Стрелочный тахометр на микроконтроллере. Цифровой тахометр на AVR микроконтроллере (ATtiny2313)

0

Ibrahim Kamal (IKALOGIC) Рассматриваемый бесконтактный тахометр - это компактное устройство на микроконтроллере ATMega48 производства компании Atmel, позволяющее измерять высокие скорости вращения бесконтактным способом. Для измерения используется ИК сенсор (оптопара, ИК светодиод и ИК фотодиод в одном корпусе). Вывод данных осуществляется на двухстрочный символьный ЖК дисплей на базе контроллера HD44780.

Принцип работы ИК сенсор (оптопара), представляющий собой миниатюрный компонент с ИК светодиодом и фотодиодом в одном корпусе, посылает ИК излучение на вращающийся механизм (вал, ротор двигателя), на котором должна быть небольшая отражающая наклейка.

Благодаря этой наклейке, каждый оборот вала вызывает появление отраженного импульса ИК излучения. Используемый сенсор производства компании Vishay Semiconductor имеет маркировку TCND-5000.

Данный сенсор был выбран после тестирования эквивалентных продуктов, так как его корпус обеспечивал оптическую изоляцию передающей и приемной части, а ИК светодиод выдерживает большие токи, что позволяет проводить измерения на больших расстояниях. Таким образом, используя оптопару мы можем подсчитать время полного оборота вала, а далее, зная время (обозначим это время T в секундах), мы можем вычислит количество оборотов в минуту, используя простое выражение 60/T. Получение данных от сенсора Для снижения стоимости устройства и сложности сборки, а также для повышения гибкости системы, мы непосредственно подключим ИК сенсор к микроконтроллеру и программно реализуем всю обработку получаемого сигнала. Сразу стоит заметить, что это не так просто, так как получаемый с ИК фотодиода сигнал содержит шумы, а внешнее освещение постоянно оказывает на него влияние. Таким образом, проблема состоит в том, чтобы разработать устройство с автоматической адаптацией к внешней освещенности и расстоянию до объекта измерения. На рисунке ниже изображена диаграмма аналогового сигнала от ИК сенсора (фотодиода)

Так как сигнал имеет шумы, при каждом определении наличия и отсутствия импульса (наличие импульса говорит о том, что вал вращается и сенсор «видит» отражающую наклейку), большое количество колебаний «вводит в заблуждение» микроконтроллер. Кроме того, эти факторы не позволяют использовать встроенный в микроконтроллер аналоговый компаратор, и нам необходимо ввести обработку аналогового сигнала перед каждой процедурой подсчета циклов. Решение было найдено в оценке средней интенсивности, основанную на максимальном и минимальном значении интенсивности сигнала от сенсора, и включением гистерезиса в районе средней интенсивности. Гистерезис используется для предотвращения многократного счета циклов зашумленных импульсов. Рисунок ниже поясняет работу такого алгоритма.

Когда сигнал нарастает от низкого состояния (отсутствует отражение от наклейки на валу) к высокому (отражение ИК импульса), алгоритм возьмет в расчет этот импульс высокого уровня лишь после того, как он пересечет «возрастающий уровень» гистерезиса, и примет в расчет низкий уровень лишь после того, как сигнал пересечет «спадающий уровень» гистерезиса. Такой алгоритм позволяет избежать ошибок вычислений, вызываемых шумным сигналом. Принципиальная схема устройства

Кликните для увеличения Схемотехническое решение очень простое и компактное (благодаря использованию миниатюрного сенсора), не содержит дорогостоящих компонентов. Питание устройства осуществляется от трех батарей типа AAA. Как вы, наверное, заметили, отсутствует потенциометр регулировки контрастности дисплея (что также позволяет уменьшить размер устройства). Это возможно благодаря программной реализации алгоритма автоматической подстройки контрастности в зависимости от уровня напряжения питания с применением ШИМ и фильтра низких частот на элементах R3, R4 и C2. Пользователи могут ознакомиться с текстом алгоритма в исходном коде ПО микроконтроллера во второй части статьи. Разъем JP1 предназначен для внутрисхемного программирования микроконтроллера. Разъем JP2 предназначен для подключения дополнительного пользовательского датчика. Список примененных компонентов Обозначение в схеме Наименование, номинал IC1 Микроконтроллер ATmega48 Q1, Q2 Транзистор BCW66G C1, C2 10 нФ C4, C5 33 пФ X1 Кварцевый резонатор 20 МГц R1, R2, R7 470 Ом R3 1 кОм R4 1.5 кОм R5 1 МОм R6 110 Ом R8 70 Ом LED3 Светодиод IR1 Оптопара TCND-5000 B1 Кнопка B2 Выключатель питания JP1 Разъем внутрисхемного программирования JP2 Разъем расширения Демонстрация работы бесконтактного тахометра на микроконтроллере AVR Во второй части статьи рассмотрим конструкцию прибора и основные моменты в программном обеспечении микроконтроллера, включая аналого-цифровое преобразование и организацию обмена данными с ЖК дисплеем.На английском языке: Contactless Tachometer on AVR. Part 1. SchematicПеревод: Vadim по заказу РадиоЛоцман

По материалам сайта

Данное устройство представляет из себя неплохой тахометр. Предел измерений 100 — 9990 об/мин. Точность измерения — ± 3 об/мин. Но для лучшего восприятия данные округляются. Данный прибор стоит у меня на авто — Таврия. Также устанавливалась на Chevrolet Cavalier, ВАЗ-2109, мотоцикл ЯВА-350 12-ти вольтовый, скутер Honda Lead 90.

Присутствуют две входных цепи:

  • вывод 6 (PD2) — вход прерывания INT0. Этот вход используется для измерения количества оборотов двигателя.
  • вывод 11 (PD6). Этот вход используется для уменьшения яркости индикаторов при включении габаритов на авто.

В схеме применён кварцевый резонатор на частоту 8MHz для большей точности и стабильности измерений.

Входной фильтр, использующийся для подключения к выводу катушки зажигания построен экспериментальным путём и на основании опыта и схемотехники аналогичных узлов. Показал себя отлично и в случае с контактным зажиганием, и в случае с электронным зажиганием.

Уменьшение яркости индикатора при включении габаритов необходимо для того, чтобы довольно яркий свет от индикатора не отвлекал водителя в тёмное время суток.

Печатная плата:

В собранном виде это выглядит вот так:

Рекомендую применять красный индикатор, т.к. его значительно лучше видно на солнце. Показания стают нечитаемыми только при прямом попадании яркого солнца. Этот эффект можно уменьшить или даже совсем от него избавиться если поставить индикатор за красный светофильтр, но у меня такого к сожалению не нашлось…

FUSES выставлены в проекте, но если кто-то шьёт не из CodeVisionAVR, то повторю их тут:

В проекте в 17-й строке есть следующее определение:

#define byBladeCnt 2 //1- две катушки, 2 — одна катушка, 4 — мотоцикл…

Для советских автомобилей и авто с распределительной системой зажигания этот параметр будет 2. Для систем зажигания с двумя катушками (как в ВАЗ-2110) — 1. На мотоцикле и мопеде (2-х тактная система зажигания) этот параметр равен 4.

Добрый день.
Выношу на Ваше рассмотрение схему простенького цифрового тахометра на AVR ATtiny2313 , КР514ИД2 , и оптопаре спроектированного мною.
Сразу оговорюсь: аналогичных схем в интернете много. У каждой реализации свои плюсы и минусы. Возможно, кому-то мой вариант подойдет больше.

Начну, пожалуй, с тех. задания.
Задача : нужно сделать цифровой тахометр для контроля оборотов электрического двигателя станка.
Вводные условия : Есть готовый реперный диск на 20 отверстий от лазерного принтера. В наличии много оптопар от сломанных принтеров. Средние (рабочие) обороты 4 000-5 000 оборотов/минуту. Погрешность отображаемых результатов не должна превышать ± 100 оборотов.

Ограничение : питание для блока управление составляет 36В (тахометр будет установлен в один корпус с блоком управления – об этом ниже).

Маленькое лирическое отступление. Это станок моего друга. На станке установлен электромотор PIK-8, обороты которого контролируются согласно найденной в интернете и модифицированной схеме. По просьбе друга и был разработан простенький тахометр для станка.

Изначально в схеме планировалось применить ATMega16, но рассмотрев условия, решено было ограничиться ATtiny2313, работающего от внутреннего (RC) генератора на частоте 4 Мгц.

Общая схема выглядит следующим образом:

Как видно, ничего сложного. Для преобразования двоичного кода в семисегментный, я применил дешифратор КР514ИД2, это дает сразу три плюса.

  • Во первых – экономия места в памяти ATtiny2313 за счет уменьшения рабочего кода (т.к. процедура программного преобразования двоичного кода в семисегментный отсутствует в прошивке за ненадобностью).
  • Во вторых: уменьшение нагрузки на выходы ATtiny2313, т.к. светодиоды «засвечивает» КР514ИД2 (при высвечивании цифры 8 максимальное потребление составит 20-30 мА (типичное для одного светодиода) * 7 = 140-210 мА что «много» для ATtini2313 с её полным паспортным максимальным (нагруженным) потреблением 200 мА).
  • В третьих – уменьшено число «занятых» ног микроконтроллера, что дает нам возможность в будущем (при необходимости) модернизировать схему путём добавления новых возможностей.

Сборка устройства осуществлена на макетной плате. Для этого была разобрана завалявшаяся в закромах плата от нерабочей микроволновой печи. Цифровой светодиодный индикатор, ключевые транзисторы (VT1-VT4) и ограничительные резисторы (R1 – R12) были взяты комплектом и перенесены на новую плату. Все устройство собирается, при наличии необходимых компонентов, с перекурами за пол часа. Обращаю внимание: у микросхемы КР514ИД2 плюсовая ножка питания - 14, а минус - 6 (отмечены на схеме) . Вместо КР514ИД2 можно применить любой другой дешифратор двоичного кода в семисегментный с питанием от 5В. Я взял то, что было под рукой.
Выводы «h» и «i» цифрового светодиодного индикатора отвечают за две точки по центру между цифрами, не подключены за ненадобностью.
После сборки и прошивки, при условии отсутствия ошибок монтажа, устройство начинает работать сразу после включения и в настройке не нуждается.

При необходимости внесения изменений в прошивку тахометра на плате предусмотрен разъем ISP.

На схеме подтягивающий резистор R12, номиналом 30 кОм, подобран опытным путём для конкретной оптопары. Как показывает практика – для разных оптопар он может отличаться, но среднее значение в 30 кОм должно обеспечить устойчивую работу для большинства принтерных оптопар. Согласно документации к ATtiny2313, величина внутреннего подтягивающего резистора составляет от 20 до 50 кОм в зависимости от реализации конкретной партии микроконтроллеров, (стр. 177 паспорта к ATtiny2313), что не совсем подходит. Если кто захочет повторить схему, может для начала включать внутренний подтягивающий резистор, возможно у Вас, для Вашей оптопары и вашего МК работать будет. У меня, для моего набора не заработало.

Так выглядит типичная оптопара от принтера.

Светодиод оптопары запитан через ограничивающий резистор на 1К, который я разместил непосредственно на плате с оптопарой.
Для фильтрации пульсаций напряжения на схеме два конденсатора, электролитический на 220 мкФ х 25В (что было под рукой) и керамический на 0,1 мкФ, (общая схема включения микроконтроллера взята из паспорта ATtiny2313).

Для защиты от пыли и грязи плата тахометра покрыта толстым слоем автомобильного лака.

Замена компонентов.
Можно применить любой светодиодный индикатор на четыре цифры, либо два сдвоенных, либо четыре поодиночных. На худой конец, собрать индикатор на отдельных светодиодах.

Вместо КР514ИД2 можно применить КР514ИД1 (которая содержит внутри токоограничивающие резисторы), либо 564ИД5, К155ПП5, К155ИД9 (при параллельном соединении между собой ножек одного сегмента), или любой другой преобразователь двоичного в семисегментный (при соответствующих изменениях подключения выводов микросхем).

При условии правильного переноса монтажа на МК ATMega8/ATMega16 данная прошивка будет работать, как и на ATtiny2313, но нужно подправить код (изменить названия констант) и перекомпилировать. Для других МК AVR сравнение не проводилось.

Транзисторы VT1-VT4 – любые слаботочные, работающие в режиме ключа.

Принцип работы основан на подсчете количества импульсов полученных от оптопары за одну секунду и пересчет их для отображения количества оборотов в минуту. Для этого использован внутренний счетчик Timer/Counter1 работающий в режиме подсчета импульсов поступающих на вход Т1 (вывод PD5 ножка 9 МК). Для обеспечения стабильности работы, включен режим программного подавления дребезга. Отсчет секунд выполняет Timer/Counter0 плюс одна переменная.

Расчет оборотов , на чем хотелось бы остановиться, происходит по следующей формуле:
M = (N / 20) *60,
где M – расчетные обороты в минуту (60 секунд), N – количество импульсов от оптопары за одну секунду, 20 – число отверстий в реперном диске.
Итого, упростив формулу получаем:
M = N*3.
Но! В микроконтроллере ATtiny2313 отсутствует функция аппаратного умножения. Поэтому, было применено суммирование со смещением.
Для тех, кто не знает суть метода:
Число 3 можно разложить как
3 = 2+1 = 2 1 + 2 0 .
Если мы возьмем наше число N сдвинем его влево на 1 байт и приплюсуем еще одно N сдвинутое влево на 0 байт – получим наше число N умноженное на 3.
В прошивке код на AVR ASM для двухбайтной операции умножения выглядит следующим образом:

Mul2bytes3:
CLR LoCalcByte //очищаем рабочие регистры
CLR HiCalcByte
mov LoCalcByte,LoInByte //грузим значения полученные из Timer/Counter1
mov HiCalcByte,HiInByte
CLC //чистим быт переноса
ROL LoCalcByte //сдвигаем через бит переноса
ROL HiCalcByte
CLC
ADD LoCalcByte,LoInByte //суммируем с учетом бита переноса
ADC HiCalcByte,HiInByte
ret

Проверка работоспособности и замер точности проводился следующим образом. К вентилятору компьютерного куллера был приклеен картонный диск с двадцатью отверстиями. Обороты куллера мониторились через BIOS материнской платы и сравнивались с показателями тахометра. Отклонение составило порядка 20 оборотов на частоте 3200 оборотов/минуту, что составляет 0,6%.

Вполне возможно, что реальное расхождение составляет меньше 20 оборотов, т.к. измерения материнской платы округляются в пределах 5 оборотов (по личным наблюдениям для одной конкретной платы).
Верхний предел измерения 9 999 оборотов в минуту. Нижний предел измерения, теоретически от ±10 оборотов, но на практике не замерялся (один импульс от оптопары в секунду дает 3 оборота в минуту, что, учитывая погрешность, теоретически должно правильно измерять скорость от 4 оборотов в минуту и выше, но на практике данный показатель необходимо завысить как минимум вдвое).

Отдельно остановлюсь на вопросе питания.
Вся схема питается от источника 5В, расчетное потребление всего устройства не превышает 300 мА. Но, по условиям ТЗ, тахометр конструктивно должен находится внутри блока управления оборотами двигателя, а к блоку от ЛАТРа поступает постоянное напряжение 36В., чтобы не тянуть отдельный провод питания, внутри блока установлена LM317 в паспортном включении, в режиме понижения питания до 5В (с ограничивающим резистором и стабилитроном для защиты от случайного перенапряжения). Логичнее было бы использовать ШИМ-контроллер в режиме step-down конвертера, на подобии МС34063, но у нас в городе купить такие вещи проблематично, поэтому, применяли то, что смогли найти.

Фотографии платы тахометра и готового устройства.


Еще фотографии







К сожалению, сейчас нет возможности сфотографировать на станке.

После компоновки плат и первой пробной сборки, коробка с устройством отправилась на покраску.

В случае, если у Вас тахометр не заработал сразу после включения, при заведомо верном монтаже:

1) Проверить работу микроконтроллера, убедится, что он работает от внутреннего генератора. Если схема собранна правильно – на циферблате должно отображаться четыре нуля.

2) Проверить уровень импульсов от оптопары, при необходимости подобрать номинал резистора R12 или заменить схему подключения оптопары. Возможен вариант обратного подключения оптотранзистора с подтяжкой к минусу, с включенным или нет внутренним подтягивающим резистором МК. Также возможно применить транзистор в ключевом (инвертирующем) режиме работы.
оптопара Добавить метки

Ibrahim Kamal (IKALOGIC)

Рассматриваемый бесконтактный тахометр - это компактное устройство на микроконтроллере ATMega48 производства компании , позволяющее измерять высокие скорости вращения бесконтактным способом. Для измерения используется ИК сенсор (оптопара, ИК светодиод и ИК фотодиод в одном корпусе). Вывод данных осуществляется на двухстрочный символьный ЖК дисплей на базе контроллера HD44780 .

Принцип работы

ИК сенсор (оптопара), представляющий собой миниатюрный компонент с ИК светодиодом и фотодиодом в одном корпусе, посылает ИК излучение на вращающийся механизм (вал, ротор двигателя), на котором должна быть небольшая отражающая наклейка.

Благодаря этой наклейке, каждый оборот вала вызывает появление отраженного импульса ИК излучения. Используемый сенсор производства компании имеет маркировку .

Данный сенсор был выбран после тестирования эквивалентных продуктов, так как его корпус обеспечивал оптическую изоляцию передающей и приемной части, а ИК светодиод выдерживает большие токи, что позволяет проводить измерения на больших расстояниях.

Таким образом, используя оптопару мы можем подсчитать время полного оборота вала, а далее, зная время (обозначим это время T в секундах), мы можем вычислит количество оборотов в минуту, используя простое выражение 60/T .

Получение данных от сенсора

Для снижения стоимости устройства и сложности сборки, а также для повышения гибкости системы, мы непосредственно подключим ИК сенсор к микроконтроллеру и программно реализуем всю обработку получаемого сигнала. Сразу стоит заметить, что это не так просто, так как получаемый с ИК фотодиода сигнал содержит шумы, а внешнее освещение постоянно оказывает на него влияние. Таким образом, проблема состоит в том, чтобы разработать устройство с автоматической адаптацией к внешней освещенности и расстоянию до объекта измерения.

На рисунке ниже изображена диаграмма аналогового сигнала от ИК сенсора (фотодиода)

Так как сигнал имеет шумы, при каждом определении наличия и отсутствия импульса (наличие импульса говорит о том, что вал вращается и сенсор «видит» отражающую наклейку), большое количество колебаний «вводит в заблуждение» микроконтроллер. Кроме того, эти факторы не позволяют использовать встроенный в микроконтроллер аналоговый компаратор, и нам необходимо ввести обработку аналогового сигнала перед каждой процедурой подсчета циклов.

Решение было найдено в оценке средней интенсивности, основанную на максимальном и минимальном значении интенсивности сигнала от сенсора, и включением гистерезиса в районе средней интенсивности. Гистерезис используется для предотвращения многократного счета циклов зашумленных импульсов. Рисунок ниже поясняет работу такого алгоритма.

Когда сигнал нарастает от низкого состояния (отсутствует отражение от наклейки на валу) к высокому (отражение ИК импульса), алгоритм возьмет в расчет этот импульс высокого уровня лишь после того, как он пересечет «возрастающий уровень» гистерезиса, и примет в расчет низкий уровень лишь после того, как сигнал пересечет «спадающий уровень» гистерезиса. Такой алгоритм позволяет избежать ошибок вычислений, вызываемых шумным сигналом.

Принципиальная схема устройства

Схемотехническое решение очень простое и компактное (благодаря использованию миниатюрного сенсора), не содержит дорогостоящих компонентов. Питание устройства осуществляется от трех батарей типа AAA.

Как вы, наверное, заметили, отсутствует потенциометр регулировки контрастности дисплея (что также позволяет уменьшить размер устройства). Это возможно благодаря программной реализации алгоритма автоматической подстройки контрастности в зависимости от уровня напряжения питания с применением ШИМ и фильтра низких частот на элементах R3, R4 и C2. Пользователи могут ознакомиться с текстом алгоритма в исходном коде ПО микроконтроллера во второй части статьи.

Разъем JP1 предназначен для внутрисхемного программирования микроконтроллера. Разъем JP2 предназначен для подключения дополнительного пользовательского датчика.

Список примененных компонентов

Обозначение
в схеме
Наименование, номинал
IC1 Микроконтроллер ATmega48
Q1, Q2 Транзистор BCW66G
C1, C2 10 нФ
C4, C5 33 пФ
X1 Кварцевый резонатор 20 МГц
R1, R2, R7 470 Ом
R3 1 кОм
R4 1.5 кОм
R5 1 МОм
R6 110 Ом
R8 70 Ом
LED3 Светодиод
IR1 Оптопара TCND-5000
B1 Кнопка
B2 Выключатель питания
JP1 Разъем внутрисхемного программирования
JP2 Разъем расширения

Демонстрация работы бесконтактного тахометра на микроконтроллере AVR

  • где взять прошивку для тахометра
  • Прошивка - во второй части статьи (в конце описания ссылка на архив с исходником и HEX)
  • большое спасибо
  • А разводка печатной платы есть?:confused:
  • К сожалению, рисунка печатной платы нет. Я думаю, что не составит много труда ее разработать. Компонентов не много и это несколько транзисторов, диодов, конденсаторов и резисторов.
  • Вы не думали сделать в месте с тахометром ещё и спидометр, что-бы использовать авто-мото технике. Схем отдельно тахометров и отдельно спидометров много, а вот сдвоенного аппарата нет ни одного. Если бы у вас получилось, то создали бы очень востребованую конструкцию! Как думаете?
  • Возможно, но это не много не тот тахометр. Соглашусь, что такая конструкция будет востребована. Сейчас я в сети встречал разработки по типу бортовых компьютеров, считывание данных по CAN/LIN с бортового компа и предоставление ее в наглядной форме в реальном времени на ЖК дисплеи в автомобиле. Что-то типа этого...
  • Печатка здесь http://radioparty.ru/forums/viewtopic.php?f=2&t=39
  • хтонибудь пробовал собрать в протеусе

Простой универсальный тахометр на микроконтроллере ATtiny2313

Этот простой тахометр на ATtiny2313 умеет считать количество оборотов любых двигателей, будь то многофазные, многотактные и т.п. Он может быть полезен в авто- мототехнике, для отображения оборотов двигателя. При этом совершенно не имеет значения, сколько тактов или цилиндров имеет двигатель. Его также можно использовать совместно с электронными контроллерами электродвигателей, будь то одно- или трёхфазные.

Схема тахометра очень простая - один микроконтроллер ATtiny2313 и четырёхсимвольный светодиодный индикатор. Транзисторные ключи в целях упрощения отсутствуют. Индикатор можно использовать как с общим катодом, так и с общим анодом - это выбирается в исходнике. Тахометр может подсчитывать обороты как в секунду, так и в минуту, что делает его полностью универсальным.

Дополнительно устройство имеет возможность программного управления яркостью: обычная и пониженная. Если джампер открыт, то устанавливается обычная яркость. При замыкании контактов яркость уменьшается.


Нажмите для увеличения
Перейдём непосредственно к схеме. Если устройство подключается непосредственно к контроллеру двигателя с TTL-уровнями, то импульсы можно подавать просто на вывод 6 микроконтроллера. В противном случае следует выполнить простейший преобразователь уровня на транзисторе.

Для получения и стабилизации напряжения питания +5 вольт применён линейный стабилизатор 1117 с низким падением напряжения для большей экономичности.

В качестве светодиодного индикатора применён индикатор от микроволновки с общим анодом. Так как он уже содержит в себе резисторы на 220 Ом, то на печатной плате они не предусмотрены.


На верхней стороне печатной платы имеются аж 10 перемычек, но они весьма легко устанавливаются.


С обратной стороны установлены SMD-компоненты: это два конденсатора по 22 пФ для кварцевого резонатора, микросхема стабилизатора и фильтрующие конденсаторы.

Кварцевый резонатор для микроконтроллера ATtiny2313 можно устанавливать на 8 или 4МГц, это задаётся в исходнике и управляет прескалером.

Режим отображения оборотов - в секунду или в минуту - задаётся аналогично, в исходнике. Для отображения количества оборотов в минуту рассчитанное количество оборотов в секунду просто программно умножается на 60. Имеется возможность программного округления расчитаных значений. Эти нюансы прокомментированы в исходном коде.

При прошивке микроконтроллера необходимо установить фьюзы:

CKSEL1=0
BODLEVEL0=0
BODLEVER1=0
SPMEN=0

Исходник написан на языке C в Codevision AVR. Он был позаимствован из другого проекта - тахометра для трёхлопастного вертолёта.

Коротко о настройке: необходимо заранее определить, какое количество импульсов за 1 оборот будет подаваться на вход тахометра. Например, если их источником будет контроллер трёхфазного мотора на LB11880 , то он выдаёт по три импульса на каждый оборот шпинделя. Поэтому в исходном коде следует указать это значение.

Выбор индикатора - с общим анодом или с общим катодом (ненужное значение - закомментировать):

//#define Anode
#define Cathode

Количество тахометрических импульсов на 1 оборот вала:

#define byBladeCnt 2

Выбор частоты кварцевого резонатора - 0x00 для 4МГц, 0x01 - для 8МГц:

#define Prescaler 0x01

Выбор отображения оборотов в минуту:

lTmp = (62500L * 60L * (long)wFlashCnt);

Для отображения количества оборотов в секунду необходимо убрать умножение на 60:

lTmp = (62500L * (long)wFlashCnt);

Для того, чтобы отключить округление значений, нужно закомментировать следующие строки:

If (byDisplay > 4)
{
wRpm++;
R += 10;
}

Так как в этой конкретной конструкции применён весьма специфический индикатор, то разводка печатной платы не прикладывается.