Вариации на тему космической лазерной связи

С момента возникновения жизни на Земле возможность передачи друг другу сообщения (или, как теперь принято говорить, информации) занимало одно из главных мест в человеческом общении. В Древней Греции, например, информация передавалась с помощью световых волн, для чего на специальных башнях разжигали костры, оповещавшие жителей о каком-либо важном событии. Во Франции был изобретен оптический телеграф. Русский ученый Шеллинг предложил электрический проводной телеграф, впоследствии усовершенствованный американцем Морзе. Электрический кабель соединил Европу с Америкой. Т. Эдиссон удвоил пропускную способность телеграфной линии. А. Попов открыл возможность передачи телеграфных сообщений без проводов - с помощью электромагнитных колебаний. Радиотехника получила бурное развитие. Стали вести передачи на различных длинах волн: длинных, средних, коротких. В эфире стало тесно.

С чем же связана скорость и количество передаваемой информации? Известно, что предельная скорость передачи определяется длительностью одного периода колебаний используемых волн. Чем короче период, тем больше скорость передачи сообщений. Это справедливо и для передачи сообщений с помощью азбуки Морзе, с помощью телефонной связи, радиосвязи, с помощью телевидения. Таким образом, канал связи (передатчик, приемник и связывающая их линия) может передавать сообщения со скоростью не больше, чем частота собственных колебаний всего канала. Но это еще не достаточное условие. Для характеристики канала связи требуется еще один параметр - ширина полосы канала, т. е. диапазон частот, который используется в этом канале связи. Чем больше скорость передачи, тем шире полоса частот, на которых следует передавать. Оба этих параметра вынуждают осваивать все более высокие частоты электромагнитных колебаний. Ведь с увеличением частоты увеличивается не только скорость передачи по одному каналу, но и число каналов связи.

Техника связи стала забираться во все более коротковолновую область, используя сначала дециметровые, потом метровые и, наконец, сантиметровые волны. А дальше произошла остановка из-за того, что не было

подходящего источника несущих электромагнитных колебаний. Ранее существовавшие источники давали широкий спектр с очень малой мощностью, приходящейся на отдельные частоты колебаний. Световые волны не были когерентными, а это исключало использование их для передачи сложных сигналов, требующих модуляции излучения. Положение резко изменилось с появлением лазеров. Когерентность и монохроматичность лазерного излучения позволяют модулировать и детектировать луч таким образом, что используется вся ширина оптического диапазона. Оптический участок спектра гораздо шире и вместительнее, чем радноволновой. Покажем это простым расчетом. Подсчитаем, какое количество информации можно передать одновременно по оптическому каналу связи с длиной волны 0,5 мкм (соответствует Гц). Для примера возьмем такой город, как Москва. Пусть в ней имеется 1500 000 телефонов, 100 передающих широковещательных радиостанций и 5 телевизионных каналов. Для расчетов примем, что полоса частот телефонного канала составляет Гц, радиоканала , телевизионного канала - Гц. Возьмем коэффициент запаса, равный 100. Вычисления произведем по формуле

где с - скорость света, К - длина волны электромагнитного колебания, полоса частот, занимаемая одним телевизионным каналом, полоса частот одной радиовещательной станции, полоса частот одного телефонного канала, количество телевизионных каналов, количество радиоканалов, количество телефонов, к - коэффициент запаса.

Подставляя значения для нашего примера, получим Отсюда можно сделать вывод, что высокочастотная составляющая электромагнитного колебания, равная примерно Гц, позволяет (принципиально) в одном луче лазера одновременно обеспечить передачу информации тысяче таких городов, как Москва. Однако для реализации этой принципиальной возможности необходимо решить ряд проблем. Они связаны с модуляцией, демодуляцией и с прохожением излучения в атмосфере. Чтобы в этом разобраться, рассмотрим оптическую линию связи (рис. 27).

Рис. 27. Оптическая линия связи с использованием лазера

Линия связи состоит из передающего и приемного устройств. В передающее устройство входят лазер, вырабатывающий высокочастотную несущую; модулятор, обеспечивающий наложение передаваемой информации на световую несущую; оптическая система, необходимая для фокусирования излучения в узкий пучок, что обеспечивает большую дальность и высокую помехозащищенность; микрофон с усилителем и устройство нацеливания. Приемное устройство состоит из входной оптической системы, приемника излучения, демодулятора, усилителя, громкоговорителя и устройства прицеливания (привязки) приемника к передатчику. Линия связи работает таким образом. Сигнал в виде звуковой частоты поступает на микрофон. Здесь он преобразуется в электрический и поступает на модулятор, через который проходит излучение лазера. Оно оказывается промодулированным в соответствии с речевым сообщением. Промодулированный пучок поступает на оптическую систему. Этим излучением с помощью визирного (прицельного) устройства осуществляется облучение того места, где расположена приемная система. Приемная оптическая система собирает лазерный лучистый поток и направляет его на приемник и на усилитель. После чего он попадает на демодулятор, задачей которого является выделение из несущей частоты первоначальной звуковой частоты. Она проходит усилитель звуковой частоты и поступает на громкоговоритель.

Таблица 15 (см. скан) Характеристики модуляторов

Поскольку частота модуляции при передаче звукового сигнала не превышает 104 Гц, то для ее реализации подходит большинство модуляторов и демодуляторов, разработанных к настоящему времени. Наиболее широко используется амплитудная модуляция. Для ее реализации подходят оптические элементы, которые меняют свою прозрачность под воздействием прикладываемого к ним напряжения. К такого типа модуляторам относится и ячейка Керра, состоящая из жидкого диэлектрика и металлических пластин. При приложении к пластинам электрического поля жидкий диэлектрик становится двоякопреломляющим. В результате плоскость поляризации проходящей световой волны повернется на угол

где В - постоянная Керра, - длина пути, напряженность поля. При этом плоскополяризованное поле,

проходя через анализатор, изменяет свою интенсивность в соответствии с законом электрического поля. Таким образом, с помощью модулятора в луч лазера вводится звуковая частота. Посмотрим на таблицу, в которой представлены характеристики различных типов модуляторов, и попробуем выбрать тот, который подходит для нашей связной системы.

Пусть у нас в качестве источника излучения используется газовый гелий-неоновый лазер. Для передачи звукового сообщения требуется модуляция в пределах до 20 кГц. Этому лучше всего удовлетворяет кристалл германия (табл. 15). У него хорошая глубина модуляции - 50%. Однако этот модулятор не может быть использован, поскольку его спектральная прозрачность лежит в диапазоне 1,8...25 мкм, т. е. он непрозрачен для излучения в 0,6328 мкм, которое излучает гелий-неоновый лазер. Кристалл АДП или КДП подойдет по спектральному диапазону и у него хороший запас по частоте модуляции. С таким модулятором можно промодулировать оптическое излучение на нескольких участках частот, что дает принципиальную возможность ввести в один луч несколько телефонных каналов. Но вот ввести в луч лазера с помощью такого модулятора несколько телевизионных каналов невозможно, поскольку для передачи телевизионного изображения необходима полоса частот Гц. Можно передать только одну телевизионную программу. Нужны модуляторы с очень большим диапазоном частот модуляции. Смотрим в таблицу. Модулятор на ультразвуковой волне имеет диапазон от 5 до 30 МГц. Его верхний предел самый большой, других модуляторов нет. Сравним этот диапазон в Гц с диапазоном частот газового лазера . Видно, что они отличаются на семь порядков, т. е. в десять миллионов раз. Следовательно, высокочастотная несущая лазера не используется в полную силу своих возможностей. И не используется потому, что нет пока еще модуляторов с диапазоном частот до Гц. Аналогичная картина имеет место и для приемников излучения. Их тоже следует выбирать, исходя из того спектрального диапазона, на котором они работают. И исходя из того диапазона частот, который они способны воспринять. Наиболее предпочтительны ФЭУ, имеющие полосу частот порядка 100 МГц , но не более. Следовательно, и здесь имеется проблема, которая требует своего решения.

Рис. 28. Функциональная схема первой лазерной телевизионной установки

Проще всего было построить телефонную линию связи, ибо для нее имелись все необходимые элементы: источник излучения, модулятор и приемник излучения. Такие линии были созданы с тем, чтобы оценить эффективность их функционирования. Одна из них связывала АТС, находящуюся на площади Шолохова, со зданием МГУ на Ленинских горах. По лазерному лучу, связывающему телефонные станции, можно было одновременно вести несколько десятков телефонных разговоров. Другая линия была создана в Армении. Она связала Ереван и Бюроканскую астрофизическую обсерваторию, находящуюся на расстоянии 50 км на горе Арагац .

Применение лазеров в телевидении

В последнее время разработано несколько систем, в которых телевизионное изображение передается по оптическому каналу. Простейшая телевизионная система была выполнена из готовых узлов и деталей. Функциональная схема этой системы представлена на рис. 28. Она включала в себя лазер промышленного прозводства, два промышленных телевизора, стандартный усилитель и видеоусилитель. Кроме того, использовались приемная и передающая оптические системы, модулятор оптического излучения и оптический фильтр. Телевизионные сигналы, получаемые от первого телевизора, усиливаются и поступают на модулятор (видеосигналы снимаются с одного из каскадов видеоканала телевизионного приемника). Модулятор, стоящий на выходе излучения

лазера, обеспечивает амплитудную модуляцию лучистого потока. Это излучение формируется в узкий луч с помощью оптической системы и направляется в сторону приемного устройства. Оно также имеет приемную оптическую систему зеркального типа (с двумя зеркалами), узкополосный оптический фильтр и диафрагму. Затем излучение поступает на ФЭУ. Такое сочетание последних трех элементов обеспечивает хорошую селекцию приемного сигнала, что позволяет использовать систему в условиях Солнечного освещения. Сигнал на ФЭУ превращается из оптического в электрический, проходит видеоусилитель и подается на кинескоп второго телевизора. Несмотря на наличие шумов, вносимых лазером и интенсивным дневным фоном при работе телевизионной установки в условиях солнечного освещения, изображение на экране второго телевизора было вполне удовлетворительным. Более того, четкость изображения была высокой, что позволяло сделать вывод о хорошей передаточной характеристике модулятора и связанных с ним электронных устройств. В системе не обнаруживался «снегопад», а это говорит о достаточном отношении сигнал/шум.

Мы отмечали ранее, что модулятор является главным элементом системы телевизионной связи. Здесь использовалась ячейка Покельса, в которой напряжение модуляции подается на кристалл в направлении светового потока. Данный модулятор обеспечивает хорошую глубину модуляции и имеет достаточную полосу, но ему присущи два существенных недостатка: первый заключается в том, что для управления модуляцией требуется напряжение, доходящее до нескольких киловольт, и второй обусловлен тем, что ячейку необходимо охлаждать.

Уже в последующих модификациях аппаратуры были применены решения, позволяющие устранить эти недостатки. Ячейка Покельса была заменена на кристалл КДП, который обладает хорошей оптической прозрачностью в данном интервале длин волн, а для снижения модулирующего напряжения применялось дополнительное сужение луча с помощью коллимирующей системы. Это позволило сузить луч до 1 мм. Для обеспечения механической прочности кристалл был помещен в металлический корпус. Эти усовершенствования позволили снизить потребляемый уровень мощности на два порядка. Модулятор работал при напряжении 18 В и потреблял ток 50 мА .

Рис. 29. Схема лазерной передающей камеры

Через некоторое время появились образцы телевизионных систем, в которых по лазерному лучу передавалось пять различных телевизионных изображений. В этих системах в качестве источника излучения использовался газовый лазер, работающий на волне 0,6328 мкм при излучаемой мощности всего в 8 мВт. В приемном устройстве применялся кремниевый фотодиод. Передача изображения велась на каналах 66...7Б, 76...82, 182... 186, 198..204, 210...216 МГц .

Функциональная схема третьего варианта лазерной передающей ТВ-камеры представлена на рис. 29. Эта система обеспечивала передачу по лучу лазера телевизионной программы, а также музыкальной программы и цифровой информации. Основными элементами устройства являлись: газовый аргоновый лазер с системой развертки луча в пространстве, приемник, состоящий из узкополосного фильтра, с полосой пропускания в 90 ангстрем, фотоумножителя и предварительного усилителя. Третьим составным блоком была система строчной и кадровой синхронизации. Своеобразие состоит в том, что используется быстросканирующий лазерный луч, а вместо телевизионной камеры - фотоумножитель. Телевизионное изображение получается при облучении объекта непрерывным излучением лазера, которое разворачивается в пространстве по двум перпендикулярным осям с помощью вращающихся призм. Горизонтальная развертка обеспечивается 16-гранной призмой, вращающейся со

скоростью 60 000 об/мин. При этом скорость движения луча по вертикали обеспечивается 26-гранной призмой, вращающейся со скоростью 150 об/мин. Эти две развертки дают 60 кадров в секунду. Излучение лазера, отраженное предметом, изображение которого должно быть получено, попадает на приемное устройство, с выхода которого усиленный сигнал подводится к контрольному телевизору и на его экране воссоздается изображение предмета. Для синхронизации развертки контрольного телевизора с разверткой луча лазера в пространстве предусмотрены два элемента. Один из них осуществляет строчную, а другой - кадровую синхронизацию. Фотоэлементы цепей строчной и кадровой синхронизации установлены соответственно на пути развертки лазерного луча по горизонтали и вертикали. Выходные сигналы фотоэлементов, усиленные до требуемой величины, обеспечивают необходимую синхронизацию. Положительным качеством такой лазерной телевизионной камеры является высокое качество изображения. Кроме того, она может работать в темноте и способна передавать изображение через туман гораздо лучше какого-либо другого устройства аналогичного назначения. К недостаткам системы относятся значительные потери энергии при развертке луча в пространстве и наличие быстровращающихся элементов.

Чёрный властелин 4 января 2015 в 05:04

Вариации на тему космической лазерной связи

  • Космонавтика

Одна из актуальных на сегодняшний день тем в коммерческой космонавтике, и не только - это тема лазерной связи. Преимущества ее известны, тесты проводились и оказались успешны или очень успешны. Если кому плюсы и минусы неизвестны - кратко изложу.

Лазерная связь позволяет передавать данные на гораздо большие относительно радиосвязи расстояния, скорость передачи благодаря высокой концентрации энергии и гораздо более высокой частоте несущей (на порядки) также выше. Энергоэффективность, низкий вес и компактность также в разы или на порядки лучше. Как и стоимость - в принципе, для лазерной связи в космосе вполне может подойти обыкновенная китайская лазерная указка мощностью в районе 1 Вт и выше, что я и намерен доказать ниже.

Из минусов можно упомянуть прежде всего необходимость гораздо более точного наведения приемных и передающих модулей относительно радиосвязи. Ну и известные атмосферные проблемы с облачностью и пылью. На самом деле все эти проблемы легко решаемы, если подойти к их решению с головой.

Прежде всего - рассмотрим, как работает приемный модуль. Он представляет из себя специализированный (не всегда) телескоп, который улавливает излучение лазера и превращает его в электросигналы, которые затем известными методами усиливаются и преобразуются в полезную информацию. Связь, естественно, как и везде сейчас, должна быть цифровой и, соотв., полнодуплексной. Но вот должна быть ли она при этом лазерной в обе стороны? Совершенно не обязательно! Почему это так - нам станет ясно, стоит нам только рассмотреть, как отличаются приемные и передающие устройства для лазерной связи, и как отличаются требования к массогабаритным параметрам устройств связи на орбитальных КА (или КА дальнего космоса) и наземных комплексах.

Как уже сказано ранее - приемный комплекс - это телескоп. С линзами и (или) рефлекторами, системой их крепления и наведения телескопа. А это означает - тяжелая и громоздкая конструкция - что совершенно неприемлемо для КА. Ибо для КА любое устройство должно быть как раз максимально легким и компактным. Что как раз для передатчика ЛИ вполне характерно - все, наверное, уже видели современные ПП лазеры размером и весом с авторучку. Ну правда, питание для настоящего, неигрушечного лазера будет весить поболее, ну так оно и для систем радиоцифровой связи будет весить еще поболее ввиду его гораздо меньшей энергоэффективности.

Что из этого всего следует? Это значит - совершенно не нужно передавать данные в обе стороны лазером, достаточно передавать их только со спутника в оптоканале, а на спутник (КА) - в радиоканале, как и ранее. Конечно, это значит, что придется все-таки использовать направленную параболическую антенну для приема, что для веса КА не есть хорошо. Но при этом следует учитывать, что антенна для приема, как и, собственно, сам ресивер, будет все-таки весить в разы меньше, чем она же для передачи. Ибо мощность наземного передатчика мы можем делать на порядки мощнее, чем на КА, а значит - и антенна не нужна большая. В некоторых же случаях направленная антенная вообще не нужна будет.

Т.о. мы имеем уменьшение веса КА практически в разы, так же как и энергопотребления. Что является прямой дорогой к возможности повсеместно использовать для нужд связи, исследования космоса и др. нужд микроспутников, а значит - резкого удешевления космоса. Но и это еще не все.

Для начала рассмотрим путь решения проблемы наведения луча лазера со спутника на наземный приемник. На первый взгляд - проблема серьезная, а в некоторых случаях - и вовсе нерешаемая (если спутник не на геостационаре). Но вот вопрос - а надо ли луч наводить на приемник?

Есть известная проблема - это расхождение и ослабление луча лазера при прохождении в атмосфере. Особенно проблема обостряется при прохождении луча через слои с разной плотностью. При прохождении границ раздела сред луч света, в т.ч. и лазерный луч, испытывает особенно сильные преломления, рассеивание и ослабление. В этом случае мы можем наблюдать своего рода световое пятно, получающееся как раз при прохождении такой границы раздела сред. В атмосфере Земли таких границ несколько - на высоте около 2 км (активный погодный атмосферный слой), на высоте примерно 10 км, и на высоте примерно 80-100 км, т. е. уже на границе космоса. Высоты слоев даны для средних широт для летнего периода. Для других широт и других времен года высоты и само кол-во границ раздела сред может сильно отличаться от описанного.

Т.о. при вхождении в атмосферу Земли луч лазера, до этого спокойно преодолевший миллионы километров без каких-либо потерь (на разве что небольшую расфокусировку), на каких то несчастных десятках километров теряет львиную долю своей мощности. Однако этот плохой на первый взгляд факт мы отлично можем обратить себе на пользу. Ибо этот факт позволяет нам обойтись без какого либо серьезного наведения луча на приемник. Ибо в качестве такого приемника, точнее первичного приемника, мы как раз и можем использовать саму атмосферу Земли, точнее эти самые границы раздела слоев, сред. Мы просто можем наводить телескоп на получающееся световое пятно и считывать с него информацию. Конечно, это заметно прибавит кол-во помех и снизит скорость передачи данных. И сделает ее вообще невозможной в дневное время по понятным причинам - Солнце же! Зато насколько мы можем удешевить спутник за счет экономии на системе наведения! Это особенно актуально для спутников на нестационарных орбитах, а также для КА для исследований дальнего космоса. Кроме того, учитывая, что лазеры, пусть даже с такой некачественной, не узкой частотной полосой, как китайские лазеры - вполне реально можно отсеивать от помех с помощью светофильтров или узкочастотных фотоприемников.

Не менее актуальным могло бы быть использование лазерной связи не для космоса, а для наземной дальней связи способом, подобным тропосферной связи. Имеется в виду передача данных лазером также с использованием атмосферного рассеяния на границах раздела атмосферных слоев с одной точки поверхности Земли до другой. Дальность такой связи может достигать сотен и тысяч километров, а при использовании релейного принципа - и того более.

Теги: лазерная связь, космос

Е. Н. Чепусов, С. Г. Шаронин

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется лазерная связь?

Лазерная связь в отличие от GSM связи позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство

Ethernet (10 Мбит/с)

Token Ring (416 Мбит/с)

E1 (2 Мбит/с)

Видеоизображение

Комбинация данных и речи

Высокоскоростная передача данных (34-155 Мбит/с)

Возможность модернизации

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1. Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2. Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3. Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4. Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5. Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость

Медный кабель

Оптоволокно

Радиоканал

Лазерный канал

от 3 до 7 тыс. дол. за 1 км

до 10 тыс. дол. за 1 км

от 7 до 100 тыс. дол. за комплект

12-22 тыс. дол. за комплект

Время на подготовку и выполнение монтажа

Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов


П осмотрите на ваш радиоприемник. Вы увидите, что в диапазоне длинных волн «умещаются» передачи двух-трех радиостанций, на более коротких волнах (их называют средними) уже можно услышать их пять -десять. И наконец, в области коротких волн звучит буквально каждый миллиметр шкалы радиоприемника: вращая ручку настройки, вы слышите писк морзянки, сигналы радиомаяков, разноязычную речь и музыку. Станций так много, что приходится шкалу коротких волн растягивать, она делается в несколько раз длиннее, чем все остальные диапазоны приемника. Это не случайность, а закономерность: чем короче электромагнитные волны, тем больше их может уместиться, не мешая друг другу, на одном отрезке шкалы.

Но свет - такие же электромагнитные колебания, как и радиоволны, только гораздо короче. Поэтому оптический диапазон в пятьдесят тысяч раз шире радиодиапазона. Значит, если использовать свет для связи так, как мы это делаем с радио, можно добиться невиданной плотности передаваемых сообщений! Для этого нужно, чтобы передатчики друг другу не мешали. Этого можно добиться, если каждую передачу вести на строго определенной длине волн.

С радиоволнами все просто: передатчик может излучать электромагнитные волны любой длины. На них очень легко «нагрузить» сообщение. Волна, несущая какой-то сигнал -речь, музыку,- называется модулированной. Модуляция бывает двух видов: частотная (когда меняется длина волны излучения) и амплитудная (когда меняется его интенсивность). Так же модулировать можно было бы и свет, не будь он смесью разных электромагнитных волн, а будь одной волной достаточной интенсивности. Короче, нужен был лазер. И как только он появился, за него тут же ухватились связисты. Уже в 1962 году заработала лазерная линия связи между Калининским районом столицы и подмосковным городом Красногорском. Связь шла по открытому лучу: лазер стоял на одной из башен высотного здания Московского государственного университета на Ленинских горах.

В то время это была самая высокая точка Москвы, Останкинская башня только проектировалась. Линия исправно работала в холод и в жару, днем и ночью. Хотелось бы добавить: в дождь и снег, но нельзя -в туман и непогоду световая линия работать переставала, и связь переключалась на обычную, электрическую. А плотных туманов в Москве бывает до восьмидесяти часов в год; на севере во много раз больше. Не передатчик может излучать электромагнитные волны любой длины. На них очень легко «нагрузить» сообщение. Волна, несущая какой-то сигнал -речь, музыку,- называется модулированной. Модуляция бывает двух видов: частотная (когда меняется длина волны излучения) и амплитудная (когда меняется его интенсивность). Так же модулировать можно было бы и свет, не будь он смесью разных электромагнитных волн, а будь одной волной достаточной интенсивности. Короче, нужен был лазер. И как только он появился, за него тут же ухватились связисты. Уже в 1962 году заработала лазерная линия связи между Калининским районом столицы и подмосковным городом Красногорском. Связь шла по открытому лучу: лазер стоял на одной из башен высотного здания Московского государственного университета на Ленинских горах. В то время это была самая высокая точка Москвы, Останкинская башня только проектировалась. Линия исправно работала в холод и в жару, днем и ночью. Хотелось бы добавить: в дождь и снег, но нельзя -в туман и непогоду световая линия работать переставала, и связь переключалась на обычную, электрическую. А плотных туманов в Москве бывает до восьмидесяти часов в год; на севере во много раз больше. Не сидеть же, ожидая погоды, без связи?

Конечно, нет, нужно исключить все вредные погодные воздействия, пустив свет по волоконному световоду.

Лазерный луч попадает в модулятор - устройство, которое «накладывает» на него передаваемый сигнал (речь, музыку, телевизионное изображение) - и уходит в волоконный кабель. Бесчисленное число раз отразившись от его стенок и пройдя в нем сотни и сотни метров, модулированный луч попадает в устройство, которое снова превращает его в привычный нам электрический сигнал.

По этому же световоду можно направить излучение второго лазера, с другой длиной волны, третьего, четвертого. Каждый из них может нести свой сигнал. По одному волокну, по стеклянной нити чуть тоньше волоса, можно одновременно передавать 32 ООО телефонных разговоров или 60 цветных телевизионных программ! Сейчас уже созданы световоды, способные работать в тех же условиях, что и обычные провода. Они выдерживают большие колебания температуры, обледенение, порывы ветра. Их можно прокладывать в земле и натягивать на столбах. Огромная пропускная способность световодов позволит создать сеть кабельного телевидения, работающего без помех и искажений, как сегодня работает радиотрансляция. Часто в одном жгуте комбинируют волоконные световоды и обычные электрические провода.

Есть и еще одно очень важное соображение, которое имеют в виду, создавая волоконно-оптическую связь. Два электрических провода, лежащие рядом, могут мешать друг другу. Переменный ток, текущий в одном проводе, вызывает такой же ток, только послабее, в другом. Возникает ложный сигнал -шум, треск, а то и музыка или речь, мешающие передаче по другому проводу. Такие сигналы-помехи называются наводками. Электрические искры и молнии дают наводки, принимаемые радиоприемником.

Особенно опасны наводки для работы электронно-вычислительных машин. В США был случай, когда огромную космическую ракету пришлось взорвать через несколько секунд после старта: из-за одной-единственной ошибки в вычислениях она сошла с траектории и грозила упасть на город. Расследование показало, что виновато маленькое реле: его неисправный контакт искрил, искра вызывала наводку, а та, в свою очередь,-сбой в работе машины. Крошечная искра стоила американцам нескольких миллионов долларов...

Для того чтобы избежать по-мех, провод одевают в «экран», или «броню» - плетеный чулок из медных нитей. Все высокочастотные кабели обязательно делаются в броне, именно так устроен кабель, идущий от антенны к телевизору. Но и это, как мы уже видели, не всегда помогает.

С волоконным световодом таких неприятностей не произойдет, слой непрозрачной краски на его поверхности - вот и вся изоляция. Поэтому считают, что миниатюрные полупроводниковые лазеры и оптическое волокно скоро вытеснят электронные приборы и кабели из вычислительной техники.

Лазеры уже можно гасить, зажигать и менять их яркость при помощи другого лазера, так, как включают, выключают и усиливают электрический ток электронные лампы и транзисторы. Свет заменяет электричество!

И вот что интересно: природа умудрилась создать даже такое сложное устройство, как волоконный световод, да еще настроенный на определенную длину волны. «Автор» конструкции и хозяин этого устройства -белый медведь. Американским ученым удалось установить, что каждая шерстинка его шкуры работает как оптическое волокно. Солнечный свет нагревает шерсть, а тепловые лучи идут по шерстинкам к коже и согревают зверя.

Волоконно-оптические кабели оказались настолько удобными добавлениями к лазерному лучу, что их сразу же решили приспособить к передаче мощных пучков света, вроде тех, что используются в промышленности. Это было нелегко, но, в конце концов, не так давно был создан световод, по которому можно «перекачивать» энергию от мощного импульсного или непрерывного лазера, например, такого, какой стоит в цехе завода имени Лихачева.

С середины 20 века началось активное исследование микроволн. Американский физик Чарльз Таунс решил усилить интенсивность микроволнового луча. Возбудив молекулы аммиака до высокого энергетического уровня путем нагревания или электрической стимуляции, ученый затем пропускал сквозь них слабый микроволновой луч. В результате получался мощный усилитель микроволнового излучения, который Таунс в 1953 г. назвал «мазером». В 1958 г. Таунс и Артур Шавлов сделали следующий шаг: вместо микроволн они попытались усилить видимый свет. На основе этих экспериментов Майман и создал в I960 г. первый лазер.

Создание лазера позволило решить широкий спектр задач, которые способствовали значительному развитию науки и техники. Что позволило в конце 20-го, начале 21-го веков получить такие разработки как: волоконно-оптические линии связи, медицинские лазеры, лазерную обработку материалов (термообработка, сварка, резка, гравировка и прочее), лазерное наведение и целеуказание, лазерные принтеры, считыватели штрих-кодов и многое другое. Все эти изобретения значительно упростили, как и жизнь обычного человека, так и позволили разрабатывать новые технические решения.

В этой статье будут приведены ответы на следующие вопросы:

1) Что такое беспроводная лазерная связь? Каким образом она осуществлена?

2) Какие условия применения лазерной связи в космосе?

3) Какое оборудование необходимо для осуществления лазерной связи?

Определение беспроводной лазерной связи, способы ее осуществления.

Беспроводная лазерная связь — вид оптической связи, использующий электромагнитные волны оптического диапазона (свет), передаваемые через атмосферу или вакуум.

Лазерная связь двух объектов осуществляется только посредством соединения типа «точка-точка». Технология основывается на передаче данных модулированным излучением в инфракрасной части спектра через атмосферу. Передатчиком служит мощный полупроводниковый лазерный диод. Информация поступает в приемопередающий модуль, в котором кодируется различными помехоустойчивыми кодами, модулируются оптическим лазерным излучателем и фокусируется оптической системой передатчика в узкий коллимированный лазерный луч и передается в атмосферу.

На принимающей стороне оптическая система фокусирует оптический сигнал на высокочувствительный фотодиод (или лавинный фотодиод), который преобразует оптический пучок в электрический сигнал. При этом чем выше частота (до 1,5ГГц), тем больше объём передаваемой информации. Далее сигнал демодулируется и преобразуется в сигналы выходного интерфейса.

Длина волны в большинстве реализованных систем варьируется в пределах 700-950 нм или 1550 нм, в зависимости от применяемого лазерного диода.

Из вышесказанного следует, что ключевыми приборными элементами для осуществления лазерной связи являются полупроводниковый лазерный диод и высокочувствительный фотодиод (лавинный фотодио). Рассмотрим чуть более подробно принцип их действия.

Лазерный диод - полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсной населённостей в области p-n перехода при инжекции носителей заряда. Пример современного лазерного диода предоставлен на рисунке 1.

Лавинные фотодиоды - высокочувствительные полупроводниковые приборы, преобразующие свет в электрический сигнал за счёт фотоэффекта. Их можно рассматривать в качестве фотоприёмников, обеспечивающих внутреннее усиление посредством эффекта лавинного умножения. С функциональной точки зрения они являются твердотельными аналогами фотоумножителей. Лавинные фотодиоды обладают большей чувствительностью по сравнению с другими полупроводниковыми фотоприёмниками, что позволяет использовать их для регистрации малых световых мощностей (≲ 1 нВт). Пример современного лавинного фотодиода предоставлен на рисунке 2.


Условия применения лазерной связи в космосе.

Одним из перспективных направлений развития систем космической связи, являются системы, основанные на передачи информации по лазерному каналу, поскольку данные системы могут обеспечить большую пропускную способность, при меньшем энергопотреблении, габаритных размерах и массе приемопередающей аппаратуры, чем использующиеся в данный момент системы радиосвязи.

Потенциально системы космической лазерной связи могут обеспечивать исключительно высокую скорость информационного потока – от 10-100 Мбит/с до 1-10 Гбит/с и выше.

Однако существует ряд технических проблем, которые необходимо решить, для реализации лазерных каналов связи между космическим аппаратом (КА) и Землей:

  • необходима высокая точность наведения и взаимного сопровождения на расстояниях от полутысячи до десятков тысяч километров и при движении носителей с космическими скоростями.
  • Существенно усложняются принципы приема-передачи информации по лазерному каналу.
  • Усложняется оптико-электронная аппаратура: точная оптика, прецизионная механика, полупроводниковые и волоконные лазеры, высокочувствительные приемники.

Эксперименты по осуществлению космической лазерной связи

Эксперименты по реализации систем лазерной связи для передачи больших массивов информации ведут как Россия, так и Соединенные Штаты Америки.

Система лазерной связи (СЛС) РФ

В 2013 году был проведен первый Российский эксперимент по передаче информации с помощью лазерных систем с Земли на Российский сегмент Международной Космической Станции (РС МКС) и обратно.

Космический эксперимент «СЛС» проводился с целью отработки и демонстрации российской технологии и аппаратуры приема-передачи информации по космической лазерной линии связи.

Задачами эксперимента являются:

  • отработка в условиях космического полета на РС МКС основных технологических и конструктивных решений, закладываемых в штатную аппаратуру межспутниковой лазерной системы передачи информации;
  • отработка технологии приема-передачи информации с использованием лазерной линии связи;
  • исследование возможности и условий работоспособности лазерных линий связи «борт КА – наземный пункт» при различном состоянии атмосферы.

Эксперимент планируется проводить в два этапа.

На первом этапе отрабатывается система приема — передачи информационных потоков по линиям «борт РС МКС–Земля» (3, 125, 622 Мбит/с) и «Земля–борт РС МКС» (3 Мбит/с).

На втором этапе планируется отработка высокоточной системы наведения и системы передачи информации по линии «борт РС МКС – спутник-ретранслятор».

Система лазерной связи на первом этапе эксперимента «СЛС» включает в свой состав две основные подсистемы:

  • бортовой терминал лазерной связи (БТЛС), установленный на российском сегменте Международной космической станции (рисунок 3);
  • наземный лазерный терминал (НЛТ), установленный на станции оптических наблюдений «Архыз» на Северном Кавказе (рисунок 4).

Объекты исследования на 1 этапе КЭ:

  • аппаратура бортового терминала лазерной связи (БТЛН);
  • аппаратура наземного терминала лазерной связи (НЛТ);
  • атмосферный канал распространения излучения.


Рисунок 4. Наземный лазерный терминал: астропавильон с оптико-механическим блоком и юстировочным телескопом

Система лазерной связи (СЛС) — 2 этап.

Второй этап эксперимента будет проводиться после успешного выполнения первого этапа и готовности специализированного КА типа «Луч» на ГСО с бортовым терминалом межспутниковой лазерной системы передачи информации. К сожалению, информации о том, был ли проведен второй этап или нет, в открытых источниках не удалось обнаружить. Возможно, результаты эксперимента засекретили, либо второй этап так и не провели. Схема передачи информации предоставлена на рисунке 5.

Проект OPALS США

Практически одновременно американское космическое агентство NASA начинает развертывание лазерной системы OPALS (Optical Payload for Lasercomm Science).

«Система OPALS представляет собой первую экспериментальную площадку для разработки технологий лазерных космических коммуникаций, а Международная космическая станция будет выступать в роли полигона для испытаний системы OPALS» — рассказывает Майкл Кокоровский (Michael Kokorowski), руководитель проекта OPALS и сотрудник Лаборатории НАСА по изучению реактивного движения (Jet Propulsion Laboratory, JPL), — «Будущие лазерные коммуникационные системы, которые будут разработаны на базе технологий OPALS, смогут обеспечить обмен большими объемами информации, что устранит узкое место, которое в некоторых случаях сдерживает научные исследования и коммерческие предприятия».

Система OPALS представляет собой герметичный контейнер, в котором находится электроника, посредством оптического кабеля связанная с лазерным приемно-передающим устройством (рисунок 6). В состав этого устройства входит лазерный коллиматор и камера слежения, установленные на подвижной платформе. Установка OPALS будет отправлена на борт МКС на борту космического корабля Dragon, который отправится в космос в декабре этого года. После доставки контейнер и передатчик будут установлены снаружи станции и начнется 90-дневная программа полевых испытаний системы.

Принцип работы OPALS:

С Земли специалистами лаборатории Optical Communications Telescope Laboratory в сторону космической станции будет послан луч лазерного света, который выступит в качестве маяка. Оборудование системы OPALS, уловив этот сигнал, с помощью специальных приводов нацелит свой передатчик на наземный телескоп, который будет служить в качестве приемника, и передаст ответный сигнал. В случае отсутствия помех на пути распространения лучей лазерного света коммуникационный канал будет установлен и по нему начнется передача видео- и телеметрической информации, которая в первый раз будет продолжаться порядка 100 секунд.

Европейская система передачи данных (European Data Relay System сокр. EDRS).

Система European Data Relay System (EDRS) — запланированный Европейским космическим агентством проект, по созданию группировки современных геостационарных спутников, которые будут осуществлять передачу информации между спутниками, космическими кораблями, беспилотниками (БПЛА) и наземными станциями, обеспечивая более быструю по сравнению с традиционными методами передачи данных скорость, даже в условиях природных и техногенных катастроф.

EDRS будет использовать новую технологию лазерной связи Laser Communication Terminal (LCT). Лазерный терминал позволит передавать информацию со скоростью 1.8 Гбит/с. Технология LCT предоставит возможность спутникам системы EDRS передавать и получать порядка 50 терабайт данных в день практически в режиме реального времени.

Первый спутник связи EDRS должен отправиться на геостационарную орбиту в начале 2016 года с космодрома Байконур на российской ракете-носителе «Протон». Добравшись до геосинхронной орбиты над Европой, спутник проведет лазерные линии связи между четырьмя спутниками «Sentinel-1» и «Sentinel-2», работающими в рамках космической программы по наблюдению за Землей «Коперник», беспилотными летательными аппаратами, а также наземными станциями в Европе, Африке, Латинской Америке, Среднем Востоке и на северо-восточном побережье США.

Второй, аналогичный спутник будет запущен в 2017 году, а запуск третьего спутника запланирован на 2020 год. В сумме эти три спутника смогут покрыть лазерной связью всю планету.

Перспективы развития лазерной связи в космосе.

Преимущества лазерной связи по сравнению с радиосвязью:

  • передача информации на большие расстояния
  • высокая скорость передачи
  • компактность и легкость оборудования для передачи данных
  • энергоэффективность

Недостатки лазерной связи:

  • необходимость точного наведения приёмных и передающих устройств
  • атмосферные проблемы (облачность, пыль и т.д.)

Лазерная связь позволяет передавать данные на гораздо большие относительно радиосвязи расстояния, скорость передачи благодаря высокой концентрации энергии и гораздо более высокой частоте несущей (на порядки) также выше. Энергоэффективность, низкий вес и компактность также в разы или на порядки лучше. Затруднения в виде необходимости точного наведения приёмных и передающих устройств можно решить современными техническими средствами. Кроме того, приемные наземные устройства можно располагать в районах Земли, где количество облачных дней минимально.

Помимо представленных выше проблем, существует еще одна проблема - это расхождение и ослабление луча лазера при прохождении в атмосфере. Особенно проблема обостряется при прохождении луча через слои с разной плотностью. При прохождении границ раздела сред луч света, в том числе и лазерный луч, испытывает особенно сильные преломления, рассеивание и ослабление. В этом случае мы можем наблюдать своего рода световое пятно, получающееся как раз при прохождении такой границы раздела сред. В атмосфере Земли таких границ несколько - на высоте около 2 км (активный погодный атмосферный слой), на высоте примерно 10 км, и на высоте примерно 80-100 км, т. е. уже на границе космоса. Высоты слоев даны для средних широт для летнего периода. Для других широт и других времен года высоты и само кол-во границ раздела сред может сильно отличаться от описанного.

Таким образом при вхождении в атмосферу Земли луч лазера, до этого спокойно преодолевший миллионы километров без каких-либо потерь (на разве что небольшую расфокусировку), на каких то несчастных десятках километров теряет львиную долю своей мощности. Однако этот, плохой на первый взгляд, факт мы можем обратить себе на пользу. Поскольку этот факт позволяет нам обойтись без какого либо серьезного наведения луча на приемник. Ибо в качестве такого приемника, точнее первичного приемника, мы как раз и можем использовать эти самые границы раздела слоев, сред. Мы можем наводить телескоп на получающееся световое пятно и считывать с него информацию. Конечно, это заметно прибавит количество помех и снизит скорость передачи данных. И сделает ее вообще невозможной в дневное время. Зато это позволит удешевить КА за счет экономии на системе наведения. Это особенно актуально для спутников на нестационарных орбитах, а также для КА для исследований дальнего космоса.

На текущий момент, если рассматривать связь «Земля – КА и КА-Земля», оптимальным решением является синергия лазерной и радиосвязи. Достаточно удобным и перспективным является передача данных с КА на Землю с помощью лазерной связи, а с Земли на КА радиосвязью. Связано это с тем, что лазерный приёмный модуль представляет собой достаточно громоздкую систему (чаще всего это телескоп), который улавливает излучение лазера и превращает его в электросигналы, которые затем, известными методами усиливаются и преобразуются в полезную информацию. Такую систему непросто установить на КА, поскольку чаще всего предъявляются требования компактности и малого веса. При этом передатчик лазерного сигнала обладает небольшими габаритами и весом по сравнению с антеннами для передачи радиосигнала.