Spi flash распиновка. Как прошить телевизор, если он не включается? Программное обеспечение для программатора

Во время очередной уборки был случайно выключен удлинитель, к которому были подключены работающие системный блок и монитор. Системный блок состоит из:
  • материнская плата - ASRock B75 Pro 3
  • процессор - Intel Core i5-3570
  • блок питания - Corsair CX750M
После включения системник начал издавать пять противных писков, что вроде как соответствует неисправности процессора. Процессор, судя по Яндекс.Маркету, на данный момент стоит от 11000 руб. Покупать довольно накладно, а недорогой, но слабенький не хочется. В общем, немного испугался…

Порылся в интернете, выяснил, что точная причина неисправности может быть совсем другая. Это вселило небольшую надежду. Но надо как-то найти эту самую причину.

В первую очередь подключил другой старенький БП - комп не запускается.

Для дальнейших проверок принес домой автомобильный комп. Состав:

  • материнская плата - ASRock B75M-ITX
  • процессор - Intel Pentium G640T
Как хорошо, что компоненты оказались взаимозаменяемыми.

Вытащил из автомобильного компа процессор, вставил его в домашний - комп не запускается. Но появилась надежда, что процессор все таки цел, а неисправна материнка, которая немного дешевле (хотя новые на чипсетах не H61 и H67 - дефицит).

Собственно, программирование

Хорошо, что микросхема BIOS не впаяна, а на обычной панельке DIP-8. Программатора у меня нет, заказывать в Китае и ждать месяц - не выход. Решил сделать программатор из ноутбука жены и имеющейся в наличии Arduino Nano. Покопался в интернете… Везде в основном прошивка заливается через COM-порт, я же решил прошивать с карты памяти (так вроде гораздо быстрее).

Набросал схему подключения:

Собрал все на макетной плате:

Тип и объем карты памяти, способ ее форматирования, имя файла должны соответствовать требованиям библиотеки SD Arduino.

Для начала набросал скетч, который считывает содержимое SPI Flash и записывает его в файл на карту памяти, попутно вычисляя контрольную сумму по методу Checksum-32, т.е. простым суммированием.

ReadFlash_WriteSD.ino

#include #define Flash_CS 9 #define SD_CS 10 #define FILENAME "BIOS.ROM" File myFile; SPIFlash flash(Flash_CS); void setup() { Serial.begin(115200); while (!Serial) {} // Ждем подключения последовательного порта // Инициализация SD-карты Serial.println("Initializing SD card..."); if (!SD.begin(SD_CS)) { Serial.println("Initialization SD card failed!"); return; } Serial.println("Initialization done."); // Удаляем старый файл, если есть Serial.print(FILENAME); if (SD.exists(FILENAME)) { Serial.println(" exists, removing..."); SD.remove(FILENAME); } else { Serial.println(" doesn"t exist."); } // Создаем файл и открываем его для записи Serial.print("Creating "); Serial.print(FILENAME); Serial.println("..."); myFile = SD.open(FILENAME, FILE_WRITE); // Если удалось создать и открыть файл - будем записывать в него if (myFile) { // Инициализация SPI Flash Serial.println("Initializing SPI Flash..."); flash.begin(); // Читаем/записываем блоками/страницами по 256 байт uint8_t data_buffer; // Количество страниц uint32_t maxPage = flash.getMaxPage(); // Checksum (32 bit) uint32_t checkSum = 0; for (int page = 0; page < maxPage; page++) { // Выводим прогресс работы if ((page % 1000) == 0) { Serial.print(page + 1); Serial.print("/"); Serial.println(maxPage); } // Читаем страницу SPI Flash flash.readByteArray(page, 0, &data_buffer, 256); // Записываем блок в файл на карте памяти myFile.write(data_buffer, 256); // Обновляем контрольную сумму for (int i = 0; i < 256; i++) { checkSum += data_buffer[i]; } } // Закрываем файл на карте памяти myFile.close(); // Выводим контрольную сумму Serial.print("Checksum-32: 0x"); Serial.println(checkSum, HEX); Serial.println("Done."); } else { // Если файл не создался, то выводим сообщение об ошибке Serial.println("Error creating "); Serial.println(FILENAME); } } void loop() { // Пустой цикл }


Запустил скетч, получившийся файл сравнил с оригинальным BIOS - получилось около 140000 несовпадающих байт.

ReadSD_WriteFlash.ino

/* Подключение SPI-Flash: CS - D9 MOSI - D11 MISO - D12 CLK - D13 Подключение SD-Card Shield: CS - D10 MOSI - D11 MISO - D12 CLK - D13 */ #include #include #define Flash_CS 9 #define SD_CS 10 #define FILENAME "B75PRO31.90" File myFile; SPIFlash flash(Flash_CS); void setup() { Serial.begin(115200); while (!Serial) {} // Ждем подключения последовательного порта // Инициализация SD-карты Serial.println("Initializing SD card..."); if (!SD.begin(SD_CS)) { Serial.println("Initialization SD card failed!"); return; } Serial.println("Initialization done."); if (!SD.exists(FILENAME)) { Serial.print(FILENAME); Serial.println(" doesn"t exist."); return; } // Открываем файл для чтения Serial.print("Opening "); Serial.print(FILENAME); Serial.println("..."); myFile = SD.open(FILENAME, FILE_READ); // Если удалось открыть файл - будем читать из него if (myFile) { Serial.print("File "); Serial.print(FILENAME); Serial.println(" is open."); // Инициализация SPI Flash Serial.println("Initializing SPI Flash..."); flash.begin(); // Стираем чип if (flash.eraseChip()) { Serial.println("Chip erased."); } else { Serial.println("Error erasing chip."); return; } // Читаем/записываем блоками/страницами по 256 байт uint8_t data_buffer; // Количество страниц uint32_t maxPage = flash.getMaxPage(); // Checksum (32 bit) uint32_t checkSum = 0; for (int page = 0; page < maxPage; page++) { // Выводим прогресс работы if ((page % 1000) == 0) { Serial.print(page + 1); Serial.print("/"); Serial.println(maxPage); } // Читаем блок с карты памяти myFile.read(data_buffer, 256); // Записываем блок в страницу SPI Flash flash.writeByteArray(page, 0, &data_buffer, 256); // Обновляем контрольную сумму for (int i = 0; i < 256; i++) { checkSum += data_buffer[i]; } } // Закрываем файл на карте памяти myFile.close(); // Выводим контрольную сумму Serial.print("Checksum-32: 0x"); Serial.println(checkSum, HEX); Serial.println("Done."); } else { // Если файл не открылся - выводим сообщение об ошибке Serial.print("Error opening "); Serial.println(FILENAME); } } void loop() { // Пустой цикл }


Запустил, подождал, скетч вывел контрольную сумму, она совпала с контрольной суммой оригинального файла. Но это контрольная сумма файла на карте памяти, мне же нужна контрольная сумма содержимого SPI Flash.

Можно было использовать первый скетч, но написал третий, который только считает контрольную сумму содержимого SPI Flash по тому же алгоритму.

ChecksumFlash.ino

/* Подключение SPI-Flash: CS - D9 MOSI - D11 MISO - D12 CLK - D13 */ #include #define Flash_CS 9 SPIFlash flash(Flash_CS); void setup() { Serial.begin(115200); while (!Serial) {} // Ждем подключения последовательного порта // Этот код нужен, чтобы не мешалась SD-карта pinMode(10, OUTPUT); digitalWrite(10, HIGH); // Инициализация SPI Flash Serial.println("Initializing SPI Flash..."); flash.begin(); // Читаем страницами по 256 байт uint8_t data_buffer; // Количество страниц uint32_t maxPage = flash.getMaxPage(); // Checksum (32 bit) uint32_t checkSum = 0; for (int page = 0; page < maxPage; page++) { // Выводим прогресс работы if ((page % 1000) == 0) { Serial.print(page + 1); Serial.print("/"); Serial.println(maxPage); } // Читаем страницу SPI Flash flash.readByteArray(page, 0, &data_buffer, 256); // Обновляем контрольную сумму for (int i = 0; i < 256; i++) { checkSum += data_buffer[i]; } } // Выводим контрольную сумму Serial.print("Checksum-32: 0x"); Serial.println(checkSum, HEX); Serial.println("Done."); } void loop() { // Пустой цикл }


Контрольная сумма SPI Flash совпала с контрольной суммой оригинального файла.

После вставки прошитой микросхемы BIOS в домашний комп - он благополучно заработал.

В среде Arduino IDE необходимо установить библиотеку SPIFlash через управление библиотеками.

Контрольную сумму вычислял с помощью HEX-редактора HxD.

PS: Первоначально в качестве SD-модуля использовал вот такой:

Но с ним были частые глюки, не инициализировалась SD-карта. Помогало «горячее» переподключение самой SD-карты при подключенной к компу Arduino.

PPS: Вместо резисторов пробовал подключить двунаправленный конвертер сигналов:

Но с ним схема не заработала.

Эта статья продолжает тему, связанную с угрозой искажения BIOS материнской
платы вредоносными программами. В ранее опубликованном материале
и был
приведен пример программы, выполняющей запись в микросхему BIOS, рассмотрены
механизмы защиты, используемые производителями материнских плат и причины, по
которым данные механизмы часто оказываются неэффективными. Напомним, что эта
проблема возникла более 10 лет назад, когда в качестве носителя BIOS начали
использовать микросхемы Flash ROM, допускающие перезапись содержимого без
физического вмешательства в компьютер. Таким образом, возможность оперативной
перезаписи (обновления) BIOS, привела к побочному эффекту – риску его случайного
или преднамеренного искажения.

Казалось бы, сегодня на эту тему уже все сказано. Но время идет, появляются
новые типы микросхем Flash ROM и интерфейсов для их подключения. Это
сопровождается появлением новых методов защиты BIOS от несанкционированного
искажения, и, конечно, новых уязвимостей. В ранее опубликованном материале,
ссылка на который приведена в начале статьи, рассматриваемая тема раскрыта на
примере платформы, использующей микросхему SST 49LF004A, подключенную к
интерфейсу LPC (Low Pin Count). Сегодня, ему на смену пришел интерфейс SPI
(Serial Peripheral Interface)
. Напомним, что для перезаписи содержимого
микросхемы BIOS, программа должна взаимодействовать с двумя блоками регистров:
регистры интерфейса Flash ROM, расположенные в составе "южного моста" чипсета и
регистры, входящие в состав самой микросхемы Flash ROM. При переходе от
интерфейса LPC к SPI, архитектура двух указанных блоков существенно изменилась.
Поэтому есть смысл рассмотреть взаимодействие программ с микросхемой BIOS,
механизмы защиты и их уязвимости применительно к современным платформам.
Материал снабжен примерами на ассемблере. Для экспериментов использовалась
материнская плата Gigabyte GA-965P-S3, построенная на чипсете Intel 965,
описанном в . В качестве носителя BIOS на данной плате используется
микросхема SST 25VF080B, описанная в . Эта микросхема имеет объем 8 Мегабит
(1 Мегабайт) и подключается к интерфейсу SPI. Некоторые микросхемы других
производителей, использующих тот же интерфейс, описаны в . Описание
интерфейса SPI приведено в . При взаимодействии с контроллером SPI, нам
потребуется использовать механизмы доступа к конфигурационному пространству,
описанные в документах .

Интерфейс SPI: историческая справка

Как известно, быстродействие микросхемы постоянного запоминающего устройства
(Flash ROM), используемой в качестве носителя BIOS, практически не влияет на
общую производительность компьютера. Это связано с тем, что при старте
материнской платы, BIOS переписывается (или распаковывается) в оперативную
память Shadow RAM и при обращении к BIOS в сеансе ОС, программы работают с
оперативной памятью, а не с микросхемой Flash ROM. Поэтому, в отличие от
процессора, памяти, графической подсистемы, эволюция которых сопровождается
ростом производительности, микросхемы Flash ROM и их интерфейсы развиваются в
другом направлении. Здесь главными критериями являются уменьшение стоимости,
потребляемой мощности и занимаемой площади на материнской плате. Главный метод
достижения этих целей – уменьшение количества проводников между микросхемой BIOS
и контроллером, обычно входящим в состав "южного моста" чипсета. С точки зрения
метода подключения микросхемы BIOS, можно выделить три поколения материнских
плат:

1) На платах, использующих шину ISA, устанавливались микросхемы постоянных
запоминающих устройств с раздельными линиями адреса, данных и управления. При
этом для каждого разряда адреса и данных, а также для каждого сигнала управления
(чтение, запись) требовался свой провод, точнее печатный проводник на плате.

2) С появлением чипсетов Intel 810, 815, на основе "хабовой" архитектуры,
шина ISA ушла в прошлое. Ряд устройств материнской платы, ранее подключаемых к
ISA (контроллер гибких дисков, порты COM и LPT, микросхема BIOS), "переехали" на
интерфейс Low Pin Count или LPC, название которого переводится как "малое
количество сигналов". Сигналы адреса, данных и управления в этом интерфейсе
передаются по пяти линиям (не считая сигналов сброса, тактирования и линий
питания), в режиме мультиплексирования во времени. Микросхемы BIOS, используемые
в таких платформах, иногда называют Firmware Hub или FWH. Пример программы
стирания и записи микросхемы BIOS, приведенный в ранее опубликованной статье
"Проникновение в BIOS ROM" N1 и N2" предназначен для таких платформ.

3) Начиная с чипсета Intel 945, в состав "южного моста" включен контроллер
специализированной последовательной шины Serial Peripheral Interface или SPI,
использующий передачу данных чтения и записи, а также управляющей и статусной
информации по однобитному последовательному каналу. Это позволило использовать
8-контактный корпус для микросхемы BIOS. Данная статья посвящена рассмотрению
именно таких платформ.

Отметим, что интерфейс LPC также поддерживается современными чипсетами и
разработчик материнской платы может использовать для подключения микросхемы BIOS
как LPC, так и SPI. Сфера применения интерфейса SPI не ограничивается
материнскими платами компьютеров. Внимательный читатель мог обратить внимание на
то, что из-за перехода к последовательному формату данных, каждый из описанных
интерфейсов использует больше тактов для выполнения операций чтения и записи,
чем его предшественник, что чревато снижением быстродействия. Но этого не
происходит, так как указанное обстоятельство компенсируется ростом частоты и
оптимизацией форматов данных. Шина ISA работает на частотах 5-8MHz, LPC на
33MHz, SPI на 33-50 MHz.

Архитектура микросхемы SPI Flash ROM

Микросхемы SPI Flash, в частности SST25VF080B, используют три сигнала для
приема и передачи данных. SCK (Serial Clock) – вход для тактирования
передаваемых или принимаемых данных. SI (Serial Input) – вход для передачи
данных от контроллера к микросхеме, по этой линии побитно передаются адрес,
данные для записи, и коды команд управления микросхемой. SO (Serial Output) –
выход для передачи данных от микросхемы к контроллеру, по этой линии побитно
передаются читаемые данные, а также информация о состоянии микросхемы.
Контроллер управляет микросхемой посредством команд, инициирующих операции
чтения и записи данных, стирания, чтения идентификаторов микросхемы, чтения и
записи регистра статуса и т.п.

Назначение каждого из восьми контактов микросхемы, описание всех команд, а
также другие подробности содержатся в .

Архитектура контроллера SPI

Контроллер SPI, входящий в состав "южного моста" Intel ICH8, содержит более
20 регистров управления и состояния. Регистры адресуются в пространстве памяти с
использованием технологии memory-mapped I/O, рассмотренной в ранее
опубликованной статье "Устройства системной поддержки. Исследовательская работа
N ". Описание всех регистров и команд контроллера SPI выходит за рамки
данной статьи, рассмотрим основные отличия программной модели интерфейса SPI от
его предшественника — интерфейса LPC, акцентируя внимание на регистрах,
используемых при выполнении основных операций – чтении идентификаторов, записи и
стирании Flash ROM.

Напомним, что физический доступ к микросхеме BIOS (не путать с областью
Shadow RAM) осуществляется посредством окна, примыкающего к верхней границе
диапазона 0-4GB. Например, Flash ROM размером 1 Мбайт будет доступен в диапазоне
FFF00000h-FFFFFFFFh. В платформах, использующих интерфейсы ISA и LPC, через тот
же диапазон, при выполнении операций стирания и записи выполняется передача
команд и записываемых данных для микросхемы Flash ROM, а также чтение ее
статуса. Платформа, использующая интерфейс SPI, рассматриваемая в данной статье,
также поддерживает чтение содержимого микросхемы BIOS через указанный диапазон,
но для передачи управляющей и статусной информации во время записи и стирания
Flash ROM, используется другой метод доступа. Информация для выполнения цикла на
шине SPI (адрес и данные) записывается в специальные регистры контроллера SPI
(Flash Address и Flash Data соответственно), затем в регистр Software Sequencing
Flash Control передается команда на выполнение цикла обращения к Flash ROM
(чтения или записи). После этого, через регистр Software Sequencing Flash Status
можно определить момент завершения операции и проконтролировать наличие ошибок.
Данные, прочитанные из Flash ROM, находятся в регистре Flash Data.

В платформах с интерфейсами ISA и LPC, передача команд выполнялась путем
прямой записи байта кода команды в адресный диапазон Flash ROM. Интерфейс SPI
использует косвенный метод передачи команд посредством 8-байтного регистра
OpCode Menu. Каждый из байтов этого регистра хранит код одной из команд для
управления Flash ROM (запись, стирание, чтение идентификатора и т.п.). Для
запуска требуемой операции, программа должна передать номер байта (от 0 до 7),
который содержит код этой операции. Этот номер передается в 3-битном поле COP
(Cycle Opcode Pointer), которое является частью 32-битного кода, записываемого в
регистр Software Sequencing Flash Control для запуска команды на выполнение.
Блок регистров OpCode Menu обычно инициализирует BIOS при старте платформы.
Расположение байтов кодов операций в 8-байтном блоке зависит от реализации BIOS
и может быть произвольным, поэтому программа должна просканировать данный блок и
определить, под каким номером расположена в нем требуемая команда. Этот номер и
будет использован при заполнении поля COP.

Рассмотрим использование регистров Software Sequencing Flash Status и
Software Sequencing Flash Control подробнее. Регистр Software Sequencing Flash
Status имеет разрядность 8 бит и расположен по смещению 90h относительно
базового адреса контроллера SPI (SPIBAR+90h). Регистр Software Sequencing Flash
Control имеет разрядность 24 бит и расположен по смещению 91h. При
программировании контроллера, к двум указанным регистрам удобно обращаться одной
32-битной операцией чтения или записи по адресу 90h. При этом биты 0-7
соответствуют регистру Software Sequencing Flash Status, а биты 8-31 — регистру
Software Sequencing Flash Control. Именно такой метод доступа используется в
ассемблерных примерах, прилагаемых к статье. Рассмотрим назначение битов в
соответствии с нумерацией, описанной выше.

Бит 0 (SPI Cycle In Progress) – используется для определения момента
завершения операции на шине SPI. "0" означает, что шина SPI свободна и программа
может запускать следующий цикл. "1" означает, что шина SPI занята, выполняется
транзакция. Бит устанавливается и сбрасывается аппаратно, доступен только для
чтения.

Бит 1 (Reserved) – не используется.

Бит 2 (Cycle Done Status) – устанавливается в "1" аппаратно, при
завершении транзакции на шине SPI. Для сброса, программа должна записать "1" в
данный бит.

Бит 3 (Flash Cycle Error) – устанавливается в "1" аппаратно, если при
выполнении транзакции имели место ошибки: защита записи или попытка запуска
следующей транзакции до завершения предыдущей. Для сброса, программа должна
записать "1" в данный бит.

Бит 4 (Access Error Log) – устанавливается в "1" аппаратно, если имели
место попытки обращения к микросхеме BIOS, нарушающие права доступа к заданным
диапазонам адресов, запрограммированным в конфигурационных регистрах контроллера
SPI.

Биты 5-7

Бит 8 (Reserved) – не используется. Как было показано выше, биты 8-31
рассматриваемого 32-битного слова соответствует битам 0-23 регистра Software
Sequencing Flash Control.

Бит 9 (SPI Cycle Go) – запуск транзакции на SPI. Запись "1" в этот бит
запускает выполнение транзакции, тип и содержание которой определяются
состоянием битов 10-31 этого же регистра.

Бит 10 (Atomic Cycle Sequence) – при передаче приказа на выполнение
транзакции, запись "1" в этот бит запрещает внешним событиям вмешиваться в
процессы, происходящие на интерфейсе SPI до тех пор, пока не будут выполнены три
фазы: передача префиксной команды, передача основной команды и завершение
выполнения основной команды.

Отметим, что таким образом реализуется один из механизмов защиты от
случайного искажения содержимого микросхемы BIOS. Так называемые префиксные
команды (например, Write Enable) должны предшествовать командам, изменяющим
содержимое микросхемы (например, Write, Erase). Получив код команды, содержащий
"1" в данном бите, все три фазы контроллер выполняет аппаратно, без
вмешательства процессора до завершения выполнения основной команды.

Бит 11 (Sequence Prefix Opcode Pointer) – при использовании префиксных
команд (когда бит 10 установлен в "1", см. выше), этот бит выбирает один из двух
байтов, который будет передан в качестве префиксной команды для микросхемы SPI
Flash. При "0" выбирается младший байт регистра Prefix Opcode Configuration
Register, при "1" – старший.

Бит 12-14 (Cycle Opcode Pointer) – это битовое поле выбирает один из
восьми байтов, который будет передан в качестве основной команды для микросхемы
SPI Flash. Указанные байты находятся в регистре Opcode Menu Configuration
Register.

Бит 15 (Reserved) – не используется.

Биты 16-21 (Data Byte Count) – задает количество байтов данных для
операций чтения или записи данных. Количество равно значению этого поля плюс 1.
Например: 000000b=1 байт, 111111b=64 байта.

Бит 22 (Data Cycle) – Задает наличие байтов данных в команде. "0"
означает, данные отсутствуют (например, в команде стирания), "1" означает, что
данные присутствуют (например, в команде чтения статуса, данными является
содержимое регистра статуса).

Бит 23 (SPI SMI# Enable) – разрешение формировать запрос на прерывание
System Management Interrupt после завершения транзакции, 0=запрещено,
1=разрешено.

Биты 24-26 (SPI Cycle Frequency) – задает частоту битовой
синхронизации при выполнении транзакции на SPI. Используются два значения
(остальные зарезервированы): 000b=20MHz, 001b=33MHz.

Биты 27-31 (Reserved) – не используются.

Отметим, что предварительное заполнение восьми байтов регистра Opcode Menu
Configuration Register и двух байтов регистра Prefix Opcode Configuration
Register выполняет BIOS при старте платформы. Поэтому, при формировании битовых
полей, выбирающих код команды и код префикса, программа должна просканировать
указанные регистры и найти, под каким номером в них находятся коды требуемых
операций. Варианты заполнения могут быть разными, даже среди материнских плат
одной модели, использующих различные версии BIOS. Некоторые утилиты перезаписи
Flash изменяют содержимое указанных регистров.

Детальное описание всех регистров и команд контроллера SPI приводится в .
Описание команд микросхемы SPI Flash приводится в . Информация, изложенная
выше, также проиллюстрирована ассемблерными примерами, прилагаемыми к статье.

Механизмы доступа к Flash ROM и защита записи

В общем случае, для инициирования операций стирания или перезаписи микросхемы
BIOS, программа должна выполнить четыре действия:

  1. Настроить регистры "южного моста" чипсета, управляющие размещением
    микросхемы BIOS в адресном пространстве для обеспечения доступа к полному
    объему микросхемы.
  2. Выключить режим защиты записи BIOS, реализуемый средствами "южного моста"
    чипсета.
  3. Выключить режим защиты записи BIOS, реализуемый средствами микросхемы
    Flash ROM.
  4. Передать команду стирания или записи микросхеме Flash ROM.

Рассмотрим подробнее эти процедуры, механизмы защиты, препятствующие их
несанкционированному выполнению и, конечно, уязвимости этих механизмов.

Как было сказано выше, при выполнении операций записи и стирания, программный
доступ к микросхеме SPI Flash осуществляется посредством регистров контроллера
SPI, без использования диапазона адресов, в котором доступен образ микросхемы
BIOS. Поэтому перенастройка чипсета для доступа к диапазону FFF00000h-FFFFFFFFh
в данном примере не потребуется.

Защита записи, реализуемая "южным мостом" Intel ICH8 построена по такой же
схеме, как и в платформах предыдущих поколений, отличаются только адреса
регистров. Следовательно, процедура снятия этой защиты подобна процедуре
рассмотренной в предыдущих публикациях. Доступом к микросхеме BIOS управляет
8-битный регистр BIOS_CNTL (его координаты в конфигурационном пространстве
Bus=0, Device=1Fh, Function=0, Register=DCh). Бит 0 этого регистра (бит BIOSWE,
BIOS Write Enable) управляет разрешением записи в микросхему BIOS, 0=запрещена,
1=разрешена. Бит 1 того же регистра (бит BLE, BIOS Lock Enable) обеспечивает
перехват несанкционированного выключения защиты. Если бит BLE=1, то при попытке
установить бит BIOSWE=1 будет генерироваться прерывание SMI (System Management
Interrupt) с вызовом специальной процедуры, входящей в состав BIOS. Причем, если
BIOS при старте установит бит BLE=1, программно обнулить его чипсет не
позволяет, режим перехвата будет выключен только после аппаратного сброса (по
сигналу RESET). Подробности в .

Практика показывает, что данный механизм "защиты от снятия защиты" обычно не
активируется разработчиками BIOS. Во всех материнских платах, исследованных
автором, бит BLE=0, поэтому для снятия защиты записи достаточно установить бит
BIOSWE=1, эта операция не будет перехвачена.

Микросхема Intel ICH8 также поддерживает защиту содержимого микросхемы BIOS,
путем задания адресных диапазонов, защищенных от чтения и (или) записи.
Теоретически, на базе данного механизма можно реализовать эффективную защиту,
так как запрет программно включается процедурами BIOS при старте платформы, и
может быть снят только при аппаратном сбросе. Но и этот механизм обычно не
активируется разработчиками BIOS.

(Продолжение следует)

Источники информации


developer.intel.com .

1) Intel Low Pin Count (LPC) Interface Specification. Revision 1.1. Document
Number 251289-001.
2) Intel P965 Express Chipset Family Datasheet – For the Intel 82P965 Memory
Controller Hub (MCH). Document Number: 313053-001.
3) Intel I/O Controller Hub 8 (ICH8) Family Datasheet – For the Intel 82801HB
ICH8 and 82801HR ICH8R I/O Controller Hubs. Document Number: 313056-001.

Электронные документы, доступные на сайте
www.superflash.com или
ssti.com .

4) 1 Mbit SPI Serial Flash SST25VF010 Data Sheet. Document Number:
S71233-01-000.
5) 8 Mbit SPI Serial Flash SST25VF080B Data Sheet. Document Number:
S71296-01-000.

Электронные документы, доступные на сайте
winbond.com.tw .

6) W25X10A, W25X20A, W25X40A, W25X80A 1M-bit, 2M-bit, 4M-bit and 8M-bit
Serial Flash Memory with 4KB sectors and dual output SPI Data Sheet.

Электронные документы, доступные на сайте
macronix.com .

7) MX25L802 8M-bit CMOS Serial Flash EEPROM Data Sheet.

Электронные документы, доступные на сайте
datakey.com .

8) SPI EEPROM Interface Specification. Part Number 223-0017-004 Revision H.

Электронные документы, доступные на сайте
vtitechnologies.com .

9) SPI Interface Specification. Technical Note 15.

Электронные документы, доступные на сайте
pcisig.com .

Документы , на сайте pcisig.com доступны только для членов PCI
Special Interest Group. Воспользовавшись поисковыми системами, можно найти
данные документы для свободной загрузки.
10) PCI BIOS Specification. Revision 2.1.
11) PCI Local Bus Specification. Revision 3.0.
12) PCI-to-PCI Bridge Architecture Specification. Revision 1.1.

Программатор микросхем BIOS для материнских плат, ноутбуков, DVD, видеокарт и т.д. 24 EEPROM и 25 SPI FLASH на CH341A через USB

USB мини программатор CH341A используется для программирования микросхем BIOS для материнских плат компьютеров, ноутбуков, видеокарт, мультимедийных плееров, памяти телевизоров, ЖК-дисплеев, маршрутизаторов, игровых приставок, спутниковых ресиверов, ресиверов T2, 24 EEPROM, 25 SPI FLASH и т.п. Программатор по размеру немного больше флэшки и собран на микросхеме USB bus convert chip CH341A.

Джампер P/S служит переключателем режима работы микросхемы CH341A как конветрер USB > Параллельный Порт (Paralel) или USB > Последовательный Порт (Serial). С программатором используется программное обеспечение которому необходимо, чтобы CH341A работала как конвертер USB > Параллельный Порт (Parallel), следовательно джампер должен быть установлен и контакты замкнуты.

Программатор на CH341A имеет драйвера и программное обеспечение для операционных систем Windows 98, Windows ME, Windows 2000, Windows XP, Windows Vista и Windows 7.

Установка драйвера . Для начала использования программатора нужно сначала подключить его к USB порту компьютера, можно даже без установленного чипа в колодке. Если программатор рабочий и с USB разъёмом компьютера всё в порядке, то на корпусе программатора должен загореться светодиод, сигнализирующий о поступлении питания, и Ваш компьютер издаст звук, оповещающий Вас, что вставлено новое USB устройство. После этого операционная система должна начать поиск драйверов и в результате их скорее всего НЕ обнаружит. Ничего страшного в этом нет. Установка драйвера программатора такая же, как у любого USB девайса. Сделаем всё сами, как говорится "вручную". Жмём сочетание клавиши Win + Pause, или просто открываем Диспетчер Устройств. В списке устройств для неизвестного устройства указываем путь к драйверу (заранее распакуйте их из архива, который можно скачать ниже на странице), это должен быть файл ch341wdm.inf . Второй способ установки драйвера - это просто запустить файл ch341par.exe с правами администратора и драйвер установится сам. Если драйвер установлен верно, то можно переходить к программированию чипов.

Установка чипа в программатор . Обязательно! Вытаскиваем программатор из USB разъёма компьютера. Если вы будете программировать микросхему на ZIF панели программатора, то нужно поднять ручку-фиксатор, чтобы открыть пазы для установки микросхемы. Необходимо отсоединить чип, который собираетесь программировать, от конечного устройства (снять с материнской платы, выпаять из ноутбука или т.п.), и установить чип согласно ключа в пазы программатора (расположение ключа должно совпадать с маркировкой около сокета на программаторе, где написано 25xx или 24xx). Потом следует опустить ручку-фиксатор, чтобы зафиксировать чип в колодке. Если нужно программировать микросхемы 25 серии в корпусе SOP8 или SOP16, то на плате программатора есть по одной контактной площадке под эти типы корпусов. Соединить микросхему с контактной площадкой можно как с помощью пайки, так и с помощью аккуратного закрепления ножек микросхемы механическим путем (прижать пластмассовым крокодилом или прищепкой). Когда чип установлен, подключаем программатор с чипом на борту опять к компьютеру в USB порт и запускаем программу CH341A.exe . Слышим звук подключения USB устройства и радуемся успешно выполненому первому шагу.

Как программировать чипы . Вот тут начинается самое интересное. Описывать работу с программой я не буду, а порекомендую просмотреть несколько видеоинструкций по работе с данными программаторами. Видеоинструкции можете просмотреть ниже на этой странице.

Примечание 1: Программатор прошивает чипы вполне шустро, но некоторые типы микросхем немного медленно. Всё зависит от объёма чипа и его типа.

Схема программатора:

Для примера, вот только некоторые типы поддерживаемых микросхем:

  • ATMEL
    AT25DF041A, AT25DF321, AT25F004, AT25F512A, AT25F2048, AT25F4096, AT25F1024A, AT25FS010, AT25FS040, AT26DF081A, AT26DF161A, AT26DF321, AT26F004
  • EON
    EN25B05, EN25P05, EN25B10, EN25P10, EN25BF20, EN25P20, EN25F20, EN25B40, EN25P40, EN25F40, EN25B80, EN25P80, EN25F80, EN25T80, EN25B16, EN25P16, EN25B32, EN25P32, EN25B64, EN25P64
  • Excel Semiconductor Inc
    ES25P10, ES25P20, ES25P40, ES25P80, ES25P16, ES25P32
  • ST
    M25P05A, M25P10A, M25P20, M25P40, M25P80, M25P16, M25P32, M25P64, M25PE10, M25PE20, M25PE40, M25PE80, M25PE16, M25PE32, M45PE10, M45PE20, M45PE40, M45PE80, M45PE16, M45PE32
  • MXIC
    MX25L512, MX25L1005, MX25L2005, MX25L4005, MX25L8005, MX25L1605, MX25L3205, MX25L6405, MX25L6445, MX25L6405(SOP16)
  • NexFlash
    NX25P80, NX25P16, NX25P32
  • Chingis Technology Corporation
    Pm25LV512, Pm25LV010, Pm25LV020, Pm25LV040, Pm25LV080, Pm25LV016, Pm25LV032, Pm25LV064
  • Saifun Semiconductors
    SA25F005, SA25F010, SA25F020, SA25F040, SA25F080, SA25F160, SA25F320
  • WINBOND
    W25P10, W25X10, W25Q10, W25P20, W25X20, W25Q20, W25P40, W25X40, W25Q40, W25P80, W25X80, W25Q80, W25P16, W25X16, W25Q16, W25P32, W25X32, W25Q32, W25P64, W25X64,W25Q64

И другие. Более полный список смотрите на этом фото .

Примечание 2: Из личной практики, даже если необходимой вам микросхемы нет в списке прошиваемых, или программа не может автоматически правильно определить тип вашей микросхемы, то можно вручную выбрать подобную с тем же объёмом памяти и попробовать прошить. Обычно получается в 99% случаев.

Примечание 3: Среди самых частых поломок программатора обычно встречается "вылет" стабилизатора по питанию 3.3V (обычно, маленькая микросхемка 1117 серии). При этом программатор перестаёт определять вставленные в сокет микросхемы и процесс записи/чтения длится почти вечность. Стабилизатор сгорает в случае ошибочной установки микросхем в сокет не соблюдая полярность, а также при установке дефектных микросхем. Для восстановления работоспособности программатора необходимо заменить микросхемку стабилизатора питания.

Для работы с планарными (SMD) микросхемами Вам могут понадобиться адаптеры (переходники) TSU-D08/SO08-150 для 24xx и 93xx чипов или DIP08/SO08-208 для 25xx чипов:

Переходник-прищепка для прошивки чипов БЕЗ ВЫПАИВАНИЯ. C данным программатором очень удобно использовать переходник-прищепку для прошивки микросхем BIOS БЕЗ ВЫПАИВАНИЯ. Очень удобно использовать переходник в том случае, когда нет возможности аккуратно выпаять микросхему не повредив соседние детали и разъемы на плате. Однако в некоторых случаях цепи питания микросхемы, разведенные на плате вашего оборудования, мешают и программатор невсиле запитать микросхемы. В этом случае процесс прошивки без выпаивания микросхемы невозможен.

Заказать программатор можно у нас в магазине с доставкой по Украине. Срок доставки в ваш город 2-3 дня. Отправка в день оплаты. Стоимость программатора и комплектация указана в таблице. Оплата на карту ПриватБанка или WebMoney (WMZ). Как смотрите в конце данной страницы.

Прайс-лист на программаторы:

Наименование, фото

Комплектация

Прайс-лист на аксессуары:

Наименование, фото

Комплектация

Вы можете также просмотреть видеоинструкции по программаторам данной серии:

Программное обеспечение для программатора:
  • Драйвер программатора: CH341PAR_drivers.rar
  • Драйвер RS232 порта:

Микросхемы флеш-памяти eeprom серии 25xxx широко применяются в микроэлектронике. В частности, в современных телевизорах и материнских платах в 25xxx хранится прошивка биоса. Перепрошивка 25xxx осуществляется по интерфейсу SPI, в чем и заключается отличие этих микросхем от флеш-памяти семейства 24xxx, которые шьются по i2c(квадратная шина).

Соответственно, для чтения/стирания/записи 25xxx нужен SPI-программатор. Одним из самых дешевых вариантов программаторов для этой цели является USBasp, который стоит смешные деньги- с доставкой всего около 2$ на ебее. В свое время я купил себе такой для программирования микроконтроллеров. Теперь мне понадобилось прошить не микроконтроллер, а SPI-флеш и решено было им воспользоваться.

Забегая вперед скажу, что прошивка от Tifa работает, микросхемы 25xxx шьются. Кстати, кроме 25xxx, модифицированный программатор рассчитан на работу с 24xxx и Microwire.

1. Перепрошивка USBasp

Сначала нужно замкнуть контакты J2:

Лично я не просто замкнул, а впаял в контакты переключатель:

При замкнутых контактах J2 (это у меня переключатель в положении вправо) USBasp переходит в режим готовности к перепрошивке.

Сам себя USBap перепрошить не может, поэтому нужен еще один программатор. USBasp как бы оказывается в положении хирурга, который не может сам себе вырезать аппендикс и просит друга помочь. Для перепрошивки USBasp я использовал самодельный программатор AVR910 , но для одного раза можно по-быстрому за пару минут спаять программатор «5 проводков» , который состоит всего-лишь из одного разъема LPT и 5 резисторов.

Подключаем программатор к USBasp:



Теперь идем на форум альтернативной прошивки от Tifa, в самом верхнем посте находим и качаем архив с последней прошивкой и ПО.

Находим там файл mega8.hex, это и есть альтернативная прошивка для USBasp.

Запускаем CodeVisionAvr (я использую версию 2.0.5), выставляем настройки программатора: Settings-> Programmer.

Устанавливаем настройки записи: Tools->Chip programmer. Выбираем чип Atmega8L, именно такой стоит на USBasp. Фьюзы не выставляем- те, что надо, уже прошиты в чипе. Остальные настройки оставляем по умолчанию.

Стираем старую программу USBasp: Program-> Erase chip.

Открываем файл прошивки mega8.hex: File-> Load flash.

Перепрошиваем USBasp: Program-> Flash.

Если прошла запись и не выдало сообщение об ошибке, значит альтернативная прошивка благополучно прошита в USBasp. Теперь USBasp может не только шить AVR-микроконтроллеры, как раньше, но еще и работать с флеш-памятью. Размыкаем контакты J2, что бы USBasp снова перешел в режим программатора.

Теперь проверим, видит ли Windows 7 x86 этот программатор. Вставляем USBasp в USB и… система пишет «USBasp не удалось найти драйвер». Понятно, нужно установить драйвер. Но драйверов в скачанном на форуме нет, их нужно скачать на родном сайте USBasp , оригинальные драйвера подходят и для модифицированного программатора. Скачали, установили, Win7 увидела программатор, все ок. Впрочем, я программирую микроэлектронику на ноутбуке с WinXP, она тоже после установки драйверов видит программатор.

2. Площадка для подключения USBasp к микросхеме 25xxx DIP

Теперь нужно подготовить площадку для программирования 25xxx. Я это сделал на макетной плате по такой схеме:

3. Прошивка микросхем 25xxx через USBasp

Для прошивки 25xxx через модифицированный USBasp используется программа AsProgrammer, которая тоже есть в .

Для примера, поработаем с микросхемой Winbond 25×40. Запускаем AsProgrammer, ставим режим работы SPI и выбираем тип микросхемы: Микросхема-> SPI-> Winbond->…

… и видим, что W25X40 в списке нет. Что же, тогда заполним параметры микросхемы вручную. Находим мануал на Winbond 25X40 и там на странице 4 видим такие параметры:

Эти параметры вносим сюда:

Подключаем USBasp к компьютеру и микросхеме Winbond 25×40:

С помощью кнопок «прочитать», «записать», «стереть», проверяем работу программатора:

Только нужно учесть, что перед тем, как что-то записать в микросхему, сначала нужно выставить: Настройки-> Проверка записи, что бы после записи прошивки в микросхему была выполнена проверка на соответствие того, что писали тому, что в итоге записали. Это немаловажная вещь, потому что если прошивку делать не на очищенный чип, в него запишется чёрт-те что. Поэтому сначала нужно стереть микросхему, а затем только проводить ее запись.

Благодаря прошивке от Tifa дешевый китайский программатор USBasp теперь умеет работать с микросхемами flash-памяти eeprom 25xxx. Теоретически еще может работать c 24xxx и Microwire, но я проверил только работу с 25xxx.

UPD1:
Оказывается, такую же прошивку можно записать и в программатор AVR910. Тогда он тоже будет работать с flash-памятью 25xxx:

Не столь давно приключилась со мной одна неприятность. Нужно было обновить BIOS на материнской плате, но в процессе прошивки произошла ошибка, система зависла и перестала отвечать на любые команды. После вынужденной принудительной перезагрузки компьютер включился, крутил кулерами, но на экране ничего не отображалось и не было никаких звуковых сигналов. На лицо повреждение BIOS при записи.

Немного предыстории:

Материнская плата ASUS Commando, без, модного нынче, Dual BIOS. Только Boot Block – небольшая область BIOS, не затрагиваемая записью, которая позволяет, в случае необходимости, инициализировать минимальный набор компонентов, необходимых для включения компьютера, произвести поиск BIOS на съемных носителях. Обычно подходят Floppy или флешка с файлом прошивки, переименованным в AMIBOOT.ROM (зависит от BIOS и материнской платы, точнее написано в инструкции к плате), либо CD с драйверами из комплекта поставки. Обнаружив подходящий файл, boot block запишет его в BIOS и, если все прошло правильно, компьютер после перезагрузки оживет. Неплохая фишка, несколько раз выручала, но в данном случае она не сработала, видимо, оказался поврежден и boot block.

Пришлось искать другие решения. Так как в своем арсенале инструмента у меня не было паяльной станции и стационарного программатора для разных eeprom’ок, пришлось искать более доступные решения. Рассматривая плату, я обнаружил на ней небольшой разъем SPI_J1 , а микросхема флеш памяти как раз с SPI интерфейсом. Поиск в Интернет показал, что существуют вполне приличные заводские девайсы и немало самоделок для прошивки SPI микросхем через USB (об универсальных программаторах с поддержкой SPI даже не говорю, это само собой). Правда, поиск по местным магазинам, СЦ и форумам в отличии от Google ничего не дал, а заказывать и ждать месяц очень не хотелось.

Еще немного поиска, и вот оно, решение – чешского комрада (на чешском) о предельно простом программаторе и софтине к нему для прошивки микросхем флеш памяти с SPI интерфейсом! Ничего сложного, минимум компонентов.

Технически это очень простой способ, и требует лишь базового понимания схемотехники, умения припаять пару проводков и воспользоваться командной строкой (cmd). Но если вы не уверены в своих силах, лучше не рискуйте. Кроме того, всегда можно попросить друга, дружащего с паяльником.

Сборка устройства

Для сборки нам понадобится:

  • 1 разъем DB25P, можно отрезать от ненужного шнура от принтера
  • 4 шт. резисторы по 150 Ом
  • 1 любой электролитический конденсатор емкостью 100 мкФ или более и рабочим напряжением на 6.3 В или больше (нужен при запитке от БП)
  • Кусок плоского шлейфа с IDC разъемом на 10 контактов (он идеален при наличии SPI разъема на плате)
  • Штекер molex (как на жестких дисках ATA), либо гнездо для батарейки CR2032

Ничего дефицитного нет, все можно найти в куче хлама или за копейки в любом радиомагазине. В худшем случае, можно попробовать обойтись вообще несколькими кусками провода, подсоединив контакты с SPI напрямую к LPT, однако, в данном случае нужно быть предельно острожным, да и правильность записи гарантировать сложно.

Программатор SPIPGM может использоваться и для микросхем флеш-памяти с рабочим напряжением 1.8 Вольт . Автор применяет для этого дополнительный модуль (своего рода переходник), который подключается к основному модулю и состоит из дополнительных резисторов для гашения напряжения и каскада усиления на транзисторах BC547 для выходного сигнала чипа (схемы на сайты автора по ссылке выше). Ниже приводится адаптация схемы подключения, сразу предназначенная для работы с чипами на 1.8В. Для получения напряжения питания в 1.8 Вольта применен делитель напряжения (на схеме серые резисторы, желательно 1/4 Ватт), делитель при желании может быть пересчитан на другие номиналы (я указываю варианты 10 и 12 Ом, или 100 и 120 Ом), а еще лучше заменен подходящим DC-DC преобразователем (например, TLV70018). Диоды любые, нужны они для минимизации ошибок и, в принципе, можно обойтись без них.


Мы же будем подключать программатор не к чипу, а к разъему SPI_J1.

Если разъем 7 контактный, то подключается к нему следующим образом:


1. -> питание +3.3v
2. -> земля от питания и вывод 18 на LPT
3. -> резистор -> LPT 7
4. -> резистор -> LPT 8
5. -> резистор -> LPT 10
6. -> резистор -> LPT 9

Так же, на некоторых материнских платах бывают 9 контактные разъемы, там схема подключения немного отличается:


Разъем DB25P хорош тем, что внутри него можно разместить все необходимые детали. Желательно использовать максимально короткую длину кабеля, иначе будут ошибки записи. Неплохо было бы закрыть провода экраном, либо от антенного кабеля, либо просто обмотав фольгой от шоколадки, не забыв подсоединить экран к земле (GND).


При питании от батарейки конденсатор можно исключить. Лично я брал с +5 шины блока питания (красный провод), подключив к нему через разъем molex и погасив напряжение диодами до ~3.3v (двух-трех диодов будет достаточно).

Блок питания все же надежней батарейки. Имея отдельный БП можно запитать напрямую от шины +3.3 (оранжевый провод ATX разъема). Чтобы запустить блок питания без компьютера нужно замкнуть зеленый и черный провода.

Девайс в сборе:


Программа SPIPGM

Теперь можно переходить к программному обеспечению.

Программа поддерживает большое количество чипов (полный список в файле Readme.txt) и по заявлению автора работает быстрей аналогов. Скачать свежую версию можно с сайта автора , либо отсюда:

Проект, кстати, развивается и по сей день, автор частенько выкладывает обновленные версии программы с информацией о новых чипах, доработками и исправлениями.

В архиве следующие файлы:

SPIPGM – исполняемый файл для Linux

SPIPGM.EXE – исполняемый файл для DOS/Win9x

SPIPGMW.EXE – исполняемый файл для Win9x/NT/2k/XP/Vista/7 (только х32 , поддержки х64 нет)

IOPERM.DLL – библиотека для низкоуровневого доступа в Win9x/NT/2k/XP/Vista/7(без UAC)

Надежней всего прошивать из DOS, загрузившись с Hiren или любого другого подходящего загрузочного CD/Flash. Но можно и из Windows.

Синтаксис и основные команды:

Синтаксис: spipgmw /<команда> [имя файла] [адрес] [размер]

Основные команды:

i – идентификация флеш памяти
d имя файла – считать содержимое флеш памяти в файл
p имя файла – записать флеш память из файла прошивки (без стирания)
v имя файла – сравнить содержимое флеш памяти с файлом прошивки
e полное стирание флеш памяти
b – проверка стирания флеш памяти
u – разблокировать защиту от записи (зависит от сигнала WP#)

Имя файла полное имя файла, например: file.bin , file.rom и т.п. Расширение роли не играет, главное чтобы это был корректный файл образа и правильно указано имя.

Прошивка BIOS через SPI:

spipgmw /i – идентификация чипа. Для проверки все ли правильно подключено, программа должна определить тип установленной памяти. Если этого не происходит, проверьте правильность подключения и поддержку чипа программой.

spipgmw /d BIOS.bak – если нужно сохранить резервную копию имеющегося BIOS.

spipgmw /u – разрешение записи.

spipgmw /e – стирание.

spipgmw /p FILE.rom – запись прошивки («FILE.rom» – имя файла прошивки, нужно чтобы файл находился в одной папке с программой)

…ждем процесс записи…

spipgmw /v FILE.rom – сравниваем записанные данные с файлом прошивки. Либо можно сделать дамп spipgmw /d test.rom и сравнить его содержимое с оригинальным файлом прошивки в каком-нибудь Hex-редакторе.

Возможно наличие небольшого количество ошибок. Зависит от длинны кабеля, стабильности питания, типа памяти. Конечно, желательно, чтобы ошибок не было вовсе, но даже с некоторым количеством ошибок компьютер скорей всего запустится, а там уже можно прошить BIOS штатными средствами.

Данный способ подходит не только для прошивки BIOS материнских плат, но и любых других устройств, имеющих SPI разъем, либо напрямую, любой поддерживаемой микросхемы.