Топологии сети. Топология "кольцо": недостатки и преимущества

Оперативная взаимосвязь между компьютерами по локальной сети осуществляется с помощью линий связи. Вся система, в зависимости от физического подключения узлов, а также, самого геометрического расположения узлов сети, называют сетевой топологией . Учитывая разнообразные варианты существующих подключений, различают следующие виды сетевых структур : шинная, звездная, кольцевая, иерархическая и произвольная.

Существуют логическая и физическая топологии , которые независимы между собой. Физическая топология осуществляет в сети геометрию построения, а логическая устанавливает в сети для всех потоков данных их направление и способ передачи.

В локальных сетях наиболее всего востребованы физические топологии, такие как:

  • «шина» (bus);
  • “звезда” (star);
  • “кольцо” (ring);
  • а также, логическое «кольцо» (или Token Ring ).

Сеть с наличием шинной топологии . Здесь для передачи данных используется коаксикальный кабель (моноканал), на концах его устанавливаются терминаторы, или оконечные сопротивления. Подключение каждого компьютера к кабелю происходит через Т-разъема (Т-коннектор). Через передающий узел сети данные по шине передаются в обе стороны, при этом отражаются от терминаторов. Иными словами, терминаторы гасят сигналы, которые достигают до конца каналов передачи данных. Таким образом, передаваемая информация проходит через все узлы, но принимается и фиксируется только одним, которому и предназначалась. Логическая шинная топология обеспечивает в сети совместную и одновременную передачу информации ко всем ПК, и наоборот, все данные от ПК во все направления передаются по сети. Такой вид передачи сигналов называют еще широковещательным.

Эту топологию применяют в локальных сетях, где используется архитектура Ethernet (класса 10Base-5 или 10Base-2 соответственно для тонких и толстых коаксиальных кабелей).

Сети шинной топологии имеют и свои преимущества:

  • легко настраивается и конфигурируется;
  • устойчивость данной сети к отдельным неисправностях в узлах;
  • если один из узлов выходит из строя, это никак не влияет на работоспособность всей сети.

Но имеются и недостатки:

  • ограничения в количестве рабочих станций и длине кабеля;
  • может остановиться вся работа сети в случае разрыва кабеля;
  • сложно определять дефекты в соединениях.

Топология сети — “звезда”

В данной сети каждая отдельная рабочая станция кабелем (витой парой) присоединена к хабу или концентратору, что обеспечивает для всех ПК параллельное соединение (все компьютеры сети могут друг с другом общаться).
Данные, которые отправляются от одной передающей станции, через хаб и все линии идут на все ПК. Другими словами, информация может поступать на любую рабочую станцию, но принимать ее могут лишь те станции, которым она предназначена. Поскольку передача сигналов данной типологии физическая «звезда» и она широковещательная, то логическая топология в такой локальной сети будет логической шиной. В основном применяется для локальных сетей, имеющих архитектуру 10Base-TEthernet.

Преимущества данной топологии звезда:

  • легкое подключение нового ПК;
  • централизованное управление;
  • устойчивость сетей к неисправностям ПК;
  • устойчивость к разрывам в отдельных соединения ПК.

×

Недостатки топологии звезда:

  • неэкономный расход кабеля;
  • если нарушается работа хаба, это влияет на всю сеть.

Топология сети “кольцо”

Неразрывное кольцо, с помощью которого передается информация между ПК, в топологии сети обеспечивается соединением всех узлов каналами связи. Благодаря этому, вся информация движется по кругу в одном направлении.

Рабочая станция, принимающая сигналы, распознает данные и получает только те сообщения, которые ей адресованы. В данной топологической сети применяется маркерный доступ, предоставляющий право на определенный порядок использования кольца. Логическая топология в данном случае — логическое кольцо.

Такая сеть легко создается и настраивается. Единственный недостаток сети топологии кольцо — если хоть в одном месте повреждена линия связи или вышел из строя, нарушается работоспособность всей сети.

Из-за некоторой ненадежности, в чистом виде данный вид топологии редко применяется. На практике в основном применяют модификации различных кольцевых топологий.

Прочитайте по теме следующие материалы:

Топология сети — Token Ring.

Такая топология основывается на топологии сети «физическое кольцо с применением типа звезда» . Такая топология предусматривает подключение всех рабочих станций к центральному концентратору (или Token Ring), так же как при топологии «физическая звезда» . Таким образом, центральный концентратор с помощью перемычек осуществляет последовательное соединения выходов с одних станций с входами других станций.

Концентратор обеспечивает соединение каждой станции только с двумя соседними станциями — предыдущей и следующей. Рабочие станции связаны между собой петлей кабеля, которая обеспечивает передачу данных между станциями, то есть отдельная станция ретранслирует информацию дальше. Для обеспечения этого, каждая рабочая станция оборудована специальными приемо-передающими устройствами, позволяющими управление прохождения данных в сети.

Концентратор образует основное первичное и резервное кольца. При обрыве в основном кольце, его можно обойти, используя для этого резервные кольца. Для этого применяется четырёхжильный кабель. В случае нарушения работы станции или при обрые линии связи сеть продолжает работать, поскольку концентратор исключает неисправную станцию, таким образом замыкает кольцо передачи данных.

Система Token Ring сделана таким образом, что маркер передаётся по логическому кольцу между узлами. Передача маркера имеет фиксированное направление. Если станция обладает маркером, она передает информацию на следующую станцию.

Но для такой передачи данных рабочая станция сначала должны дождаться появления свободного маркера. Полученный маркер содержит все адреса станции, которая направила данный маркер, в том числе и станции, для которого он предназначался. Следующая станция передает маркер дальше по сети, для следующей станции, и так далее по кругу.

Главный узел сети (в основном это файл-сервер) маркер создает, далее этот маркер отправляется в сеть по кольцу. В данном случае, такой узел является активным монитором и строго следит за движением маркера, который не должен потеряться или разрушиться.

К преимуществам такой топологии Token Ring можно отнести:

  • одинаковый доступ до рабочих станций;
  • надежность системы;
  • устойчивость к неисправностям некоторых станций или при разрывах соединений.

Недостатки Token Ring — это очень большой расход материалов на подключение, а соответственно, самая дорогостоящая разводка для линий связи.

Кольцевая сеть — это сеть которая состоит из двух или более сетевых устройств, которые соединены друг с другом физически или логически, так что они образуют цепочку устройств, причем последнее устройство в цепи подключается к первому устройству. Кольцевая сеть типично спроектирована как топологии одиночного-кольца или двойного-кольца. В разработке также находятся технологии с несколькими кольцами, включающими два или более параллельных кольца.
Сети обычно характеризуются двумя способами: физически и логически. Термин “физическая топология” описывает способ устройства быть физически подключенными вместе, поэтому физическая топология сети кольцо и физические устройства соединены вместе, чтобы сформировать кольцо. Логическое представление топологии связано с потоками информации. В логической перспективе, кольцевая топология сети может иметь устройства физически подключенными вместе, как топология сети звезда, сеть для передачи данных или древовидная сеть, но информация течет от устройства к устройству, как если бы они были связаны в физическом кольце. Например, сеть может быть физически организована как сеть звезда, но информация может передаваться от устройства к устройству, как если бы это была кольцевая сеть.

Одним из основных недостатков одиночной кольцевой сети является то, что разрыв в любом месте кольца может привести к полному сбою потока информации. Для того чтобы помочь предотвратить нарушения этой природы, создают второе параллельное counter-rotating кольцо которое можно добавить и которое посылает информацию в противоположном направлении. Этот тип избыточной сети называется двойной кольцевой сетью. Если одно из колец в двойной кольцевой сети страдает от повреждением, информация всё ещё может достигнуть всех устройств с помощью неповрежденного альтернативного пути.

Второй недостаток кольцевых сетей заключается в том, что информация перемещается медленнее, потому что данные должны проходить через каждое устройство, когда она пробивается через сеть. Несмотря на это ограничение, кольцевая топология всё ещё существует в волоконно-оптических сетях, таких как волоконно распределенном интерфейсе данных (сети fddi) сетей, синхронных оптических сетях (сонет) и сетях синхронной цифровой иерархии (СЦИ). Когда эти высокоскоростные сети включают физическую двойную кольцевую топологию, они тем самым извлекают выгоду от резервирования, обеспеченного этим типом топологии.

Ring networks впервые стала популярной в 1980-х годах, когда топологии логической кольцевой сети были использованы в технологии token ring. Ограничения, присущие кольцевой сети, наряду с проблемами совместимости между маркерным кольцом и другими протоколами, в значительной степени были заменены новыми транспортными методами передачи данных, такими как локальные сети. Несмотря на то, что Ethernet всё чаще продолжает вытеснять протоколы, используемые в волоконно-оптических кольцевых сетях, использование кольцевой сети и разработка для высокоскоростной передачи данных продолжаются.

Кастинговая сеть имеет множество названий: накидка, накидушка, намет, покрывашка, парашют . Как ни странно, любители ловли кастинговой сетью и особенно специалисты этой ловли встречаются у нас достаточно редко. Причин тому множество. Исторически сложилось так, что с давних пор ловля накидной сетью была традиционным способом рыболовства в странах в основном южных (Южная Америка, Азия). Рыбаки в тех краях занимаются подобной рыбалкой с детства и результатов достигают поразительных.

Туристы с изумлением наблюдают, как туземный рыбак далеко швыряет непонятный сверток, тот на лету разворачивается в большую круглую сеть, которая вскоре возвращалась из мутных вод с богатым уловом. Изумление сменялось вполне законным желанием: хотим ловить так же ! В результате кастинговая сеть стремительно начала завоевывать нетрадиционные для себя страны.

Принцип ловли заключается в следующем: сеть собирается на руку определенным образом (так, чтобы легко развернулась в полете), затем горизонтально набрасывается на воду и накрывает участок воды, соответствующий диаметру раскрытой сети. После того как огруженная часть сети опустится на дно, сеть вытаскивается за шнур, прикрепленный к основанию. Возможна ловля рыб в толще воды, без опускания снасти на дно, но для этого требуется сеть несколько измененной конструкции.

Кастинговая сеть (американский тип) пример

Кастинговые сети делятся на две большие группы: американского типа и испанского. Американский тип более удобный при забросе, более уловистый и более простой для изготовления своими руками. Испанский тип имеет одно преимущество : в местах с неудобным для ловли подводным рельефом она менее склонна зацепляться за камни, топляки и т. п.

Кастинговая сеть представляет собой сетевое полотно в форме правильного круга, по краю которого пришит шнур, оснащенный очень часто посаженными свинцовыми грузилами. Для вытягивания сети служит центральный плетеный шнур (крученый ни в коем случае не годится), достаточно толстый (чтобы не резал руки при быстрой выборке снасти), обычно как минимум 5–6 мм. Стандартная длина его 4–4,5 м, но многие любители, в совершенстве освоив снасть, увеличивают длину шнура в 1,5–2 раза. На конце шнура имеется петля диаметром 20–25 см.

В американских сетях центральный шнур другим концом крепится к многочисленным стропам (прожилинам), протянутым к грузовому шнуру, в испанских – к центральной части сети. Это конструктивное различие определяет и разную работу сети после заброса.

При вытаскивании снасти американского типа центральный шнур с помощью прожилин подтягивает грузовой шнур к центру и практически собирает его воедино в компактный комок, тем самым затягивая сеть и образуя мешок с закрытым выходом. При вытаскивании сети испанского типа грузила сходятся к центру под действием тяги шнура и собственной тяжести, закрывая выход, и улов остается в карманах сети, расположенных по ее периметру.

На американской снасти в самом центре сети имеется небольшое круглое отверстие (5–6 см в диаметре), и сетевое полотно по его краю крепится к пластмассовой или фторопластовой втулке. Во втулке просверлено одно отверстие (для самых маленьких сетей) либо несколько (6–8 см для самых больших), сквозь которые скользят стропы-прожилины.

Сетевое полотно (с достаточно мелкими ячеями, от 9 до 15 мм) берется как из мононити, так и из крученой нити.

Советы по изготовлению кастинговой сети американского типа

Если кто-то захочет изготовить кастинговую сеть американского типа своими руками, ему стоит следовать нескольким правилам:

  1. Свинцовые грузила сажаются на грузовой шнур равномерно и весьма часто, с расстоянием между их центрами не более 10–12 см. Вес грузил – от 20 до 35 г, в зависимости от величины сети; их форма – сильно вытянутый цилиндр; шаровидные грузы, особенно способные провалиться в ячейку сети, неприменимы. Если грузила использовать не покупные, а отливать самому, необходимо тщательно обработать каждое, устранив все неровности и дефекты литья.
  2. Прожилины (стропы) изготавливаются из лески (мононити, плетенка затрудняет ловлю) толщиной 1 мм и более, длина их ненамного превышает радиус снасти. Крепятся прожилины к грузовому шнуру достаточно часто, не реже, чем через 0,5 м, и соответственно, число их растет с увеличением размера снасти. Если в пластмассовой втулке просверлено не одно, а несколько отверстий, то через каждое необходимо пропустить те прожилины, что ведут к соответствующему краю сети, не допуская перекрещивания. Острые кромки на краях отверстий, любые неровности и заусенцы недопустимы.
  3. Узел, собирающий воедино прожилины, делается как можно более компактным и аккуратным, без торчащих в сторону хвостиков лески. Поскольку при забросе возникает крутящий момент, лучше присоединять его к тяговому центральному шнуру через вертлюг достаточной прочности. Иногда перед узлом ставят пластиковый диск диаметром 3–4 см с отверстиями по краю (по числу прожилин), и пропускают каждую прожилину в свое отверстие.

Кастинговая сеть своими руками видео:

С сетью какого размера начинать обучение забросам?

Вопрос, не имеющий однозначного ответа. С одной стороны, чем меньше радиус сети, тем легче ее забрасывать, и этап обучения проходит значительно быстрее. Однако в совершенстве освоив заброс трехфутовой сети (в основном пригодной для ловли живцов), переучиваться на большую снасть достаточно трудно. Многое зависит и от физических параметров рыболова: чем выше его рост и длиннее руки, тем легче будет научиться забрасывать сеть большого размера.

Советую для начала определиться: а зачем, собственно, вам нужна кастинговая сеть? Для любителей ловли хищника на живца кастинговая сеть – незаменимое вспомогательное орудие. В полном смысле незаменимое: никогда при добывании живцов удочкой или малявочником любой другой конструкции вы не начнете ловлю хищников столь же быстро после прихода на водоем, как если бы у вас лежала в рюкзаке компактная и готовая к немедленному использованию кастинговая сеть. Быстрее можно начать охоту на щуку или судака, лишь привезя живцов с собой, что не всегда удобно.

Так что если вы планируете использовать кастинговую сеть лишь как малявочницу – покупайте простую в освоении трехфутовку, и проблема с живцом навсегда отпадет. К тому же в качестве бонуса иногда (особенно по мутной воде или при ночных забросах) можно зацепить и крупную рыбину. Но если предполагается, что кастинговая сеть станет основным орудием ловли, причем достаточно крупных рыб, то начинать осваивать снасть лучше с сети радиусом не менее 1,7–2 м. Учиться забрасывать, конечно, будете дольше, но затем переход даже на десятифутовку проблем не составит.

Техника заброса

На рисунке изображены фазы заброса как для американского, так и для испанского типа сетей. Рыбак стоит на берегу, но все-таки начинать обучение лучше всего не на речке или озере, а на какой-нибудь лужайке или подстриженном газоне. Естественно, в полевых условиях, на водоеме, прежде чем начинать подготовку, сеть тщательно очищают от тины и прочей водной растительности, оставшейся от предыдущего заброса.

Фазы заброса сети

Тяговый шнур собирается кольцами в левую руку, снасть берется вытянутой рукой за центральную часть (или за втулку – для сети американского типа), легонько встряхивается так, чтобы сеть вытянулась и расправилась. Если грузовой шнур где-то образовал петлю, ее надо расправить свободной рукой. Затем правой рукой перехватывается верхняя часть снасти (от четверти до половины сети, в зависимости от ее радиуса) и собирается одной или двумя петлями – тоже в левую руку. Дальше наступает очередь грузового шнура. Он берется за две точки все той же левой рукой и правой, причем руки расставляются достаточно широко, так, чтобы оставшаяся свободной часть сети как можно больше растянулась.

Если посмотреть зарубежные видеоматериалы, можно увидеть, как специалисты иногда на этом этапе подготовки к забросу берут одно грузило в зубы, чтобы достигнуть еще большего растяжения сети.

Следующий этап – непосредственно сам заброс. Выполняется он после двух-трех раскачивающих движений либо после одного широкого замаха (при этом корпус рыболова разворачивается почти на 180°). Самое главное в этот момент – плоскость, в которой движется снасть. Кастинговая сеть, на лету разворачиваясь, должна лететь по наиболее пологой траектории и окончательно развернуться в круг незадолго до касания воды. Последнее зависит уже от силы броска, умение соизмерять которую приходит исключительно с тренировками.

Еще один момент, в котором я не согласен с зарубежными инструкторами: в большинстве своем они рекомендуют петлю на конце шнура перед забросом захлестывать на кисти левой руки. На тренировках это неплохо получается, но на водоеме, когда руки мокрые, снасть легко может улететь в реку или озеро вместе со шнуром. Надежнее крепить петлю за поясной ремень.

Описанная техника заброса не единственно возможная. Почти каждый ловец с приобретением опыта начинает ее модернизировать, подстраивая под свои индивидуальные особенности и под конкретные условия ловли. Например, можно не собирать тяговый шнур кольцами на руку, а оставлять его лежать под ногами (при условии, что берег достаточно чистый и шнур не зацепится за ветки, корни, коряги и т. п.). Время подготовки к забросу сокращается, что увеличивает количество бросков за рыбалку и соответственно размеры улова.

Сети не самого большого радиуса (до 1,7 м, для самых высокорослых рыбаков – до 2 м) можно забрасывать, не собирая в петли верхнюю часть сети. Обе руки, поднятые и расставленные как можно шире, берутся за грузовой шнур, излишки шнура собираются в петли, по 2–3 в каждую руку, так, чтобы нижний край сети не доставал до земли 30–40 см, затем сеть забрасывается, вернее набрасывается на водоем характерным движением, напоминающим те, какими набрасывают широкую скатерть на стол или простыню на кровать. Мне даже доводилось видеть, как кастин-говую сеть забрасывают вдвоем: ловили два невысоких мальчика-подростка, каждый из которых едва ли смог бы самостоятельно забросить снасть, – они брали за грузовой шнур сеть, стоя по бокам от нее, широко растягивали в горизонтальной плоскости и, синхронно раскачав, отправляли в водоем.

Выбор места

Решительно не годятся для ловли кастинговой сетью места слишком глубокие, с быстрым течением, с коряжистым или покрытым валунами дном, с обильной подводной растительностью. Крутые подводные склоны – так называемые « » – тоже не позволяют захватывать держащуюся над ними рыбу. При ловле с берега следует избегать мест, сильно заросших деревьями, кустами и даже такой однолетней растительностью, как полынь, бурьян и так далее по крайней мере на пару метров вокруг рыбака должно быть чистое и ровное пространство.

Нет смысла ловить с обрывов, с набережных и мостов, возвышающихся над поверхностью воды более чем на 2 м – грузила сети, даже правильно заброшенной, при ее падении с большой высоты начинают сходиться вместе, и вместо правильного плоского круга снасть приобретает форму вытянутого конуса. Ловля в незнакомых местах всегда чревата зацепами, повреждениями сети и обрывами прожилин.

Выборка сети

Как только грузовой шнур заброшенной сети коснется дна, что определяется по ослаблению тягового шнура, снасть начинают выбирать резким рывком. Этот рывок позволяет, во-первых, быстро свести вместе грузила, закрыв выход пойманной рыбе, во-вторых, поднимает сеть над дном, снижая вероятность зацепов.

Тактика ловли

Ловля кастинговой сетью не менее многогранна, чем ужение, и может применяться в самых разнообразных условиях, на весьма отличающихся друг от друга водоемах и для поимки отличающихся повадками и образом жизни рыб.

Ловля живца

Проще всего ловить кастинговой сетью живцов и вообще мелкую рыбу. Достаточно лишь правильно выбрать место и сделать удачный заброс, иногда всего один, и если мелочь ходит густыми стайками, то после первого же броска три-четыре десятка рыбешек отправляются в ведро; теперь можно переходить к ловле хищника на живца. Ни лодка, ни ловля взабродку для добывания живцов не требуются, забросы производятся с берега. Надо лишь высмотреть в прозрачной воде, где лежат на песчаной отмели пескари или плавают возле водорослей стайки окуньков или плотвичек.

Ловля крупной рыбы

Более крупные рыбы – ловятся почти всегда вслепую, в местах их скопления. Даже увидев стайку таких рыб на мелководье, подбираться к ним с кастинговой сетью не стоит, если рыбак видит рыбу, то и рыба видит рыбака, и полет сети заставляет ее быстро отпрянуть в сторону. Во время весеннего хода рыбы очень удобно выбирать на реке места перед каким-либо естественным препятствием с ровным дном и небольшой глубиной от 0,5 до 1,5 м. Забросы осуществляются примерно по той же схеме, что и ловля спиннингом: сначала сеть накрывает ближние к рыбаку участки, затем находящиеся на среднем удалении, потом самые дальние, насколько это позволяет длина тягового шнура. При этом стоит учитывать, что рыба не очень сильно пугается плеска упавшей на воду кастинговой сети (этот плеск негромкий, если заброс выполнен правильно) рыба не бросается прочь, а обычно слегка скатывается вниз по течению. Поэтому выбранный для ловли участок реки стоит всегда облавливать, двигаясь по берегу вниз по течению.

Весенняя ловля производится днем, но по мере просветления воды лучшие уловы случаются в сумерках или ночью. Летом, когда в большом количествев водоемах появляется подводная растительность, количество мест, пригодных для ловли вслепую, резко сокращается. Гораздо интереснее в это время охотится с кастинговой сетью, выслеживая единичные экземпляры крупных рыб.


Очень увлекательна ловля линя.
Занимаются ею на неглубоких местах реки с очень медленным течением и илистым дном. Признаком, подтверждающим, что линь кормится в этом месте, служит цепочка пузырьков, поднимающаяся с потревоженного рыбой дна. Лодка не нужна, места кормежки линя обычно расположены неподалеку от берега, иногда, если речка неширокая и берега достаточно крутые, – буквально в метре от уреза воды. Если на месте ловли имеются чересчур густые заросли водной растительности, например кувшинок, надлежит заранее сделать в них несколько прогалин, в 2–3 раза превышающих размеры сети. Крупный лещ тоже часто выдает места своей кормежки пузырьками. Но поймать его кастинговой сетью гораздо сложнее. Лещ более осторожен, кормится в более глубоких ямах и чаще всего успевает ускользнуть из опускающейся на него сети.

Ловить щуку удобно в жаркие солнечные дни, объезжая вдвоем на лодке неглубокие заливчики и протоки, обрамленные зарослями тростника или рогоза. Лодка должна быть с невысокими бортами, с широкого носа которых удобно делать заброс. Высмотрев щуку, обычно застывшую вполводы неподалеку от стены тростника, рыбак показывает на нее гребцу, и, когда лодка приближается на достаточное расстояние, набрасывает на рыбу сеть.
Более добычлива весенняя ловля щук на мелководных местах нереста, проводимая иногда с берега, но чаще взабродку. Здесь необходимо владеть дальним забросом, подойти вплотную к нерестящейся щуке трудно. Заметив место, где плещется рыба, рыбак с максимально возможной дистанции набрасывает на него сеть, и зачастую вместе со щукой-икрянкой вытягивает и пару молочников. Нередки и неудачные забросы, когда подводная растительность, на которую мечет икру щука, мешает сети правильно закрыться. Нерест крупного (килограммового и выше) карася продолжается недолго, одно-два утра, но если удастся попасть на него с кастинговой сетью, то улов весьма порадует. Место для броска здесь порой определяется не только по всплескам, но и по косвенным признакам: по шевелению торчащих над водой стеблей водных растений, по так называемым «усам», которые образует на поверхности воды неглубоко плывущая крупная рыба, по мелким рыбешкам, во все стороны выпрыгивающим из воды (мальки не разбираются, мирная или хищная рыбина к ним подплывает).

Нерест карпа схож с карасиным, но карп – более осторожная рыба и часто нерестится на более удаленных от берегов мелководьях, поросших водной растительностью. Поэтому подбираться к нему лучше на лодке, соблюдая максимальную тишину.

Кастинговая сеть — забросы видео

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.4. Основы локальных сетей

1.4.3. Сетевые топологии

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

В настоящее время в локальных сетях используются следующие физические топологии:

  • физическая "шина" (bus);
  • физическая “звезда” (star);
  • физическое “кольцо” (ring);
  • физическая "звезда" и логическое "кольцо" (Token Ring).

Шинная топология

Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных.

Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.


Рис. 1.

Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

Преимущества сетей шинной топологии:

  • отказ одного из узлов не влияет на работу сети в целом;
  • сеть легко настраивать и конфигурировать;
  • сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

  • разрыв кабеля может повлиять на работу всей сети;
  • ограниченная длина кабеля и количество рабочих станций;
  • трудно определить дефекты соединений.

Топология типа “звезда”

В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub) . Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.



Рис. 2.

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

Преимущества сетей топологии звезда:

  • легко подключить новый ПК;
  • имеется возможность централизованного управления;
  • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

  • отказ хаба влияет на работу всей сети;
  • большой расход кабеля.

Топология “кольцо”

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.


Рис. 3.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо. Данную сеть очень легко создавать и настраивать.

К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

Топология Token Ring

Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.

Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.


Рис. 4.

В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

Преимущества сетей топологии Token Ring:

  • топология обеспечивает равный доступ ко всем рабочим станциям;
  • высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.