирования в 1968 –1971г. Никлаусом Виртом . В настоящее время этот язык имеет более широкую сферу применения, чем предусматривалось при его создании. Целью работы Вирта было создание языка, который:

Строился бы на небольшом количестве базовых понятий;

Имел бы простой синтаксис;

Допускал бы перевод программ в машинный код простым компилятором;

Все эти качества сделали язык очень популярным и удобным для применения в школе.

Паскаль – язык профессионального программирования, который назван в честь французского математика и философа Блеза Паскаля (1623–1662) и разработан в 1968–1971 гг. Николаусом Виртом, для обучения студентов методам разработки программ, таким как "программирование сверху вниз", "структурное программирование" и т. д. Вирту не понравился не один из существующих на тот момент языков, и в 1968 году он приступил к разработке своего собственного. Первая версия языка была создана для компьютера CDC 6000. Благодаря своей четкости, логичности и другим особенностям Паскаль надолго занял свою нишу, являясь прекрасным языком для обучения программированию. Паскаль использовался и для разработки серьезных программ- приложений. Шутили, что Вирт разработал игрушку, но многие отнеслись к ней слишком серьезно

Впоследствии появились различные версии языка и его расширения. Наиболее известным расширением стал пакет Турбо Паскаль фирмы Borland, появившийся в 1983 году и сразу ставший событием в мире компьютерных технологий.

Турбо Паскаль – это система программирования, созданная для повышения качества и скорости разработки программ (80-е гг.). Слово Турбо в названии системы программирования – это отражение торговой марки фирмы-разработчика Borland International (США).

Систему программирования Турбо Паскаль называют интегрированной (integration – объединение отдельных элементов в единое целое) средой программирования, т.к. она включает в себя редактор, компилятор, отладчик, имеет сервисные возможности.

Первое упоминание о нем содержалось в рекламе опубликованной в журнале Byte, а сам пакет предназначен для операционной системы CP/M. В начале 1984 года он был перенесен в среду MS-DOS и приобрел огромную популярность. С тех пор появилось несколько версий Турбо Паскаля, последняя- седьмая.

3.3 Delphi

Появление Delphi не могло пройти незамеченным среди многочисленных пользователей компьютера . Оценки экспертов, изучающих возможности этого нового продукта фирмы Borland, обычно окрашены в восторженные тона. Основное достоинство Delphi состоит в том, что здесь реализованы идеи визуального программирования. Среда визуального программирования превращает процесс создания программы в приятное и легко понимаемое конструирование приложения из большого набора графических и структурных примитивов.

Система Delphi позволяет решать множество задач, в частности:

Создавать законченные приложения для Windows самой различной направленности: от чисто вычислительных и логических, до графических и мультимедиа.

Быстро создавать (даже начинающим программистам) профессионально выглядящий оконный интерфейс для любых приложений.

Создавать мощные системы работы с локальными и удаленными базами данных.

Создавать справочные системы (файлы.hlp) для своих приложений и мн. др.

Delphi – чрезвычайно быстро развивающаяся система. Первая версия – Delphi 1.0 была выпущена в феврале 1995 г. А затем новые версии выпускались ежегодно.

Большинство версий Delphi выпускается в нескольких вариантах: Standart – стандартном, Professional – профессиональном, Client/Server – клиент/сервер, Enterprise – разработка баз данных предметных областей. Различаются варианты в основном разным уровнем доступа к системам управления базами данных. Последние варианты - Client/Server и Enterprise, в этом отношении наиболее мощные.

Delphi - это комбинация нескольких важнейших технологий:

Высокопроизводительный компилятор в машинный код.

Объектно-ориентированная модель компонент.

Визуальное (а, следовательно, и скоростное) построение приложений из программных прототипов.

Масштабируемые средства для построения баз данных.

3.4 Fortran

Одним из первых и наиболее удачных компиляторов стал язык Фортран, разработанный фирмой IBM. Профессор Дж. Букс и группа американских специалистов в области программирования в 1954 году опубликовало первое сообщение о языке. Дословно, название языка FORmulaeTRANslation –преобразование формул.

Среди причин долголетия Фортрана (а он один из самых распространенных языков в мире), можно отметить простую структуру, как самого Фортрана, так и предназначенных для него трансляторов . Программа на Фортране записывается в последовательности предложений или операторов (описание некоего преобразования информации), и оформляется по определенным стандартам. Эти стандарты накладывают ограничения, в частности, на форму записи и расположения частей оператора в строке бланка для записи операторов. Программа, записанная на Фортране, представляет собой один или несколько сегментов (подпрограмм) из операторов. Сегмент, управляющий работой всей программы в целом, называется основной программой.

Фортран был задуман для использования в сфере научных и инженерно-технических вычислений. Однако на этом языке легко описываются задачи с разветвленной логикой (моделирование производственных процессов, решение игровых ситуаций и т.д.), некоторые экономические задачи и особенно задачи редактирования (составление таблиц, сводок, ведомостей и т.д.).

Модификация языка Фортран, появившиеся в 1958 году, получила название Фортран II и содержала понятие подпрограммы и общих переменных для обеспечения связи между сегментами.

К 1962 году относится появление языка, известного под именем Фортран IV и ставшего наиболее употребительным в настоящее время. К этому же времени относится и начало деятельности комиссии при Американской Ассоциации Стандартов (ASA), которая выработала к 1966 году два стандарта – языки Фортран и базисный (основной) Фортран (BasicFORTRAN). Эти языки приблизительно соответствуют модификациям IV и II, однако базисный Фортран является подмножеством Фортрана, в то время, как Фортран II таковым для Фортрана IV не является. Язык Фортран до сих пор продолжает развиваться и совершенствоваться, оказывая влияние на создание и развитие других языков. Например, Фортран заложен в основу Basic – диалогового языка, очень популярного для решения небольших задач, превосходного языка для обучения навыкам использования алгоритмических языков в практике программирования. Разработан этот язык – Beginner’sAll –purposeSymbolicInstructionCode – группой сотрудников Вычислительного центра Дармутского колледжа, штат Нью-Хемпшир созданный в 19…. . Но это уже следующий язык.

3.5 С и С++

Язык "C" является универсальным языком программирования. Он тесно связан с операционной системой "UNIX" , так как был развит на этой системе и так как "UNIX" и ее программное обеспечение написано на "C". Сам язык, однако, не связан с какой-либо одной операционной системой или машиной; и хотя его называют языком системного программирования, так как он удобен для написания операционных систем, он с равным успехом использовался при написании больших вычислительных программ, программ для обработки текстов и баз данных.

Язык "C" - это язык относительно "низкогоуровня". В такой характеристике нет ничего оскорбительного; это просто означает, что "C" имеет дело с объектами того же вида, что и большинство ЭВМ, а именно, с символами, числами и адресами. Они могут объединяться и пересылаться посредством обычных арифметических и логических операций, осуществляемых реальными ЭВМ.

В языке "C" отсутствуют операции, имеющие дело непосредственно с составными объектами, такими как строки символов, множества, списки или с массивами, рассматриваемыми как целое. Здесь, например, нет никакого аналога операциям PL/1, оперирующим с целыми массивами и строками. Язык не предос тавляет никаких других возможностей распределения памяти, кроме статического определения и механизма стеков, обеспечиваемого локальными переменных функций; здесь нет ни "куч"(HEAP), ни "сборки мусора", как это предусматривается в АЛГОЛЕ-68. Наконец, сам по себе "C" не обеспечивает никаких возможностей ввода-вывода: здесь нет операторов READ или WRITE и никаких встроенных методов доступа к файлам. Все эти механизмы высокого уровня должны обеспечиваться явно вызываемыми функциями.

Аналогично, язык "C" предлагает только простые, последовательные конструкции потоков управления: проверки, циклы, группирование и подпрограммы, но не мультипрограммирование, параллельные операции, синхронизацию или сопрограммы. Хотя отсутствие некоторых из этих средств может выглядеть как удручающая неполноценность ("выходит, что я должен обращаться к функции, чтобы сравнить две строки символов?!"), но удержание языка в скромных размерах дает реальные преимущества. Так как "C" относительно мал, он не требует много места для своего описания и может быть быстро выучен. Компилятор с "C" может быть простым и компактным. Кроме того, компиляторы легко пишутся; при использовании современной технологии можно ожидать написания компилятора для новой ЭВМ за пару месяцев и при этом окажется, что 80 процентов программы нового компилятора будет общей с программой для ужесуществующих компиляторов. Это обеспечивает высокую степень мобильности языка. Поскольку типы данных и структуры управления, имеющиеся в "C", непосредственно поддерживаются большинством существующих ЭВМ, библиотека, необходимая во время прогона изолированных программ, оказывается очень маленькой. На PDP -11, например, она содержит только программы для 32-битового умножения и деления и для выполнения программ ввода и вывода последовательностей. Конечно, каждая реализа-

ция обеспечивает исчерпывающую, совместимую библиотеку функций для выполнения операций ввода-вывода, обработки строк и распределения памяти, но так как обращение к ним осуществляется только явно, можно, если необходимо, избежать их вызова; эти функции могут быть компактно написаны на самом "C".

3.6 Java

Сегодня Всемирная сеть - это среда информационного обмена для миллионов людей. Они размещают текст, видео, звук, и информацию, и все более и более, они усложняют свои страницы, делая их интерактивными в сети. JavaScript - это новый язык программирования, используемый в составе страниц HTML для увеличения функциональности и возможностей взаимодействия с пользователями. Он был разработан фирмой Netscape в сотруднечестве с Sun Microsystems на базе языка Sun"s Java .С помощью JavaScript на Web-странице можно сделать то, что невозможно сделать стандартными тегами HTML. Скрипты выполняются в результате наступления каких-либо событий, инициированных действиями пользователя. Создание Web- документов, вклучающих программы на JavaScript, требует наличее текстового редактора и подходящего браузера. Некоторые просмоторщики включают в себе встроенные редакторы, поэтому необходимость во внешнем редакторе отпадает.

Несмотря на отсутствие прямой связи с языком Java, JavaScript может обращаться к внешним свойствам и методам Java- апплетов, встроенных в страницу HTML. Разница сводится к тому, что апплеты существуют вне браузера, в то время как программы JavaScript могут работать только внутри браузера. На первой взгляд кажется, что найти информацию по JavaScript несложно. Сначала создается впечатление, что ее можно увидеть везде: на сервере Natscape, в виде электронных руководств и примеров, во многих других местах. Тем не менее разыскать информацию об объектах, операторах, цветах и всем прочем в одном источнике, чтобы она была всегда под рукой, трудно.

Заключение

Изобретение языка программирования высшего уровня позволило нам общаться с машиной, понимать её. Развилась наука программирования с того времени, как появились языки программирования, а ведь язык программирования высшего уровня, судя по всему ещё младенец. Но если обратить внимание на темпы роста и развития новейших технологий в области программирования, то можно предположить, что в ближайшем будущем, человеческие познания в этой сфере, помогут произвести на свет языки, умеющие принимать, обрабатывать и передавать информации в виде мысли, слова, звука или жеста. Так и хочется назвать это детище компьютеризированного будущего: «языки программирования "высочайшего" уровня». Возможно, концепция решения этого вопроса проста, а ближайшее будущее этого проекта уже не за горами.

Размышляя над этим, хочется верить в прогресс науки и техники, в высоко - компьютеризированное будущее человечества, как единственного существа на планете, пусть и не использующего один, определенный разговорный язык, но способного так быстро прогрессировать и развивать свой интеллект, что и перехода от многоязыковой системы к всеобщему пониманию долго ждать не придется.

Список использованных источников

1) Родли Джон Создание Java-апплетов.- The Coriolis Group,Inc.,1996, Издательство НИПФ "ДиаСофт Лтд.",1996

2) Эферган Майкл Java: справочник.- QUE Corporation, 1997, Издательство "Питер Ком", 1998

3) Давидов Михаил Изгияевич; Антонов Вадим Геннадьевич “LEX - генератор программ лексического анализа” МОСКВА – 1985;

4) "BASIC Face-off", Justin J.Crom, PC Tech Journal, September 1987, 136 Перевод: ЛопуховВ.Н. (Интегратор Promt98);

5) Керниган Б.В., Ритчи Д., Фьюэр А. “Язык программирования Си.” Русский перевод: Москва: Финансы и Статистика. 1985 г.;

6) Золотарев В.В., “Основы автоматизации” ч.1, 1978 г.;

7) Ваулин А.С., “Языки программирования” кн.5, 1993 г.;

8) Терренс П. “Языки программирования: разработка и реализация”, 1979 г.;

9) Касвандс Э.Г “Введение в программирование на языке Ассемблер” ч.1;

10) Хротко Г., “Языки программирования высокого уровня”, 1982 г.;

11) Малютин Э.А., Малютина Л.В., “Языки программирования”, 1982 г.;

12) Ушкова В.“Новые языки программирования и тенденции их развития”, 1982 г.;

13) Хьювенен Э., Сеппенен Й., “Мир Лиспа” т.1, 1990 г.;

14) Янг С., “Алгоритмические языки реального времени”, 1985 г.