Теорема Шеннона и передача информации

Теорема Шеннона

Теорема Шеннона - Хартли в теории информации - применение теоремы кодирования канала с шумом к архетипичному случаю непрерывного временно́го аналогового канала коммуникаций, искажённого гауссовским шумом . Теорема устанавливает шенноновскую ёмкость канала, верхнюю границу максимального количества безошибочных цифровых данных (то есть, информации), которое может быть передано по такой связи коммуникации с указанной полосой пропускания в присутствии шумового вмешательства, согласно предположению, что мощность сигнала ограничена, и гауссовский шум характеризуется известной мощностью или мощностью спектральной плотности. Закон назван в честь Клода Шеннона и Ральфа Хартли .

Утверждение теоремы

Рассматривая все возможные многоуровневые и многофазные методы шифрования, теорема Шеннона - Хартли утверждает, что пропускная способность канала , означающая теоретическую верхнюю границу скорости передачи данных, которые можно передать с данной средней мощностью сигнала через аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности равна:

Пропускная способность канала, бит /с; - полоса пропускания канала, Гц ; - полная мощность сигнала над полосой пропускания, Вт или ²; - полная шумовая мощность над полосой пропускания, Вт или ²; - частное от деления отношения сигнала к его шуму (SNR) на гауссовский шум, выраженное как отношение мощностей.

История развития


Wikimedia Foundation . 2010 .

Смотреть что такое "Теорема Шеннона" в других словарях:

    В теории информации применение теоремы кодирования канала с шумом к архетипичному случаю непрерывного временного аналогового канала коммуникаций, искаженного гауссовским шумом. Теорема устанавливает шенноновскую ёмкость канала, верхнюю границу… … Википедия

    В теории информатики Теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона. Теорема Шеннона об источнике шифрования показывает, что (когда … Википедия

    - … Википедия

    Не следует путать с другими теоремами Шеннона. Теоремы Шеннона для источника общего вида описывают возможности кодирования источника общего вида с помощью разделимых кодов. Другими словами, описываются максимально достижимые возможности… … Википедия

    Не следует путать с другими теоремами Шеннона. Теоремы Шеннона для канала с шумами (теоремы Шеннона для передачи по каналу с шумами) связывают пропускную способность канала передачи информации и существование кода, который возможно использовать… … Википедия

    Не следует путать с другими теоремами Шеннона. Теоремы Шеннона для источника без памяти связывают энтропию источника и возможность сжатия кодированием с потерями и последующим неоднозначным декодированием. Прямая теорема показывает, что с помощью … Википедия

    Теорема, устанавливающая условия, при к рых возможна или невозможна передача сообщений, вырабатываемых данным источником сообщений, по данному каналу связи и при заданных условиях точности воспроизведения сообщений (см. Сообщений точность… … Математическая энциклопедия

    - (в англоязычной литературе теорема Найквиста Шеннона или теорема отсчётов) гласит, что, если аналоговый сигнал имеет финитный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным… … Википедия

Теорема Шеннона - Хартли в теории информации - применение теоремы кодирования канала с шумом к архетипичному случаю непрерывного временно́го аналогового канала коммуникаций, искажённого гауссовским шумом . Теорема устанавливает шенноновскую ёмкость канала, верхнюю границу максимального количества безошибочных цифровых данных (то есть, информации), которое может быть передано по такой связи коммуникации с указанной полосой пропускания в присутствии шумового вмешательства, согласно предположению, что мощность сигнала ограничена, и гауссовский шум характеризуется известной мощностью или спектральной плотностью мощности . Закон назван в честь Клода Шеннона и Ральфа Хартли .

Энциклопедичный YouTube

    1 / 3

    Формула Шеннона

    Информатика. Теория информации: Формула Шеннона. Центр онлайн-обучения «Фоксфорд»

    Теорема Котельникова. На языке родных осин!

    Субтитры

Утверждение теоремы

Рассматривая все возможные многоуровневые и многофазные методы кодирования, теорема Шеннона - Хартли утверждает, что пропускная способность канала C {\displaystyle C} , означающая теоретическую верхнюю границу скорости передачи данных, которые можно передать с данной средней мощностью сигнала S {\displaystyle S} через аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N {\displaystyle N} равна:

C = B log 2 ⁡ (1 + S N) , {\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right),} C {\displaystyle C} - пропускная способность канала, бит /с; B {\displaystyle B} - полоса пропускания канала, Гц ; S {\displaystyle S} - полная мощность сигнала над полосой пропускания, Вт или ²; N {\displaystyle N} - полная шумовая мощность над полосой пропускания, Вт или ²; S / N {\displaystyle S/N} - отношение мощности сигнала к шуму (SNR) .

История развития

В течение конца 1920-х гг. Гарри Найквист и Ральф Хартли разработали фундаментальные идеи, связанные с передачей информации, с помощью телеграфа как системы коммуникаций. В то время, это был прорыв, но науки как таковой не существовало. В 1940-х гг., Клод Шеннон ввёл понятие пропускной способности канала , которое базировалось на идеях Найквиста и Хартли, а затем сформулировал полную теорию передачи информации.

Критерий Найквиста

В 1927 году Найквист установил, что число независимых импульсов в единицу времени, которые могут быть переданы через телеграфный канал, ограничено удвоенной максимальной частотой пропускания канала (этой частоте соответствует чередующаяся последовательность нулей и единиц, остальные комбинации сигналов соответствуют более низким частотам)

f p ⩽ 2 B , {\displaystyle f_{p}\leqslant 2B,}

где f p {\displaystyle f_{p}} - частота импульса (имп/с), и B {\displaystyle B} - полоса пропускания (Гц).

Формула Хартли

Теоремы Шеннона для канала с шумами

Теоремы Шеннона для канала с шумами (теоремы Шеннона для передачи по каналу с шумами) связывают пропускную способность канала передачи информации и существование кода, который возможно использовать для передачи информации по каналу с ошибкой, стремящейся к нулю (при увеличении длины блока).

Если скорость передачи сообщений меньше пропускной способности канала связи

R < C , {\displaystyle R

то существуют коды и методы декодирования такие, что средняя и максимальная вероятности ошибки декодирования стремятся к нулю, когда длина блока стремится к бесконечности.

R > C , {\displaystyle R>C,}

то кода, на основе которого можно добиться сколько угодной малой вероятности возникновения ошибки, не существует.

Теорема Шеннона - Хартли

В данной теореме определено, что достичь максимальной скорости (бит/с) можно путём увеличения полосы пропускания и мощности сигнала и, в то же время, уменьшения шума.

Теорема Шеннона - Хартли ограничивает информационную скорость (бит/с) для заданной полосы пропускания и отношения «сигнал/шум». Для увеличения скорости необходимо увеличить уровень полезного сигнала, по отношению к уровню шума.

Если бы существовала бесконечная полоса пропускания, бесшумовой аналоговый канал, то можно было бы передать неограниченное количество безошибочных данных по ней за единицу времени. Реальные каналы имеют ограниченные размеры и в них всегда присутствует шум.

Удивительно, но не только ограничения полосы пропускания влияют на количество передаваемой информации. Если мы комбинируем шум и ограничения полосы пропускания, мы действительно видим, что есть предел количества информации, которую можно было передать, даже используя многоуровневые методы кодирования. В канале, который рассматривает теорема Шеннона - Хартли, шум и сигнал дополняют друг друга. Таким образом, приёмник воспринимает сигнал, который равен сумме сигналов, кодирующего нужную информацию и непрерывную случайную, которая представляет шум.

Это дополнение создает неуверенность относительно ценности оригинального сигнала. Если приёмник обладает информацией о вероятности ненужного сигнала, который создает шум, то можно восстановить информацию в оригинальном виде, рассматривая все возможные влияния шумового процесса. В случае теоремы Шеннона - Хартли шум, как таковой, произведен гауссовским процессом с некоторыми отклонениями в канале передачи. Такой канал называют совокупным белым гауссовским шумовым каналом , так как гауссовский шум является частью полезного сигнала. «Белый» подразумевает равное количество шума во всех частотах в пределах полосы пропускания канала. Такой шум может возникнуть при воздействии случайных источников энергии, а также быть связан с ошибками, возникшими при кодировании. Знание о вероятности возникновения гауссовского шума значительно упрощает определение полезного сигнала.

Значение теоремы

Пропускная способность канала и формула Хартли

Сравнивая пропускную способность канала и формулу Хартли, мы можем найти эффективное число M {\displaystyle M} различимых уровней:

2 B log 2 ⁡ M = B log 2 ⁡ (1 + S N) , {\displaystyle 2B\log _{2}M=B\log _{2}\left(1+{\frac {S}{N}}\right),} M = 1 + S N . {\displaystyle M={\sqrt {1+{\frac {S}{N}}}}.}

Взятие квадратного корня по сути возвращает отношение мощностей к отношению напряжений, таким образом число уровней приблизительно равно отношению среднеквадратичной амплитуды сигнала к шумовому стандартному отклонению. Это подобие в форме между пропускной способностью по Шеннону и формулой Хартли не стоит понимать буквально, что для безошибочной передачи достаточно M {\displaystyle M} уровней сигнала. Избыточное кодирование для устранения ошибок потребует большего числа уровней, но предельная скорость передачи данных, к которой можно приблизиться с кодированием, эквивалентна использованию того самого M {\displaystyle M} из формулы Хартли.

До сих пор рассматривалась теория кодирования; теперь приступим к рассмотрению теории информации. Теория кодирования отвечает на следующие вопросы: 1) как построить коды для белого шума (основной вопрос)? 2) как сжать сообщение, когда известна его вероятностная структура?

Займемся общим методом описания структуры источника. Для этого понадобится понятие энтропии. Хотя энтропия давно использовалась во многих физических задачах, и ее понятие в теории информации сильно напоминает классическое определение, тем не менее в теории информации энтропия изучается сама по себе без обращения к многочисленным аналогиям. Для нас энтропия будет просто функцией распределения вероятностей Некоторые аналогии приведены в .

Теория информации объединяет защиту от шума и эффективное использование канала. Однако простая модель шума в канале (белый шум) иногда оказывается нереальной и в таких случаях приходится рассматривать более общие конфигурации ошибок. Это приводит к важному понятию пропускной способности канала, которое вводится в гл. 8.

Результат, который является целью изучения, - это основная теорема Шеннона из гл. 10, связывающая пропускную способность канала С (более точно будет определена далее) и максимально возможную скорость передачи сигналов. Доказывается замечательная теорема, утверждающая, что можно сколь угодно близко подойти к максимальной скорости передачи сигналов, достигая при этом сколь угодно низкого уровня ошибок. К сожалению, доказательство не является конструктивным, так что теория информации дает границы того, что можно достичь, и не говорит, как. этого достичь. Тем не менее, как уже упоминалось в разд. 1.2, эта теория весьма полезна.

В настоящей главе доказывается очень частный случай основной теоремы: теорема кодирования без шума, когда проблемы, связанные с шумом, игнорируются. После того, как эта теорема и ее доказательство станут понятными, более ясным станет и доказательство основной теоремы; в этих щелях нужно лишь использовать ряд предварительных результатов из гл. 9.


1.2. Первая теорема Шеннона

Ранее отмечалось, что при передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Так, например, если вы попытаетесь передать речевое сообщению в ветреную погоду человеку, находящемуся от вас на значительном расстоянии, то оно может быть сильно искажено такой помехой как ветер. Вообще, передача сообщений при наличии помех является серьезной теоретической и практической задачей. Ее значимость возрастает в связи с повсеместным внедрением компьютерных телекоммуникаций, в которых помехи неизбежны.

При работе с кодированной информацией, искажаемой помехами, можно выделить следующие основные проблемы: установления самого факта того, что произошло искажение информации; выяснения того, в каком конкретно месте передаваемого текста это произошло; исправления ошибки – хотя бы с некоторой степенью достоверности.

Помехи в передачи информации - свойство отнюдь не только технических систем. Это - вполне обычное дело в быту. Пример был выше; другие примеры - разговор по телефону, в трубке которого "трещит", вождение автомобиля в тумане и т.д. Чаще всего человек вполне прилично справляется с каждой из указанных выше задач, хотя и не всегда отдает себе отчет, как он это делает (т.е. неалгоритмически, а исходя из каких-то ассоциативных связей). Известно, что естественный язык обладает большой избыточностью (в европейских языках - до 70%), чем объясняется большая помехоустойчивость сообщений, составленных из знаков алфавитов таких языков. Примером, иллюстрирующим устойчивость русского языка к помехам, может служить предложение "в словох всо глосноо зомононо боквой о". Здесь 26% символов "поражены", однако это не приводит к потере смысла. Таким образом, в данном случае избыточность является полезным свойством.

Например, каждый фрагмент текста ("предложение") передается трижды, и верным считается та пара фрагментов, которая полностью совпала. Однако, большая избыточность приводит к большим временным затратам при передаче информации и требует большого объема памяти при ее хранении. Отсюда следует задача устранения избыточности, или эффективного кодирования. Впервые теоретическое исследование такого рода проблем предпринял К.Шеннон.

Первая теорема Шеннона о передаче информации, которая называется также основной теоремой о кодировании при отсутствии помех, формулируется следующим образом:

При отсутствии помех передачи всегда возможен такой вариант кодирования сообщения, при котором среднее число знаков кода, приходящихся на один знак кодируемого алфавита, будет сколь угодно близко к отношению средних информаций на знак первичного и вторичного алфавитов.

Используя понятие избыточности кода, можно дать более короткую формулировку теоремы:

При отсутствии помех передачи всегда возможен такой вариант кодирования сообщения, при котором избыточность кода будет сколь угодно близкой к нулю.

Данные утверждения являются теоремами и, следовательно, должны доказываться, однако доказательства мы опустим. Для нас важно, что теорема открывает принципиальную возможность оптимального кодирования. Однако необходимо сознавать, что из самой теоремы никоим образом не следует, как такое кодирование осуществить практически – для этого должны привлекаться какие-то дополнительные соображения, что и станет предметом последующего обсуждения.

Таким образом, оптимальное кодирование принципиально возможно.

Наиболее важна для практики ситуация, когда М=2, то есть информацию кодируют лишь двумя сигналами 0 и 1.

Шенноном была рассмотрена ситуация, когда при кодировании сообщения в первичном алфавите учитывается различная вероятность появления знаков, а также равная вероятность появления знаков вторичного алфавита. Тогда:

К min (А, В)= I (A) / log 2 M= I (A) ,

здесь I (A) - средняя информация на знак первичного алфавита.

Ограничим себя ситуацией, когда M = 2, т.е. для представления кодов в линии связи используется лишь два типа сигналов – наиболее просто реализуемый вариант. Подобное кодирование называется двоичным. Знаки двоичного алфавита принято обозначать "0" и "1. Удобство двоичных кодов и в том, что каждый элементарный сигнал (0 или 1) несет в себе 1 бит информации (log 2 M = 1); тогда из (1), теоремы Шеннона:

I 1 (A) ≤ K (2)

и первая теорема Шеннона получает следующую интерпретацию:

При отсутствии помех передачи средняя длина двоичного кода может быть сколь угодно близкой к средней информации, приходящейся на знак первичного алфавита.

Определение количества переданной информации при двоичном кодировании сводится к простому подсчету числа импульсов (единиц) и пауз (нулей). При этом возникает проблема выделения из потока сигналов (последовательности импульсов и пауз) отдельных кодов. Приемное устройство фиксирует интенсивность и длительность сигналов. Элементарные сигналы (0 и 1) могут иметь одинаковые или разные длительности. Их количество в коде (длина кодовой цепочки), который ставится в соответствие знаку первичного алфавита, также может быть одинаковым (в этом случае код называется равномерным) или разным (неравномерный код). Наконец, коды могут строиться для каждого знака исходного алфавита (алфавитное кодирование) или для их комбинаций (кодирование блоков, слов). В результате при кодировании (алфавитном и словесном) возможны следующие варианты сочетаний:

Таблица 1. Варианты сочетаний

Длительности элементарных сигналов

Кодировка первичных символов (слов)

Ситуация

одинаковые

равномерная

одинаковые

неравномерная

равномерная

неравномерная

В случае использования неравномерного кодирования или сигналов разной длительности (ситуации (2), (3) и (4)) для отделения кода одного знака от другого между ними необходимо передавать специальный сигнал – временной разделитель (признак конца знака) или применять такие коды, которые оказываются уникальными, т.е. несовпадающими с частями других кодов. При равномерном кодировании одинаковыми по длительности сигналами (ситуация (1)) передачи специального разделителя не требуется, поскольку отделение одного кода от другого производится по общей длительности, которая для всех кодов оказывается одинаковой (или одинаковому числу бит при хранении).

Длительность двоичного элементарного импульса показывает, сколько времени требуется для передачи 1 бит информации. Очевидно, для передачи информации, в среднем приходящейся на знак первичного алфавита, необходимо время. Таким образом, задачу оптимизации кодирования можно сформулировать в иных терминах: построить такую систему кодирования, чтобы суммарная длительность кодов при передаче (или суммарное число кодов при хранении) данного сообщения была бы наименьшей.

Если имеется источник информации с энтропией Н(х) и канал связи с пропускной способностью С, то если С > H(X), то всегда можно закодировать достаточно длинное сообщение таким образом, что оно будет передано без задержек. Если же, напротив, С

Первая теорема Шеннона декларирует возможность создания системы эффективного кодирования дискретных сообщений, у которой среднее количество двоичных символов на один символ сообщения асимптотически стремится к энтропии источника сообщений (в отсутствии помех).

Первая теорема Шеннона (переформулировка).

При отсутствии помех средняя длина двоичного кода может быть сколь угодно близкой к средней информации, приходящейся на знак первичного алфавита.

Какие же могут быть особенности вторичного алфавита при кодировании:

Элементарные коды 0 и 1 могут иметь одинаковые длительности (t0=t1) или разные (≠).

Длина кода может быть одинаковой для всех знаков первичного алфавита (код равномерный) или различной (неравномерный код)

Коды могут строиться для отдельного знака первичного алфавита (алфавитное кодирование) или для их комбинаций (кодирование блоков, слов).

1.3 Вторая теорема Шеннона

Отношение пропускной способности канала связи к скорости неискаженной передачи символов алфавита передаваемого сообщения должно быть больше или равно энтропии передачи одного символа.

Вторая теорема Шеннона гласит, что при наличии помех в канале всегда можно найти такую систему кодирования, при которой сообщения будут переданы с заданной достоверностью. При наличии ограничения пропускная способность канала должна превышать производительность источника сообщений. Вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Для дискретного канала с помехами теорема утверждает, что, если скорость создания сообщений меньше или равна пропускной способности канала, то существует код, обеспечивающий передачу со сколь угодно малой частотой ошибок.

Доказательство теоремы основывается на следующих рассуждениях. Первоначально последовательность X={x i } кодируется символами из В так, что достигается максимальная пропускная способность (канал не имеет помех). Затем в последовательность из В длины n вводится r символов по каналу передается новая последовательность из n + r символов. Число возможных последовательностей длины n + r больше числа возможных последовательностей длины n. Множество всех последовательностей длины n + r может быть разбито на n подмножеств, каждому из которых сопоставлена одна из последовательностей длины n. При наличии помехи на последовательность из n + r выводит ее из соответствующего подмножества с вероятностью сколь угодно малой.Кодирование информации (4)Реферат >> Информатика

Сожержание I. История кодирования информации………………………………..3 II. Кодирование информации…………………………………………4 III. Кодирование текстовой информации…………………………….4 IV. ... , и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до...

  • Кодирование и шифрование информанции

    Реферат >> Информатика

    Друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно... пытались использовать для решения этой задачи самые разнообразные методы, и... программных средств на универсальную систему кодирования . Кодирование графических данных Если рассмотреть с...

  • Кодирование чисел, символов и графической информации, единицы измерения данных

    Контрольная работа >> Информатика

    ... №2………………………………………..8 ПРАКТИЧЕСКОЕ ЗАДАНИЕ №3………………………………………..9 СПИСОК ЛИТЕРАТУРЫ………………………………………………..11 КОДИРОВАНИЕ ЧИСЕЛ, СИМВОЛОВ И ГРАФИЧЕСКОЙ ИНФОРМАЦИИ, ЕДИНИЦЫ... вычисление функции: Y = Алгоритм решения данной задачи будет иметь вид: По полученному...

  • Кодирование речевой информации

    Реферат >> Информатика

    ... задача , с которой метод частотной селекции принципиально не может справиться. Описание метода кодирования ... Вступление 2 Система кодирования речи 4 Обоснование выбора метода кодирования 4 Описание метода кодирования 5 Генератор псевдослучайных...