Способы коммутации сети для любых устройств. Аналоговые коммутаторы и мультиплексоры в устройствах на микросхемах

Многие устройства имеют в своем составе цепи управления (коммутации) нагрузкой, которые обеспечивают их включение/выключение и задают яркость свечения ламп и т.д.. Такие цепи обычно строятся на основе тиристоров или симисторов, реже применяют транзисторы, оптотиристоры или электромагнитные реле. Используя современные тиристоры и симисторы можно коммутировать мощные лампы с напряжением питания свыше 220 В. В маломощных светоизлучающих системах с этой же целью могут использоваться мощные транзисторы, которые управляют лампами с низким напряжением питания (возможные пределы зависят от параметров применяемых транзисторов). Ниже приводятся схемы нескольких простейших узлов коммутации нагрузки.

Очень часто в качестве коммутирующих элементов используются тиристоры серии КУ202 и симисторы серии. КУ208. Эти компоненты выдерживают напряжения 25...480 В (зависит от конкретного типа элемента) и обеспечивают ток в открытом состоянии до 5...10 А. Если же необходимо коммутировать светоизлучатели большей мощности, то могут применяться тиристоры серий Т106-10-4, Т122-20-2, Т131-40-3. В общем случае применение симисторов в качестве коммутирующих элементов несколько упрощает схемы вследствие того, что они могут коммутировать переменное напряжение, т.е. отсутствует необходимость во включении диодного моста на входе силовой цепи (повышается КПД и уменьшаются габариты устройства в целом). Кроме этого, имеется принципиальная возможность применения оптотиристоров, которые обеспечивают гальваническую развязку между силовыми цепями и схемой управления.


Puc.1

На рис.1 приведена типовая схема включения тиристора в качестве элемента коммутации обычных ламп накаливания. Управляющий сигнал с амплитудой 3...7В подается непосредственно на управляющий электрод тиристора VS1. Схема управления должна обеспечивать ток до 200 мА на этом входе. Диодный мост VD1-VD4 обеспечивает подачу на тиристор постоянного напряжения (в случае применения симистора диодный мост можно удалить).


Puc.2

На рис. 2 схема коммутации дополнена эмитгерным повторителем. Слаботочный управляющий сигнал подается на базу транзистора VT1. Ток коммутации протекает через транзистор, то-коограничивающий резистор R1 и управляющий электрод тиристора VS1. В этом случае входное управляющее напряжение может иметь амплитуду немногим более 1 В.


Puc.3

С помощью оптронного тиристора (рис. 3) можно гальванически развязать управляющий сигнал и силовые цепи. В этом случае управляющие импульсы поступают на тиристор уже с оптрона.


Puc.4

Схема на рис. 4 позволяет реализовать гальваническую развязку с помощью импульсного трансформатора. На элементах D1.1 и D1.2 собран высокочастотный генератор с частотой 25 кГц. В исходном состоянии генератор заперт низким уровнем на входе 2 элемента D 1.1. При появлении на входе 2 высокого уровня генератор, запускается и высокочастотные импульсы открывают тиристор VS1 (лампа зажигается).


Puc.5

На рисунке 5 приведены другие часто встречающиеся схемы.

При большом числе пользователей более эффективны схемы коммутации, содержащие много звеньев. На рис. 2.3. приведена двухзвенная схема коммутации. Для определения

областей применения сравним эту и предыдущую схемы по числу тре­буемых точек коммутации.

Рис. 2 Двухзвенная коммутационная схема

На рис. 2 приняты следующие
обозначения: -

я - число входов в матрицу

звена А; г - число матриц звена А; т - число промежуточных ли­ний между звеньями А и В; s - количество входов в матри­цу звена В; к- число выходов из матрицы

звена В; /- связность.

Связность - это число проме­жуточных линий, которые соединя­ют одну определенную матрицу зве­на А с одной определенной матри­цей звена В. Пусть необходимо коммутировать N входов с М выходами. Тогда будут соблю­даться следующие условия:

для полнодоступной коммутационной схемы число точек коммутации равно NM;

для неполнодоступной схемы коммутации число точек коммутации равно r{nm) + (m/f) (fa);

число коммутаторов звена А (г) зависит от требуемого общего числа входов N и составляет г = N/n;

Число коммутаторов звена В (m/f) зависит от требуемого общего числа выходов М, т.е. m/f=M/k.

Тогда число точек коммутации неполнодоступной коммутационной схемы будет равно Nm + Ms. Тем самым определяется условие того, что многозвенная коммутационная схема более эффективна, чем однозвенная: число коммутационных точек в ней должно быть мень­ше, чем в полнодоступной

Последнему условию может соответствовать множество сочетаний параметров комму­тационных схем, но для всех из них справедливы соотношения

т/М< 1 и s/N< 1 (гдеN, M, m, s 0).

Эти требования означают, что число выходов матрицы звена А не должно быть больше общего числа выходов всей коммутационной схемы М, а число входов звена В не должно быть больше общего числа входов в коммутационную схему N.

Такое условие выполняется для всех реальных задач. Число выходов матриц, которые используются для малых станций (100...500 входов и тот же диапазон числа выходов) варьи­руется от 4 до 8, а для больших емкостей (4000...300 000 входов и выходов) используются матрицы, имеющие 512 выходов. Из приведенных данных следует, что в современных теле­фонных станциях однозвенные коммутационные схемы во много раз менее экономичны, чем многозвенные. Однако небольшое число входов в коммутационную матрицу не позво­ляет построить коммутационную двухзвенную схему с достаточно большим числом выхо­дов. Для этих случаев применяются многозвенные схемы (рис. 3).

Рис. 3 Пример построения 4-звенной коммутационной схемы 512x512

На рис. 3 показан блок, содержащий 8 коммутационных матриц 8x8. Он имеет общее число входов N = 64 и выходов М = 64. Для увеличения числа входов и выходов строится схема из 8 блоков, которая позволяет увеличить число входов и выходов до N = М = 512.


Показанная на рис. 3 схема коммутации имеет равное количество входов и выходов, однако, для построения телефонных систем применяются различные типы блоков. Они различаются не только параметрами коммутаторов и числом каскадов, но и назначением. Например, известно, что уровень загрузки абонентских линий довольно низок (за исключе­нием таксофонов, линий с терминалами сети Интернет). В среднем они используются на 10-15%. Для межстанционных линий, стоимость которых очень высока, необходимо увели­чить интенсивность использования и тем самым снизить требования по числу линий, выде­ляемых для заданной группы абонентов. Поэтому для включения абонентских линий при­меняются специальные схемы с концентрацией (рис. 2.5).

Рис.4 Концентрация нагрузки на звене А: а) 2-звенная схема с концентрацией; б)пример создания матрицы с концентрацией

Для этого применяются матрицы, которые имеют число входов большее, чем число выхо­дов. Это может достигаться конструктивно или путем запараллеливания выходов (рис. 4). В цифровых системах коммутации широко применяются варианты, когда концентрация пу­тем запараллеливания делается на абонентских (терминальных) комплектах, что вносит до­полнительные удобства. При рассмотрении вопросов построения терминальных комплектов будут рассмотрены и такие варианты.

Коммутация в телекоммуникациях

Коммутация

Структура станции коммутации

Иерархия коммутаций

Коммутация каналов и коммутация пакетов

Передача данных по телекоммуникационным сетям

Коммутация

Функции, выполняемые узлом сети в процессе организации и распада соединительных трактов между абонентами, называются коммутацией . Коммутация означает временное установление пути передачи от определенного входа до определенного выхода в сети или же в группе таких входов и выходов.

Сеть , в которой соединительные тракты сначала создаются для каждого обмена сообщениями, а после его окончания распадаются на участки, называется коммутируемой . Однако на сети всегда могут быть абоненты, имеющие постоянные соединительные тракты или тракты, организуемые на определенное время по расписанию.

Коммутация осуществляется с помощью комплекса специальных устройств под общим названием «станция коммутации». Употребительны также названия более специфические названия « автоматическая телефонная станция» и « система коммутации».

Автоматическая телефонная станция (АТС) – комплекс устройств, на котором заканчивается множество абонентских линий и который может связать линии между собой или осуществить передвижение сигнала между линиями. Коммутация на АТС означает временную связь между телефонными аппаратами, компьютерами или устройствами, которая устанавливается набором номера.

Система коммутации - устройство, которое соединяет или разъединяет две линии передачи между собой.

Пункт А Пункт Б

Рис.8.1. Место станций коммутации в обобщенной схеме системы электросвязи

В рассмотренной выше схеме передатчик и приемник могут рассматриваться как станции коммутации . В качестве линий передачи выступают двухпроводные соединительные линии между станциями. Станции коммутации являются обязательным элементом простейшей телекоммуникационной сети, рассмотренной ниже.

Простейшая телекоммуникационная сеть

Лицо, пользующееся услугами связи, называется абонентом. Для выхода на связь абонент пользуется своим абонентским устройством (телефонным аппаратом, компьютером или телевизором).

Для передачи информации от одного абонентского устройства сети к другому требуется установить соединение через соответствующее устройство. Это устройство называется станцией коммутации. Абонент идентифицирует требуемое соединение с помощью набора номера, который передается через абонентскую линию в станцию коммутации. Набранный номер содержит контрольную информацию о звонке и маршруте для установления соединений.

В принципе все телефонные аппараты можно соединять кабелями по правилу: «каждый с каждым», как это было на заре телефонии. Однако когда число телефонных аппаратов растет, то оператор вскоре замечает, что приходится часто коммутировать сигналы с одной пары проводов на другую. Очевидно, что, построив станцию коммутации в центре района массового проживания абонентов, можно значительно сократить общую длину проводов. Совсем немного проводов требуется и между районными станциями, т.к. число одновременно происходящих звонков во много раз меньше числа абонентов, см. рис. 8.2. Первые станции коммутации были ручными, коммутации делались на щите переключений.


Рис. 8.2. Простейшая телекоммуникационная сеть.

Телефонные аппараты абонентов были соединены со станциями коммутации с помощью абонентских линий, каждая из которых представляет собой пару проводов. В свою очередь станции коммутации, находящиеся на территории одного города (населенного пункта), были соединены соединительными линиями (СЛ), каждая из которых представляет собой пару проводов.

Строунджер предложил первую автоматическую станцию коммутации в 1887 году. С этого времени управление коммутацией осуществляется абонентами с помощью набора номера. Много десятилетий станции коммутации были комплексами электромеханических реле, но в последние несколько десятилетий они развились в цифровые системы коммутации с программным управлением. Современные станции имеют очень большую емкость – десятки тысяч абонентов, и тысячи из них одновременно производят звонки в час пик.

Если станции коммутации находятся в разных городах, то они соединяются линиями связи, каждая из которых содержит несколько десятков каналов связи.

Совокупность линейных и станционных средств, предназначенных для соединения двух конечных абонентских устройств, называется соединительным трактом . Число коммутационных узлов и линий связи в соединительном тракте зависит от структуры сети и направления соединения.

Структура станции коммутации

Станция коммутации представляет собой устройство, предназначенное для установления, поддержания и разъединения соединений (абонентов).

Для выполнения своих функций станция коммутации должна иметь, рис. 8.3:

· коммутационное поле (КП), состоящее из коммутаторов и предназначенное для соединения входящих и исходящих линий (каналов) на время передачи информации;

· управляющее устройство (УУ), обеспечивающее установление соединения между входящими и исходящими линиями через коммутационное поле, а также прием и передачу управляющей информации.

Рис.8.3. Основные составляющие станции коммутации

Основой станции коммутации является коммутационное поле, которое состоит из элементов коммутации, точек коммутации и коммутаторов.

Элемент коммутации – простейший ключ, который может с помощью управляющего устройства замыкаться и размыкаться. Ключом может быть металлический контакт или полупроводниковый переключатель.

Точка коммутации - несколько одновременно работающих ключей.

Коммутатор – коммутационная схема с n входами и m выходами. В каждой точке пересечения входа с выходом должен быть предусмотрена точка коммутации. На схеме входы представлены горизонтальными, а выходы вертикальными линиями.

Кроме того, на станции имеются источники электропитания, устройства сигнализации и учета параметров нагрузки (количества сообщений, потерь, длительности занятия и др.).

В некоторых случаях станция коммутации может иметь устройства приема и хранения информации, если таковая передается не непосредственно потребителю информации, а предварительно накапливается на узле. Такие узлы применяются в системах коммутации сообщений .

Рис. 8.4. Элементы коммутации, точки коммутации и коммутаторы

Главная задача телефонной станции коммутации построить соединительный тракт между абонентом А, который инициирует звонок, и абонентом Б,



соответственно информации, содержащейся в набранном номере.

Построенный разговорный тракт должен сохраняться вплоть до сигнала отбоя. Этот принцип называется коммутацией каналов в отличие от коммутации пакетов , которая часто используется в компьютерных сетях.

В прошлом коммутационное поле было электромеханическим и контролировалось импульсами с телефона. Позднее, контрольные функции были интегрированы в общий блок контроля. В настоящее время общий блок контроля представляет собой эффективный и надежный компьютер или микропроцессор со значительным программным обеспечением, работающим в режиме реального времени. Станция с таким обеспечением называют станциями коммутации с программным контролем, см. рис.8.5.

Каждая станция коммутации организует соединение между абонентами А и Б в соответствии сигнальной информацией, которую получает от абонента или от предыдущей станции. Если эта станция не является учрежденческой, то она передает сигнальную информацию к ближайшей станции чтобы строить разговорный тракт далее.


Рис. 8.5 Станция коммутации с программным контролем

Иерархия коммутаций

На заре телефонии коммутаторы или станции коммутаций были локализованы в центре района обслуживания и производили соединения для абонентов этого района. Однако и по сей день станции коммутации принято рассматривать как центральные службы.

Когда телефонная плотность выросла, и появился спрос на разговорные тракты большой длины, появилась необходимость связывать соединительными линиями центральные станции. С дальнейшим ростом телефонного обмена потребовалось уже связывать новые коммутаторы с центральными станциями, появился второй уровень коммутации, включающий в себя транзитные коммутаторы. В настоящий момент сети имеют несколько уровней коммутации.

Формы, наименования и число уровней иерархии коммутаций разнятся от страны к стране. Рис. 8.6 показывает пример возможной иерархии коммутируемой сети.

Иерархическая структура сети помогает оператору управлять сетью и сделать прозрачными основные принципы маршрутизации звонков. Звонок направляется каждой станцией вверх по иерархии, если пункт назначения не локализован по уровню ниже этой станции. Структура телефонного номера поддерживает этот простой принцип маршрутизации вверх и вниз по уровням иерархии.

Рис. 8.6. Иерархия станций коммутации

Второй формой реализации многозвенной коммутационной схемы со звеньями пространственной и временной коммутации является структура, приведенная на . Эту коммутационную схему обычно называют схемой время - пространство - время. Информация, поступающая по каналу входящего тракта с ВРК , задерживается на входящем звене временной коммутации до тех пор, пока не будет найден соответствующий свободный путь через звено пространственной коммутации.


В этот момент информация будет передана через звено пространственной коммутации на соответствующее выходное звено временной коммутации, где она будет храниться до тех пор, пока не наступит временной интервал, в котором требуется осуществить передачу данной информации. Предполагая, что на звеньях временной коммутации обеспечивается полнодоступность (т. е. все входящие каналы могут быть соединены со всеми исходящими), при установлении соединения на звене пространственной коммутации можно использовать любой временной интервал. В функциональном смысле звено пространственной коммутации как бы повторяется (копируется) по одному разу для каждого внутреннего временного интервала Это иллюстрирует вероятностный граф схемы ВПВ , приведенный на .


Важной особенностью коммутационной схемы ВПВ , на которую следует обратить внимание, является то, что звено пространственной коммутации работает с разделением времени независимо от внешних трактов с ВРК . По существу, число временных интервалов работы звена пространственной коммутации l не должно совпадать с числом временных интервалов с внешних трактов с ВРК .
Если звено пространственной коммутации является неблокирующейся коммутационной схемой, то блокировка в схеме ПВП может возникать в тех случаях, когда нет свободных внутренних временных интервалов звена пространственной коммутации, в течение которых промежуточная соединительная линия, ведущая от входящего звена временной коммутации, и промежуточная соединительная линия, ведущая к исходящему звену временной коммутации, одновременно свободны. Очевидно, что вероятность блокировки будет минимальней, если число временных интервалов звена пространственной коммутации l будет выбрано достаточно большим. Действительно, проводя прямую аналогию с трехзвенными пространственными коммутационными схемами, схему ПВП можно считать неблокирующейся, если l=2c-1. Общее выражение для вероятности блокировки для коммутационной схемы ВПВ , отдельные звенья которой (В, П, В) являются неблокирующимися, имеет вид

Где - коэффициент временного расширения (l/с), l - число временных интервалов работы звена пространственной коммутации.
Сложность реализации ВПВ -коммутации можно рассчитать по следующей формуле

Cтруктура ВПВ более сложная, чем структура ПВП . Заметим, однако, что в коммутационной схеме ВПВ используется временная концентрация, а в схеме ПВП - пространственная. По мере того, как будет расти использование входящих соединительных линий, будет уменьшаться степень возможной концентрации. Если окажется, что нагрузка входящих каналов достаточно высока, то для поддержания заданного значения вероятности блокировки в коммутационных схемах ВПВ и ПВП необходимо вводить расширение соответственно в первой - временное, во второй - пространственное. Поскольку реализация временного расширения значительно дешевле, чем пространственного, то при высоком использовании каналов коммутационная схема ВПВ окажется более экономичной, чем схема ПВП . На приведены зависимости сложности реализации схем ПВП и ВПВ от использования входящих каналов.


Как видно из , коммутационные схемы ВПВ имеют четко выраженное преимущество перед схемами ПВП в области больших значений использования каналов. Для коммутационных схем малой емкости более предпочтительной оказывается структура ПВП . Возможно, что выбор конкретной архитектуры в значительно большей степени будет зависеть от других факторов, таких как модульность, простота организации тестирования, легкость наращивания емкости. Одним из моментов, который обычно выделяют, отдавая предпочтение структуре ПВП , является относительно более простые требования к организации управления схемами ПВП , чем схемами ВПВ . Для станций большой емкости с большой нагрузкой необходимость преимущественного использования структуры ВПВ становится совершенно очевидной. В подтверждение справедливости этого утверждения можно привести систему № 4 ESS со структурой ВПВ , которая является самой большой по емкости коммутационной схемой, построенной до настоящего времени.
Коммутационные схемы типа ВПППВ . Если звено пространственной коммутации схемы ВПВ оказывается достаточно большим по емкости, что приводит и к дополнительному увеличению сложности управляющего устройства, то для уменьшения общего числа точек коммутации звено пространственной коммутации заменяется многозвенной схемой. На приведена структура типа ВПВ , когда звено пространственной коммутации заменено трехзвенной схемой.


Поскольку три соседних звена являются звеньями пространственной коммутации, то эту структуру иногда называют коммутационной схемой ВПППВ. Сложность реализации схемы ВПППВ можно определить следующим образом:


Результаты показывают, что коммутационные схемы сверхбольшой емкости могут быть реализованы с использованием методов цифровою временного разделения на вполне приемлемом для практики уровне сложности. В середине 60-х годов стало очевидно, что на телефонной сети США необходимо использовать коммутационные схемы именно такой емкости. Поскольку для реализации сопоставимой с ними по емкости восьмизвеннои схемы пространственной коммутации потребовалось бы порядка 10 млн. точек коммутации, то традиционная технология, используемая при построении систем с пространственным разделением, была срезу же отвергнута, и фирма Bell System приступила к разработке системы № 4 ESS. Это была первая цифровая коммутационная система телефонной сети США, введенная в эксплуатацию в 1976 г. Система № 4 ESS (коммутационная схема типа ВПППВ) имеет емкость 107 520 соединительных линий, обеспечивает вероятность блокировки менее 0,005 при вероятности занятия канала 0,7 (11).

mstheme>