Структурные схемы радиопередающих устройств. Разработка структурных схем и алгоритмов функционирования сспи

Упрощенная структурная схема радиопередатчика состоит из преобразователя частоты, полосового фильтра и выходного усилителя (рисунок 3.3).

Рисунок 3.3 Упрощенная структурная схема радиопередатчика

На вход радиопередающего устройства поступает модулированный сигнал. В современных системах связи модуляция проводится на стандартной промежуточной частоте. К примеру, в системах связи, работающих в диапазонах СВЧ, промежуточная частота может быть 70, 140 или 820 МГц (существуют и другие стандарты). Задачей радиопередающего устройства, в таких случаях, является преобразование сигнала промежуточной частоты в рабочий диапазон частот и доведение мощности сигнала до необходимого уровня.

Преобразователь частоты состоит из смесителя и задающего генератора. Смеситель представляет собой нелинейный элемент, который смешивает частоты сигналов, поступающих на него и выдает на выходе две полосы частот - суммарные и разностные (в данном случае сумму и разность промежуточной частоты и частоты задающего генератора).

Полосовой фильтр выделяет одну из полос частот.

Для работы преобразователя частоты необходимы высокостабильные генераторы. Любой генератор состоит из усилителя и цепей обратной связи (рисунок 3.4).

При достаточном усилении сигнала (балансе амплитуд) и при правильной фазе сигнала, поступающего через цепь обратной связи (балансе фаз), в схеме возникают незатухающие колебания, форма которых определяется частотными характеристиками составляющих схемы. Если характеристики усилителя и цепи обратной связи формируются узкополосными элементами (контурами или резонаторами), то форма колебаний будет близка к синусоидальной. В случае применения широкополосных элементов - генерируются импульсные колебания.

Рисунок 3.4 Структурная схема генератора

В задающих генераторах передатчиков применяются синусоидальные генераторы, стабильность которых определяется стабильностью контуров или резонаторов. В генераторах передатчиков 5-9 диапазонов нашли широкое применение кварцевые резонаторы. На более высоких частотах используются кварцевые генераторы с умножением частоты, синтезаторы частоты и, в последние годы, - генераторы на диэлектрических резонаторах.

Усилители передатчиков (УВЧ) обеспечивают необходимую выходную мощность, которая сильно отличается в разных диапазонах. К примеру, в диапазонах длинных и средних волн мощность радиостанций может составлять сотни киловатт и, даже, мегаватты, в диапазонах СВЧ - единицы и доли ватт, а в оптических диапазонах - единицы милливатт. Соответственно, усилители строятся на мощных лампах, транзисторах, микросхемах. Появились твердотельные, микроскопические усилители для радиосистем, работающих на частотах в десятки ГГц.

Оптические передатчики работают на специальных светодиодах и лазерах.

АВТОГЕНЕРАТОРЫ

Автогенератором, или генератором с самовозбуждением, назы­вается устройство, преобразующее энергию источников питания в радиочастотные колебания без возбуждения извне.

Генератор с самовозбуждением представляет собой усилитель с резонансной нагрузкой, охваченный положительной обратной связью (рисунок 4.1а). В качестве активного элемента могут быть использованы как электронная лампа, так и транзистор. Такая схе­ма автогенератора получила название схемы с трансформаторной обратной связью. Первичные колебания в резонансном контуре LC возникают вследствие любых случайных изменений питающих напряжений (флуктуации), влияний внешних электромагнитных полей и т. п. Эти колебания через катушку L св -поступают на вход усилителя (сопротивление конденсатора С с пренебрежимо мало). Переменное напряжение положительной обратной связи u пос уп­равляет электронным потоком лампы.

Рисунок 4.1 Принципиальные схемы автогенераторов с трансформаторной обратной связью (а, б) и влияние начального смещения на самовозбуждение транзисторного автогенератора (б)

Первая гармоника анодно­го тока создает падение напряжения на контуре LC. Амплитуда свободных колебаний увеличивается. Они вновь трансформируются во входную цепь, вновь усиливаются и т. д. Нарастание ампли­туды колебаний продолжается до определенного предела, обусловленного параметрами автогенератора. В системе устанавли­вается динамическое равновесие между потерями радиочастотной, энергии в контуре и восполнением ее за счет источника питания Е а. Это так называемый установившийся (стационарный) режим автогенератора. Параметры цепочки сеточного автосмещения под­бираются таким образом, чтобы в момент включения напряжение смещения было бы минимальным. Тогда лампа работает в клас­се А и возможно усиление колебаний сколь угодно малой ампли­туды. По мере нарастания напряжения u пос увеличиваются сеточ­ный ток и отрицательный потенциал на сетке. В стационарном ре­жиме активный элемент работает в классах Вили С, что облег­чает тепловой режим автогенератора вследствие уменьшения по­терь на аноде (коллекторе). Это обстоятельство способствует повышению стабильности частоты генерируемых колебаний. По­следние через разделительный конденсатор С р поступают на сле­дующий каскад радиочастотного тракта - буферный усилитель. Аналогичным образом происходит самовозбуждение транзи­сторного варианта автогенератора (рисунок 4.1 6). Характеристики ба­зового и коллекторного токов полупроводникового триода имеют некоторый сдвиг вправо относительно начала координат (рисунок 4.1). Если ограничиться применением только автосмещения, то в на­чальный момент времени напряжение на базе будет равно нулю (u б =0) и первичные автоколебания не будут вызывать появление коллекторного тока. Самовозбуждение не наступит.

Поэтому в транзисторных автогенераторах используется комбинированное смещение, представляющее собою алгебраическую сумму двух на­пряжений; постоянного Е нач и автоматического, возникающего на резисторе R э , за счет протекания по нему постоянной составляю­щей тока эмиттера I э0:

Е см = –Е нач + I э0 R э

Тогда в момент включения питающих напряжений будет действо­вать Е нач , открывающее транзистор. По мере увеличения ампли­туды колебаний будет возрастать падение напряжения на R э.

Ре­зультирующий отрицательный потенциал на базе уменьшится, и активный элемент будет работать в классе С. Одновременно це­почка R э C э будет стабилизировать режим транзистора при изме­нении температуры окружающей среды.

Самовозбуждение в автогенераторах с обратной связью воз­можно только при выполнении следующих двух условий:

1) как и в любом усилителе на лампе или транзисторе переменные напря­жения на сетке (базе) и аноде (коллекторе) должны быть всегда противофазны; в рассматриваемой схеме с трансформаторной об­ратной связью это достигается правильным включением концов катушки L св ;

2) амплитуда напряжения обратной связи U пос дол­жна быть не менее некоторой минимальной величины.

Первое условие называется балансом фаз, а второе - балансом амплитуд.

Автогенератор, выполненный по схеме с трансформаторной связью, не нашел широкого распространения в радиопередающих устройствах из-за некоторой сложности его конструкции и гене­рации колебаний на относительно низких частотах. Предпочтительнее в этом отношении генераторы с самовозбуждением, пост­роенные на основе так называемых трехточечных схем.

На рисунке 4.2 а и б показаны два варианта таких автогенераторов на транзисторах - с индуктивной и емкостной обратной связью. В обоих случаях активный элемент тремя основными электродами (к, б и э) подключен к трем точкам колебательного контура. Отсюда и та­кое наименование - трехточечная схема.

В первой из них напря­жение положительной обратной связи u пос снимается с одной из катушек индуктивности контура (L бэ), а во второй - с конден­сатора С бэ . В остальном обе схемы полностью совпадают. Процесс самовозбуждения и работа в стационарном режиме аналогичны тем же явлениям в только что рассмотренном варианте с транс­форматорной связью.

Начальное смещение на базу (E нач) пода­ется не от отдельного источника, а снимается с резистора R 1 , через который протекает ток I 14. Питание коллекторной цепи осуществляется по параллельной схеме. Назначение остальных элемен­тов такое же, как и в схемах генераторов с внешним возбужде­нием и усилителей звуковых сигналов.

Для упрощения анализа работы этих двух автогенераторов целесообразно рассмотреть их эквивалентные схемы (рисунок 4.2 в и г ), в которых сохранены только цепи токов радиочастоты, причем принимаем во внимание, что сопротивления конденсаторов С р, С б и С э имеют пренебрежимо малую величину.

Несмотря на кажу­щиеся отличия между данными эквивалентными трехточечными схемами, молено выявить для них общие условия самовозбуждения и доказать, что работоспособными являются только эти два ва­рианта сочетаний реактивных элементов Х бк, Х эб и Х эк.

Рисунок 4.2 Принципиальные и эквивалентные схемы транзисторных автогенераторов с индуктивной обратной связью (а, в) и емкостной обратной связью (б, г)

Во-первых, обязательное условие наличия положительной об­ратной связи в автогенераторе требует, чтобы коэффициент обрат­ной связи β по с был бы также положительной величиной.

Следовательно, реактивные сопротивления Х эб и Х эк должны одновременно носить либо индуктивный, либо емкостный характер. Во-вторых, резонанс в колебательном контуре автогенератора возможен только при условии

Х бк + Х эб + Х эк = 0.

Таким образом, если Х эб и Х эк являются индуктивными сопротивлениями, то Х бк должно быть емкостным рисунок 4.2 в ) и наобо­рот (рисунок 4.2 г ). Любое другое сочетание реактивных сопротивле­ний приведет к нарушению вышеуказанных условий самовозбуж­дения.

Практика показывает, что такой подход является весьма плодотворным при анализе сколь угодно сложных принципиаль­ных схем автогенераторов с обратной связью.

Все вышесказанное относится также и к ламповым автогене­раторам при условии соответствующего замещения коллектора, базы и эмиттера транзистора анодом, сеткой и катодом электро­вакуумного триода.

Автогенераторы, схемы которых изображены на рисунке 4.2, явля­ются одноконтурными. Они относительно просты в изготовлении и настройке.

К их существенному недостатку следует отнести невы­сокую стабильность частоты генерируемых колебаний, поскольку единственный резонансный контур, параметрами которого опреде­ляется эта частота, подвержен влиянию последующих каскадов радиочастотного тракта - изменяются вносимые сопротивления, добротность контура и т. д.

Указанный недостаток удалось значи­тельно ослабить в так называемых двухконтурных автогенерато­рах. Один из контуров, защищенный от внешних воздействий, практически целиком определяет частоту генерации, а второй, слабо связанный с первым, выполняет роль внешней нагрузки.

Рассмотренные выше схемы автогенераторов используются в диапазонах километровых и декаметровых волн. На более высо­ких частотах их применение оказывается невозможным с конст­руктивной точки зрения, так как междуэлектродные емкости элек­тронной лампы и распределенные индуктивности ее вводов стано­вятся неотъемлемыми составными частями резонансных систем генераторов с самовозбуждением.

Поэтому здесь используются ав­тогенераторы, построенные на основе так называемых сложных трехточечных схем. Они также относятся к классу двухконтурных автогенераторов, но связь между резонансными системами осуще­ствляется не через общий электронный поток, а через одну из междуэлектродных емкостей триода.

Каждый из двух контуров оказывается расстроенным по отношению к частоте генерации и его сопротивление носит реактивный характер, что позволяет про­водить анализ работы таких автогенераторов на основе уже хо­рошо известных трехточечных схем.

Рассмотрим вопросы, связанные со стабильностью частоты автогенератора. Жесткие требования, предъявляемые к радиопере­дающим устройствам в отношении постоянства частоты излучае­мых колебаний, требуют детального анализа даже незначитель­ных, на первый взгляд, причин, влияющих на этот параметр.

От­носительная нестабильность частоты всего радиопередающего устройства определяется только автогенератором и, прежде всего, параметрами его резонансной системы. Из теории радиотехниче­ских цепей известно, что точное значение частоты свободных ко­лебаний в резонансном контуре может быть определено при по­мощи следующей формулы:

В подавляющем большинстве случаев при исследовании физиче­ских процессов в колебательном контуре и устройствах, в состав которых он входит, с целью упрощения полагают, что его сопро­тивление потерь r = 0 и пользуются упрощенной формулой

В вопросах, связанных с нестабильностью частоты, такое упрощение неприемлемо, так как влияние потерь соизмеримо с воз­действием на величину ω 0 других дестабилизирующих факторов. Таким образом, в соответствии с формулой (4.1) частота генерируе­мых колебаний зависит не только от величин индуктивности L и емкости С колебательного контура, но и от сопротивления потерь, как собственных, так и вносимых в контур.

Выясним взаимосвязь между этими тремя параметрами и дестабилизирующими факторами. Вследствие механических воздей­ствий (вибраций, рассыхания каркасов и т. п.) меняются геомет­рические размеры катушек и конденсаторов колебательных кон­туров автогенераторов.

В прямой зависимости от этих размеров находятся величины их индуктивностей и емкостей. В итоге про­исходит отклонение частоты генерации от заданного значения. Изменение температуры окружающей среды также отражается на изменении размеров спиралей катушек, пластин конденсаторов и диэлектриков.

Например, в течение нескольких минут после вклю­чения питающих напряжений происходит разогрев внутренних де­талей автогенератора. Увеличиваются диаметр и длина спирали катушки, возрастает площадь пластин конденсатора, изменяются диэлектрические проницаемости изоляционных материалов. Большинство этих факторов вызывает увеличение индуктивности L и емкости С колебательного контура. В итоге по мере разогрева ав­тогенератора происходит постепенное уменьшение частоты коле­баний. Это явление наблюдается в течение 20-30 мин и носит название «выбега частоты».

На нестабильность частоты влияют также изменения питаю­щих напряжений. Они воздействуют в основном на перераспреде­ление объемных зарядов в междуэлектродных промежутках лам­пы. С ними связаны величины междуэлектродных емкостей, входящих в колебательную систему автогенератора.

Влияние последующих каскадов радиочастотного тракта зак­лючается в изменениях активных и реактивных составляющих со­противлений, вносимых в контур автогенератора. В соответствии, с выражением (4.1) это отражается на величине частоты резо­нансной системы.

От влажности и давления окружающего пространства зависят величины проницаемости диэлектриков и их проводимость. Изме­нение атмосферных условий также приводит к уходу частоты.

Многообразие дестабилизирующих факторов и сложный меха­низм воздействия на частоту генерации требуют применения це­лого комплекса мер, направленных на их ослабление. Сюда отно­сятся амортизация блока автогенератора, повышение жесткости его конструкции и т.п.

Воздействие на частоту автогенератора температурных изменений может быть ослаблено за счет исполь­зования термостата - устройства, внутри которого автоматически поддерживается постоянная температура. Герметизация термоста­та позволяет избежать влияния на частоту изменений влажности и давления.

Для борьбы с температурным фактором используются специальные конденсаторы, емкость которых не увеличивается, а уменьшается при нагревании, компенсируя тем самым увеличение индуктивности контура. Каркасы катушек изготовляются из высококачественного радиофарфора. Спирали наносятся либо мето­дом вжигания серебряной проволоки, либо намоткой предвари­тельно разогретого медного провода.

Автогенератор, как прави­ло, имеет отдельный источник питания, напряжение которого в ряде случаев стабилизируется. Ослабление влияния на частоту автогенератора последующих каскадов радиочастотного тракта достигается включением буферного каскада, который работает без сеточных токов и вследствие этого имеет неизменное входное со­противление.

Автогенератор тщательно экранируется от влияния внешних электромагнитных полей. Применение умножителей ча­стоты также способствует ослаблению влияния более мощных каскадов на возбудитель.

Исследования показывают, что стабильность частоты автогене­ратора во многом определяется добротностью его резонансной си­стемы Q. Чем больше ее величина, тем выше стабильность. Обыч­ный колебательный контур с сосредоточенными параметрами имеет в наилучшем случае добротность 250-300 единиц, а с учетом вносимых сопротивлений - и того меньше.

Поэтому автогенератор с таким контуром обладает довольно низкой относительной нестабильностью - порядка 10 -3 -10 -4 . Гораздо большая вели­чина добротности у так называемых кварцевых резонаторов - до нескольких миллионов единиц. Параметры кварца также мало подвержены влиянию внешних факторов. Конструктивно такой резонатор выполняется в виде пластины, вырезаемой из кристал­ла природного или синтетического кварца.

На ее поверхности с двух сторон наносятся тонкие серебряные покрытия, используемые в качестве электродов. Пластина помещается в металлический, пластмассовый или стеклянный баллон, внутри которого обычно создается вакуум. Тем самым достигается изоляция пластины от атмосферных воздействий, механических повреждений и загряз­нения ее поверхности. Кроме того, устраняется трение вибрирую­щей пластины о воздух, что позволяет сохранить высокую доброт­ность резонатора. Посредством специальных кварцедержателей, имеющих наружные выводы, резонатор подключается к радиотехнической схеме.

Как всякое упругое механическое тело, кварцевая пластина способна совершать колебания в каждом из трех измерений (по длине, ширине и толщине). Частоты этих колебаний строго зави­сят от геометрических размеров пластины. На практике в автоге­нераторах чаще всего используются колебания по ее толщине. В этом случае их частота может быть определена при помощи следующей приближенной формулы:

где f 0 - собственная частота колебаний, МГц; d - толщина плас­тины, мм.

Повышение резонансной частоты f 0 связано с необходимостью уменьшения этого размера, что неизбежно влечет за собою снижение механической прочности пластины. Во избежание ее раз­рушения она должна быть не тоньше 0,3 мм, что соответствует резонансной частоте 10 МГц. Этим обстоятельством частично объясняется необходимость применения умножителей в радиоча­стотных трактах передатчиков декаметровых волн.

Использование кварца в радиотехнических устройствах воз­можно благодаря наличию у него пьезоэлектрического эффекта: любая механическая деформация пластины вызывает появления электрических зарядов на ее противоположных гранях и наобо­рот. Резонансные свойства кварцевой пластины и явление обра­тимого пьезоэффекта дают возможность представить ее в виде некоторой эквивалентной электрической схемы, показанной на рисунке 4.3 а.

Рисунок 4.3 Эквивалентная схема (а) и частотная характеристика (б) квар­цевого резонатора

В ней собственно пластина заменена последовательным резонансным контуром с эквивалентными электрическими пара­метрами L кв , С кв и r кв. Параллельно ему подключена емкость кварцедержателя и монтажа С 0 .

На рисунке 4.3 б показан характер изменения реактивного сопро­тивления такого контура в зависимости от частоты вынужденных колебаний ω. При малых значениях ω сопротивлением емкости С 0 можно пренебречь, так как оно велико и подключено параллель­но цепи L кв , С кв и r кв. Сопротивление последней в интервале ча­стот 0-ω пос носит емкостный характер.

На частоте ω пос возник­нет резонанс напряжений в последовательном контуре. При даль­нейшем увеличении ω эквивалентное сопротивление последователь­ной ветви будет иметь индуктивный характер и возрастать по величине.

Кварцевый резонатор используется в автогенераторах двояко: либо как некоторая высокоэталонная эквивалентная индуктив­ность в интервале частот ω пос пар , либо как узкополосный фильтр на частоте ω пос , включаемый в цепь обратной связи.

Генератор с внешним возбуждением (ГВВ)

Структурная схема РПДУ

Разнообразные типы радиопередатчиков выполняются как комбинация соответствующих каскадов и блоков. Обобщенная структурная схема РПДУ представлена на рис. 2.1. Возбудитель служит для формирования сетки рабочих частот с требуемой стабильностью. При небольшом числе рабочих частот возбудитель строится по принципу «кварц - волна», что означает: каждой из частот соответствует свой кварцевый автогенератор. Переход с одной частоты на другую осуществляется с помощью электронного коммутатора.


Рис. 2.1. Обобщенная структурная схема РПДУ

При большом числе частот возбудитель представляет собой цифровой синтезатор частот, в состав которого входит кварцевый автогенератор, называемый опорным, делитель с переменным коэффициентом деления (ДПКД) и устройство автоматической подстройки частоты. Такой синтезатор может быть построен на основе большой интегральной микросхемы. Частота кварцевых автогенераторов обычно не превышает 100 Гц. Поэтому при частоте передатчика больше данного значения в устройство включаются умножители частоты, повышающие частоту сигнала в необходимое число раз. Получение требуемой выходной мощности радиопередатчика осуществляется с помощью блока усиления мощности, каскадно-включенных ВЧ или СВЧ генераторов с внешним возбуждением. При выходной мощности передатчика, превышающей мощность одного прибора, в выходном каскаде происходит суммирование мощностей генераторов. Между выходным каскадом радиопередатчика и антенной включается антенно-фидерное устройство (АФУ). В состав АФУ входят: фильтр для подавления побочных излучений радиопередатчика, датчики падающей и отраженной волны и согласующее устройство. При работе в СВЧ диапазоне вместо последнего обычно применяется ферритовое однонаправленное устройство - вентиль или циркулятор. Частотная модуляция осуществляется в возбудителе радиопередатчика, фазовая - в возбудителе или ВЧ умножителях и усилителях, амплитудная и импульсная - в ВЧ усилителях. С помощью блока автоматического управления выполняются автоматическая стабилизация параметров радиопередатчика (в первую очередь, мощности и температурного режима), защита при нарушении нормальных условий эксплуатации (например, при обрыве антенны) и управление (включение-выключение, перестройка по частоте). При составлении и расчете структурной схемы транзисторного радиопередатчика исходят из его назначения, условий работы и следующих основных параметров: - выходной мощности, подводимой к антенне; - диапазона рабочих частот, стабильности частоты, вида модуляции и характеристик модулирующего сигнала.

Общий коэффициент усиления сигнала по мощности радиопередатчика

где - мощность сигнала, поступающего в антенну;

Коэффициент передачи АФУ; - мощность сигнала возбудителя (обычно <10... 20 МВт).

Тот же параметр, выраженный в децибелах относительно мощности в 1 Вт: (2.1)

где , - мощность, Вт.

Общий коэффициент умножения по частоте

где - диапазон частот радиопередатчика; - диапазон частот возбудителя.

Исходя из значения , равного произведению коэффициентов умножения отдельных каскадов, определяется число умножителей, каждый из которых имеет значение =2...3.

Общий коэффициент усиления сигнала по мощности радиопередатчика есть произведение коэффициентов усиления отдельных каскадов. Выбрав тип электронного прибора в каждом из каскадов и определив по справочнику или рассчитав значения коэффициентов усиления данных приборов, можно составить структурную схему проектируемого радиопередатчика. Рассмотрим пример при следующих исходных данных: мощность сигнала, передаваемого в антенну, =20 Вт; коэффициент передачи АФУ составляет 0,8 или 1 дБ; мощность возбудителя =5 МВт. Согласно (2.1) общий коэффициент усиления сигнала по мощности радиопередатчика

Например, при коэффициенте усиления одного электронного прибора, равном 10 дБ, т.е. в 10 раз по мощности, для получения общего коэффициента усиления в 37 дБ потребуется четыре последовательно включенных ВЧ генератора - усилителей мощности ВЧ колебаний.

2.4. Параметры радиопередатчика

К основным параметрам радиопередатчика, характеризующим его технические показатели, относятся:

диапазон частот несущих колебаний ;

число частот N внутри этого диапазона. В самом простом случае радиопередатчик может быть одночастотным и тогда ;

шаг сетки рабочих частот в заданном диапазоне, определяемый согласно выражению

где . Радиопередатчик может работать на любой из фиксированных частот внутри диапазона (рис. 2.2). Например, радиопередатчик системы УКВ самолетной радиосвязи работает в диапазоне частот 118...136 МГц при шаге =25 кГц, общее число частот согласно (3.1) N=721.

Недопустимо излучение радиопередатчика не только вне закрепленного за ним диапазона частот , но и на частоте, отличной от фиксированной сетки частот, например между частотами и ; нестабильность частоты несущих колебаний. Различают абсолютную и относительную нестабильность частоты, долговременную и кратковременную.

Абсолютной нестабильностью частоты называется отклонение частоты излучаемого радиопередатчиком сигнала от номинальногo значения частоты . Например, =120 МГц, а фактически радиопередатчик излучает сигнал с частотой =119,9994 МГц. Следовательно, абсолютная нестабильность частоты

120 - 119,9994 МГц = 0,0006 МГц = 0,6 кГц. Относительной нестабильностью частоты называется отношение абсолютной нестабильности частоты к ее номинальному значению:

(2.4)

Согласно (2.4) в рассмотренном примере относительная нестабильность

=0,000005= .


Рис. 2.2. Сетка частот генератора

В современных радиопередатчиках относительная нестабильность частоты обычно не превышает (2...3) . Но в некоторых случаях, например системах радионавигации, к этому параметру предъявляются еще более жесткие требования: в них следует иметь .

В режиме несущих колебаний радиопередатчик излучает сигнал

где - частота несущих колебаний.



Спектр такого колебания имеет одну составляющую (рис. 2.3, а). При любом виде модуляции - амплитудной, частотной, фазовой и импульсной - спектр сигнала становится или линейчатым (рис. 2.3, б), или сплошным (рис. 2.3, в), занимая определенную полосу частот .

Рис. 2.3. Спектры несущего и модулированного колебаний

Для этого спектра выделяется определенная полоса частот , При этом следует соблюдать неравенство , т.е. спектр сигнала должен укладываться в выделенную для него полосу. В противном случае излучения одного радиопередатчика могут мешать другим радиопередатчикам, проникая в выделенные для них полосы излучения.



выходная мощность несущих колебаний - активная мощность, поступающая из радиопередатчика в антенну. Антенна имеет входное комплексное сопротивление . Поэтому при измерении выходной мощности радиопередатчика антенна может быть заменена эквивалентным сопротивлением . Мощность, рассеиваемая в активной составляющей сопротивления , и есть выходная мощность радиопередатчика , излучаемая антенной (рис. 2.4, а).



Мощность можно определить и вторым способом при непосредственном подключении радиопередатчика к антенне. По связывающему их фидеру распространяются две волны: в прямом направлении - падающая, в обратном - отраженная от антенны (рис. 2.4, б). При этом мощность радиопередатчика (2.5)

где - мощность падающей волны; - мощность отраженной волны;

суммарная мощность, потребляемая радиопередатчиком от источника или блока питания по всем цепям,

коэффициент полезного действия, или промышленный КПД, определяемый как отношение выходной мощности радиопередатчика к потребляемой: .

Вид модуляции и определяющие его параметры. При амплитудной модуляции таким параметром является коэффициент модуляции , при частотной - девиация частоты , A при фазовой - девиация фазы при импульсной - длительность импульса и период их повторения Т. Параметры передаваемого сообщения. Таким сообщением может быть речевая, факсимильная, телевизионная, телеметрическая и другая разнообразная информация, в том числе и считываемая с компьютера. Сообщение может передаваться в форме аналогового (рис. 2.5, а) или цифрового сигнала (рис. 2.5, б). При аналоговом сообщении основным характеризующим его параметром является полоса частот спектра сигнала, при цифровом - число бит в секунду (битом называется единица цифровой информации при двоичном коде это 1 или 0). Параметры, характеризующие допустимые искажения передаваемого сообщения. В результате процесса модуляции, т.е. наложения на несущие колебания исходного сообщения, последнее претерпевает некоторые изменения или, иначе говоря, искажается. В каждом конкретном случае устанавливается вид и норма на эти искажения. Например, при передаче сообщения в виде синусоидального сигнала таким параметром является коэффициент нелинейных искажений, определяющий появление в исходном сигнале 2, 3-й и последующих гармоник.


Рис. 2.6. Нелинейные преобразования сигнала

На некоторых частотах эта норма может достигать -100 дБ, - 110 дБ и т.д. Нормы, связанные с управлением радиопередатчика: время установления в нем нормального режима работы после включения, время перехода с одной частоты несущей на другую, режим полной или частичной мощности излучения и другие требования. Нормы на надежность и долговечность, массу и габаритные размеры радиопередатчика устанавливают в соответствии с общими нормами для радиотехнической аппаратуры. В радиопередатчиках повышенной мощности устанавливаются специальные нормы, диктуемые техникой безопасности.

Структурная схема передающего устройства определяется на­значением РЭС, видом излучаемых сигналов, диапазоном рабочих частот.

По принципу построения передатчики (ПРД) подразделяются на ПРД с одним генератором высокой частоты и ПРД с двумя и более генераторами. Выходным устройством ПРД с одним генератором может быть сам ГВЧ или усилитель мощности. Нагрузкой выходного устройства ПРД является антенна.

В простейшем передатчике - с одним мощным генератором высокой частоты (рис. 1) генерирование колебаний несущей частоты f 0 , их модуляция и усиление получен­ных сигналов осуществляется в одном каскаде - генераторе коле­баний высокой частоты (ГВЧ).

Рис. 1. Структурная схема передатчика с мощным генератором

самовозбуждения

Достоинством ПРД с выходным ГВЧ является его простота, возможность осуществления АМ и ЧМ. К недостаткам можно отнести: необходимость существенного усложнения ГВЧ для генерирования ФМ-колебаний; существенное воздействие на работу ГВЧ со стороны модулятора и антенны и их влияние на режим работы автогенератора.

Вследствие этого стабильность частоты генерируемого сигнала оказывается сравнительно низкой (относительная нестабильность =) Низкая стабильность частоты генерируемого сигнала не позволяет использовать такие ПРД тогда, когда необходимо выделять информацию, заключенную в значениях частоты и фазы радиосигналов (с ЧМ и ФМ). Кроме того, низкая стабильность частоты сигнала, излучаемого антенной ПРД, затрудняет его прием и обработку на других объектах.

Поэтому такого типа ПРД нашли широкое применение для генерирования некогерентной последовательности радиосигналов, у которых частота и фаза изменяются случайно от импульса к импульсу.

Меньшую нестабильность несущей частоты (=) имеют передатчики, выполненные по схеме, изображенной на рисунке 2.

Рис. 2. Структурная схема передатчика с задающим генератором

Здесь управление параметрами несущего колебания, генерируемого задающим генератором (ЗГ ), и усиление полученных сигналов осуществляется в выходном каскаде усилителя мощности (УМ ). Однако такой подход используется только при АМ, так как ЧМ в усилителе в принципе не возможна (усилитель является линейным устройством, которое не изменяет частоту входного сигнала). К тому же УМ обычно является многокаскадным, состоящим из предварительного УВЧ и выходного УМ. И, как правило, модулирующий сигнал подается только на предварительный УВЧ и очень редко на выходной УМ.

Для уменьшения d f используются промежуточные (буферные) каскады, устанавливаемые между ЗГ и УМ .

Повышенные требования к d f приводят к необходимости построения передатчиков с использованием сложных многокаскадных схем. При этом ЗГ работает на частотах, отличных от f 0 . Если эти частоты ниже f 0 , то между ЗГ и УМ включают каскады умножителей частоты (рис. 3).



Для стабилизации частоты ЗГ часто применяют кварцевые резонаторы, позволяющие снизить d f до . При термостатировании кварцевых резонаторов может быть обеспечена нестабильность d f = .

Рис. 3. Структурная схема передатчика с умножителем частоты

Генерирование гармонических колебаний осуществляется в ЗГ (автогенераторах), работающих в режиме самовозбуждения. Прин­цип действия автогенераторов основан на преобразовании энергии постоянного тока в энергию переменного (синусоидального) тока радиочастоты. Автогенератор представляет собой усилитель с це­пью положительной обратной связи. Для существования в авто­генераторе незатухающих колебаний необходимо выполнить баланс фаз и баланс амплитуд. В частном случае это означает, что напря­жение обратной связи на входе усилителя должно быть противо­фазным по отношению к напряжению выходного сигнала и доста­точным, чтобы компенсировать затухание энергии в колебательной системе. При соблюдении этих условий колебания обычно возни­кают самопроизвольно из-за шумового напряжения, причем часто­та генерируемых колебаний определяется параметрами колеба­тельной системы и приближенно равна резонансной частоте контура.

В усилителях мощности нагрузкой является колебательный кон­тур, настроенный на частоту усиливаемых колебаний. Для получе­ния большой выходной мощности выходной каскад работает в не­линейном режиме.

Умножители частоты также работают в нелинейном режиме. Нагрузкой этих каскадов является колебательный контур, настро­енный на частоту выбранной гармонической составляющей тока. При этом другие гармоники тока, включая и первую, подавля­ются.

Содержание:

Введение

1. Радиопередатчики на основе цифровых контроллеров информационного тракта

2. Радиопередатчики с прямым цифровым формированием высокочастотных сигналов

Заключение

Список литературы

Введение

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

В области телекоммуникаций и вещания можно выделить следующие основные непрерывно возрастающие требования к системам передачи информации, элементами которых являются РПдУ:

Обеспечение помехоустойчивости в перегруженном радиоэфире;

Повышение пропускной способности каналов;

Экономичность использования частотного ресурса при многоканальной связи;

Улучшение качества сигналов и электромагнитной совместимости.

Стремление удовлетворить этим требованиям приводит к появлению новых стандартов связи и вещания. Среди уже известных GSM, DECT, SmarTrunk II, TETRA, DRM и др.


1. Радиопередатчики на основе цифровых контроллеров информационного тракта

В настоящем разделе речь пойдет о радиопередатчиках, у которых низкочастотные модулирующие и управляющие сигналы вырабатываются специализированными цифровыми сигнальными процессорами, а сама модуляция осуществляется в аналоговых каскадах, работающих на высоких рабочих или промежуточных частотах. Цифровые сигнальные процессоры такого типа называются контроллерами информационного тракта (Baseband controller). Они являются специализированными ИМС, выполняющими в передатчиках и приемопередатчиках (трансиверах) целый ряд функций, основными из которых являются следующие.

1. Преобразование поступающей в передатчик аналоговой (речевой) информации в цифровую форму встроенным АЦП и дальнейшая ее обработка перед подачей на модулятор - фильтрация, кодирование, накопление и сжатие, объединение в пакеты (Burst encoding). Формирование пакетов осуществляется с добавлением идентификационной информации, управляющих данных, синхронизирующих последовательностей, данных для проверки правильности принятого пакета и пр. Все необходимые для этого данные хранятся в ПЗУ контроллера или получаются контроллером из принимаемого от других станций сигналов. Например, «личный» аутентификационный код передатчика хранится в ПЗУ, а в эфир передается другой код, вычисленный контроллером по встроенному алгоритму с использованием «личного» кода и принятого от базовой станции кодового запроса (случайного числа).

2. Формирование цифрового модулирующего сигнала и преобразование его в аналоговую форму с помощью встроенного ЦАП для подачи на модулятор.

3. Управление каскадами передатчика - режимами по постоянному току, коэффициентами передачи (в системах автоматической регулировки мощности сигнала и защиты транзисторов выходных каскадов), подключением резервных блоков. Для этого контроллер содержит встроенные ЦАП и АЦП и средства обмена данными с внешними ЦАП и АЦП. Управление выходной мощностью передатчика необходимо для поддержания ее неизменной величины в случае работы с сигналами с постоянной огибающей, а также для формирования огибающей РЧ импульсов в соответствии с определенной временной маской при работе в пакетном режиме.

4. Переключение прием-передача.

5. Управление синтезатором частоты - сменой рабочей частоты, ее подстройкой, синхронизацией для работы в системе с другими станциями.

6. Осуществление пользовательского интерфейса - обмен данными с дисплеем, индикаторами, клавиатурой, внешним управляющим компьютером, а также с периферийными устройствами, имеющими цифровое управление. Сопряжение с телефонной сетью общего пользования или сетью ISDN.

7. Временная синхронизация для работы в системе передачи информации с множественным доступом в качестве абонентской или базовой станции. Межсистемная синхронизация. В частности, если в качестве примера цифрового передатчика рассматривать передатчик абонентской части системы DECT, его работа подчиняется трем типам синхронизации TDMA - слотовой синхронизации (с длительностью слота 416,7 мкс, за которые передается 480 бит), кадровой синхронизации (1 кадр равен 24 слотам) и мультикадровой (160 мс) синхронизации.


Наиболее обобщенная структурная схема приемопередатчика (трансивера) с контроллером информационного тракта приведена на рис. 1.1. Она включает функции, перечисленные выше. Варианты внутренней структуры контроллера информационного тракта приведен на рис. 1.2. Это упрощенная структура ИМС PCD87550 фирмы Филлипс, которая является контроллером информационного тракта цифровых радиопередатчиков системы беспроводной передачи данных «Bluetooth» (рис. 1.2.а) и структурная схема baseband-контроллера AD6526, предназначенного для построения трансиверов стандартов GSM/GPRS (рис. 1.2б). Вычислительным ядром этих контроллеров является специализированный процессор ARM TDMI, управляющий контроллером связи, который, в свою очередь, через радиоинтерфейс управляет работой трансивера, получает и передает через него данные. Под радиоинтерфейсом здесь имеется в виду схема сопряжения цифрового контроллера связи с аналоговой частью трансивера.

Остальные блоки, показанные на рис. 1.2а, особых пояснений не требуют: это кодек речи, ЦАП для управления режимами каскадов трансивера, внутренний тактовый генератор, память, интервальный таймер, а также богатый выбор интерфейсов для связи с периферийными устройствами (например, дисплеем, клавиатурой) и внешним управляющим компьютером.

Контроллер AD6526 является более специализированным, поэтому в него введены такие блоки, как интерфейс SIM-карты, интерфейсы дисплея, клавиатуры и подсветки, часы реального времени и др. Его блоки можно разделить на три основные группы: подсистема управляющего микропроцессора (MCU), подсистема сигнального процессора (DSP), подсистема периферии.

Для получения модулированных сигналов с рабочей частотой в радиопередатчиках с контроллерами информационного тракта используют несколько типов структурных схем радиочастотных трактов. Приведем здесь самые распространенные из них.

1. Передатчики с прямой модуляцией и прямой квадратурной модуляцией характеризуются тем, что генератор, управляемый напряжением (ГУН) вырабатывает колебания с рабочей частотой передатчика (например, для системы DECT около1900 МГц, а для Bluetooth - 2.4 ГГц), а модуляция происходит путем воздействия на сам ГУН или его выходной сигнал. В передатчиках с прямой модуляцией (рис. 1.3а) реализуются виды модуляции с постоянной огибающей, например, частотная манипуляция (N-FSK), а в передатчиках с прямой квадратурной модуляцией (рис. 1.3б) возможно формирование любых узкополосных амплитудно-фазовых видов модуляции, например многопозиционной квадратурной амплитудной модуляции (N-QAM). Интегральные квадратурные СВЧ-модуляторы были рассмотрены в предыдущем разделе.


Схемы с прямой модуляцией и прямой квадратурной модуляцией получаются предельно простыми, и это является их основным достоинством, но при повышенных требованиях к качеству (спектральной чистоте) сигнала передатчика или его экономичности могут оказаться существенными следующие их недостатки:

· затягивание (т.е. изменение) частоты ГУН при изменении параметров нагрузки, которой для него является усилитель мощности;

· смещение частоты ГУН за счет изменения его питающего напряжения, которое может претерпевать скачки в моменты включения усилителя мощности;

· значительное потребление энергии квадратурным модулятором СВЧ диапазона.

Большинство из этих недостатков обусловлено тем, что ГУН и усилитель мощности работают на одной и той же, достаточно высокой частоте. Стремление устранить эти недостатки привело к разработке других видов модуляции.


Структурная схема передающего устройства состоит из следующих блоков: устройства управления (УУ), буферного накопителя (БН), кодирующего устройства, устройства формирования старта (УФС), блока аварийной сигнализации и индикации (БАСИ), устройства формирования информационного блока (УФИБ), блока начальной установки (БНУ), ключевой схемы, счетчика переданных бит и двух генераторов тактовых импульсов (ГТИ).

Если какой-либо из 6 источников готов передавать данные, то он формирует сигнал «готов», который фиксируется устройством управления. Причем, одновременно информация может передаваться от одного источника. По данному сигналу в УФИБ и БАСИ помещается адрес передающего источника, а в БН информация от активного источника. По окончанию заполнения БН, УУ приостанавливает прием информации от источника и формирует сигнал «формировать», по которому адрес источника и информация от него становятся единой информационной посылкой. За формированием информационного блока следует формирование стартовой комбинации. УУ коммутирует ключевую схему для посылки стартовой комбинации в канал связи (КС), а затем для передачи информационной части. Далее информационный блок поступает на кодер и посылается в КС.

БАСИ представляет собой набор индикаторов, отображающих работу схемы. БНУ формирует импульс установки всех остальных блоков в исходное состояние. ГТИ 1 предназначен для переключения состояний УУ, ГТИ 2 включается только на время передачи данных в канал связи, что повышает синхронность работы приемной и передающей частей. Счетчик переданных бит предназначен для формирования сигнала конца передачи информационного блока.

Структурная схема передающего устройства представлена на рисунке 3.1.

Рисунок 3.1 - Структурная схема передающего устройства

Разработка структурной схемы приемного устройства

Структурная схема принимающего устройства состоит из следующих блоков: УУ, буферного накопителя данных, буферного накопителя адреса, декодирующего устройства, устройства выявления старта (УВС), БАСИ, БНУ.

Декодер предназначен для декодирования информации, которая поступает из КС. Буферные накопители принимают данные от декодирующего устройства. Функциональное назначение остальных элементов аналогично назначению одноименных элементов в передающей схеме.

Структурная схема принимающего устройства представлена на рисунке 3.2


Рисунок 3.2 - Структурная схема принимающего устройства

Алгоритм работы передатчика изображен на рисунке 3.3.

При включении питания передающего устройства сигнал поступает на БНУ, который устанавливает все остальные блоки в начальное состояние. Затем УУ подаст сигнал на БАСИ о наличии питания. После этого схема перейдет в режим ожидания готовности одного из источников передавать информацию. При получении сигнала от источника в БАСИ индицируется определенный сигнал, в соответствии с адресом активного источника.

Если посылка не сформирована, то передаются все биты адреса и информационной части в УФИБ, после чего формируется информационная посылка.

Если посылка сформирована, то на время ее передачи в КС происходит остановка чтения информации от активного источника.

Так как в метод передачи данных старт-стопный, то перед тем, как посылать информацию, предварительно отправляется в КС стартовая комбинация. После чего, информационная посылка кодируется и отправляется в КС.

Рисунок 3.3 - Алгоритм работы передатчика

УВС выявляет стартовую комбинацию из КС, после чего УУ запустит ГТИ, установит БНА и БНД в режим записи. Декодер декодирует информацию поступающую из канала связи. Декодированная информация поступает на БНА и БНД. По завершению nб тактов УУ остановит ГТИ, переведет БНА и БНД в режим чтения, подаст сигнал «готов» для ООД и перейдет в состояние ожидания старта.

Алгоритм работы приемника изображен на рисунке 3.4.

Рисунок 3.4 - Алгоритм работы приемника

Вывод к главе 3

В результат выполнения заданий данной главы получены структурные схемы передающего и принимающего устройств ССПИ, а так же алгоритмы их работы, что дает возможность выполнения более детального построения ССПИ - функциональных схем.