Виды каналов передачи информации. Линии связи и каналы передачи данных

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».


Канал связи

Канал связи — система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

  1. передающее устройство;
  2. приемное устройство;
  3. среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) — техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на:

  • проводные;
  • акустические;
  • оптические;
  • инфракрасные;
  • радиоканалы.

Каналы связи также классифицируют на:

  • непрерывные (на входе и выходе канала – непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала – дискретные сигналы),
  • непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),
  • дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

  1. Классификация по диапазону используемых частот
  • Километровые (ДВ) 1-10 км, 30-300 кГц;
  • Гектометровые (СВ) 100-1000 м, 300-3000 кГц;
  • Декаметровые (КВ) 10-100 м, 3-30 МГц;
  • Метровые (МВ) 1-10 м, 30-300 МГц;
  • Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;
  • Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;
  • Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;
  • Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.
    1. По направленности линий связи
      • направленные (используются различные проводники):
  • коаксиальные,
  • витые пары на основе медных проводников,
  • волоконнооптические.
    • ненаправленные (радиолинии);
  • прямой видимости;
  • тропосферные;
  • ионосферные
  • космические;
  • радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).

    1. По виду передаваемых сообщений:
  • телеграфные;
  • телефонные;
  • передачи данных;
  • факсимильные.
    1. По виду сигналов:
  • аналоговые;
  • цифровые;
  • импульсные.
    1. По виду модуляции (манипуляции)
      • В аналоговых системах связи :
  • с амплитудной модуляцией;
  • с однополосной модуляцией;
  • с частотной модуляцией.
  • В цифровых системах связи :
  • с амплитудной манипуляцией;
  • с частотной манипуляцией;
  • с фазовой манипуляцией;
  • с относительной фазовой манипуляцией;
  • с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).
    1. По значению базы радиосигнала
  • широкополосные (B>> 1);
  • узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

  • одноканальные;
  • многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

  • односторонние;
  • двусторонние.
    9. По порядку обмена сообщения
  • симплексная связь — двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;
  • дуплексная связь — передача и прием осуществляется одновременно (наиболее оперативная);
  • полудуплексная связь — относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

  • открытая связь;
  • закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

  • неавтоматизированные — управление радиостанцией и обмен сообщениями выполняется оператором;
  • автоматизированные — вручную осуществляется только ввод информации;
  • автоматические — процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

- радиовещательные

2. По направлению передачи

- симплексные (передача только в одном направлении)

- полудуплексные (передача поочередно в обоих направлениях)

- дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

- электрические (проводные)

- радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

- аналоговые (непрерывные)

- дискретные по времени

- дискретные по уровню сигнала

- цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

  1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) и показывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

—- отношение спектра выходного сигнала к входному
— полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

  1. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.
  2. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

— мощность сигнала на выходе канала,

— мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

  1. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду — бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.
  2. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.
  3. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.
  4. Помехозащищенность: это помехозащищенность, т. е. помехозащищенность.


Условие передачи сигналов по каналам связи.

Канал, по сути, это фильтр. Чтобы сигнал прошел через него без искажений, объем этого канала должен быть больше сигнала или равен ему (см. рис).

Математически условие можно записать так: , где

; (1)

В приведенных формулах

– полоса пропускания канала, или полоса частот, которую канал может пропустить при нормированном затухании сигнала;

– динамический диапазон, равный отношению максимально допустимого уровня сигнала в канале к уровню помех, нормированных для этого типов каналов;

– время, в течение которого канал используется для передачи данных;

– ширину спектра частот сигнала, т. е. интервал по шкале частотного спектра, занимаемый сигналом;

– динамический диапазон, равный отношению средней мощности сигнала к средней мощности помехи в канале;

– длительность сигнала, или время его существования.

Другая форма записи условия (развернутая):

P . S .: Параметр «Объем канала» в некоторых источниках так же указывается, как один из параметров канала связи, но не везде. Математическая формула приведена выше в (1).

Литература

1. http://edu.dvgups.ru/METDOC/ENF/BGD/BGD_CHS/METOD/ANDREEV/WEBUMK/frame/1.htm ;

2. http://supervideoman.narod.ru/index.htm .


А также другие работы, которые могут Вас заинтересовать

67213. Основные направления современной психологии 98.51 KB
Все что происходит внутри человека изучить невозможно то есть человек выступает как черный ящик. Объективно изучать регистрировать можно только реакции внешние действия человека и стимулы ситуации которые эти реакции обусловливают. Основная задача бихевиоризма подчеркивает Уотсон заключается в накоплении наблюдений...
67215. Сознание и самосознание. Свойства сознания 102.02 KB
Определение сознания. Основные признаки сознания. Психологические характеристики сознания человека. Соотношение сознания и бессознательного впервые было изучено в рамках теории и практики психоанализа.
67216. Ощущения и восприятие 79.04 KB
Ощущения и восприятие. Ощущения считаются самыми простыми из всех психических явлений. Способность к ощущениям имеется у всех живых существ обладающих нервной системой. Качество это основная особенность данного ощущения отличающая его от других видов ощущений и варьирующая в пределах данного вида ощущения.
67217. Внимание и память 48.64 KB
Особенности внимания как психического процесса и состояния человека. Определение внимания. Факторы определяющие избирательность и направленность внимания. Функции внимания.
67218. Мышление и интеллект 50.55 KB
Мышление как процесс активного познания и преобразования действительности. Допонятийное и понятийное мышление. Определение понятий. Основные процессы мышления: суждение, умозаключение. Индукция и дедукция. Особенности творческого мышления. Мышление и интеллект.
67220. Темперамент и характер 97.24 KB
Под темпераментом следует понимать индивидуально своеобразные свойства психики определяющие динамику психической деятельности человека которые одинаково проявляются в разнообразной деятельности независимо от ее содержания и в своей взаимной связи характеризуют тип темперамента.
67221. Эмоции и чувства 88.62 KB
В отличие от познавательных процессов, в которых действительность отражается в виде ощущений, восприятий, понятий, мнений, в эмоциях и чувствах объективная реальность отражается в форме переживаний, в ее соответствии или несоответствии потребностям и интересам человека.

Канал связи представляет собой совокупность технических средств для передачи сообщений из одной точки пространства в другую. С точ­ки зрения теории информации физическое устройство канала несуще­ственно. Источник сообщений(ИС) имеет выходной алфавит символовA ={а i },i= 1.. n - количество информации, приходящееся в среднем на один символ источника:

где p i , - вероятность появления символаa i , на выходе источника, символы источника считаются независимыми. Канал связи имеет алфавит символовB={b j },j= 1.. m, среднее количество информации в одном символе канала

где q j - вероятность появления символаb i , в канале.

Техническими характеристиками канала связи являются:

    техническая производительность источника  A - среднее число символов, выдаваемых источником в единицу времени;

    техническая пропускная способность канала связи  B - среднее число символов, передаваемое по каналу в единицу времени.

Информационной характеристикой источника является инфор­мационная производительность. По определению, информационная производительность - это среднее количество информации, выдава­емое источником в единицу времени.

В канале без помех информационными характеристиками являются:

1) скорость передачи информации по каналу

2) пропускная способность канала

где {P } - множество всех возможных распределений вероятностей символов алфавитаВ канала. С учетом свойств энтропии

C K = B . log 2 m.

В канале с помехами в общем случае входной и выходной алфа­виты не совпадают. Пусть

B ВХ =X={x 1 ,x 2 ,…,x n };

B ВЫХ =Y={y 1 ,y 2 ,…,y m }.

Если отправленный на входе канал символ х к опознан в приемнике какy i иi K , то при передаче произошла ошибка. Свойства канала описываются матрицей переходных вероятностей (вероятность приема символау i , при условии, что посланх k ):

|| P(yi|xk) ||, k=1..n, i=1..m.

Справедливо соотношение:

Среднее количество информации на один входной символ канала:

p i =p(x i ) .

Среднее количество информации на выходной символ канала:

Информация, которую несет выход канала о входе:

I(Y,X)=H(X)-H Y (X)=H(Y)-H X (Y).

Здесь Ну (Х ) - условная энтропия входного символа канала при на­блюдении выходного символа (ненадежность канала),Н х (Y ) - услов­ная энтропия выходного символа канала при наблюдении входных символов (энтропия шума).

Скорость передачи информации по каналу с помехами:

dI(B)/dt= B I(X,Y).

Пропускная способность канала с помехами:

где { р} - множество всех возможных распределений вероятностей входного алфавита символов канала.

Рассмотрим пример

Найти пропускную способность двоичного симметричного канала (канала с двухсимвольными входными и выходными алфавитами) и одинаковыми вероятностями ошибок (рис.1), если априорные вероят­ности появления входных символов:P(x 1 )=P 1 =P, P(x 2 )=P 2 =1-P .

Решение. В соответствии с моделью канала условные веро­ятности

P(y 1 | x 2 ) = P(y 2 | x 1 ) = P i ,

P(y 1 | x 1 ) = P(y 2 | x 2 ) = 1-P i .

Пропускная способность канала - C K = B . max{H(Y)-H(X|Y)}. Найдем энтропию шума:

По теореме умножения: P (y j x i )=P (x i )P (y j |x i ), следовательно,

P (x 1 y 1 )=P (1-P i ), P (x 2 y 1 )=(1- P )P i ,P (x 1 y 2 )=PP i ,P (x 2 y 2 )=(1-P )(1-P i ).

Подставляя в формулу, получаем:

Таким образом, H( Y | X ) не зависит от распределения входного алфавита, следовательно:

Определим энтропию выхода:

Вероятности P (y 1 ) иP (y 2 ) получаем следующим образом:

P (y 1 )=P (y 1 x 1 )+P (y 1 x 2 )=P (1-P i )+(1-P i )P i , P (y2 )=P (y 2 x 1 )+P (y 2 x 2 )=PP i +(1-P )(1-P i ).

Варьируя Р, убеждаемся, что максимальное значение H (Y ), равное 1, получается при равновероятных входных символахP (y 1 ) иP (y 2 ). Следовательно,

Задача . Найти пропускную способность канала с трехсимвольными входными и выходными алфавитами (x 1 ,x 2 ,x 3 иy 1 ,y 2 ,y 3 соответсвенно). Интенсивность появления символов на входе канала k =V . 10 символов/с.

Вероятности появления символов:

,
, .

Вероятности передачи символов через канал связи:

,
,,

,
,,

,
,.

4. КОДИРОВАНИЕ ИНФОРМАЦИИ

4.1. Общие сведения Кодом называется:

Правило, описывающее отображение одного набора знаков в другой набор знаков или в набор слов без знаков;

Множество образов, получающихся при таком отображении.

В технических кодах буквы, цифры и другие знаки почти всегда кодируются двоичными последовательностями, называемыми двоичными кодовыми словами. У многих кодов слова имеют оди­наковую длину (равномерные коды).

Выбор кодов для кодирования конкретных типов сообщений определяется многими факторами:

Удобством получения исходных сообщений из источника;

Быстротой передачи сообщений через канал связи;

Объёмом памяти, необходимым дня хранения сообщений;

Удобством обработки данных;

Удобством декодирования сообщений приемником.

Закодированные сообщения передаются по каналам связи, хра­нятся в ЗУ, обрабатываются процессором. Объемы кодируемых данных велики, и поэтому во многих случаях важно обеспечить таксе кодирование данны:"., которое характеризуется минимальной длиной получающихся сообщений, Это проблема сжатия данных. Существуют два подхода сжатия данных:

Сжатие, основанное на анализе статистических свойств коди­руемых сообщений.

Сжатие на основе статистических свойств данных называется так же теорией экономного или эффективного кодирования. Эко­номное кодирование основано на использовании кодов с перемен­ной длиной кодового слова, например, код Шеннона-Фано, код Хафмана /31. Идея использования кодов переменной длины для сжа­тия данных состоит в том, чтобы сообщения с большей вероят­ностью появления ставить в соответствие кодовые комбинации мень­шей длины и, наоборот, сообщения с малой вероятностью появле­ния кодировать словами большей длины. Средняя длина кодового слова определяется с.о.:

где /, - длина кодового слова для кодирования i - го сообщения; p t - вероятность появления i - го сообщения.

4.2. Задания

4.2.1. Из табл.4 выбрать дня последующего кодирования ис­ходный алфавит, содержащий 10 символов, начиная с N-ro (N - порядковый номер студента в журнале группы). Пронормировать вероятности символов.

4.2.2. Пронормировать выбранный в п.4.2.1. исходный алфавит равномерным двоичным кодом, кодом Шеннона-Фано, кодом Хафмана. Для каждого варианта кодирования рассчитать мини­мальное, максимальное, среднее значение длины кодового слова. Проанализировать результаты.

4.2.3. Проделать задание 4.2.2. для троичного кода.

Таблица 4

4.3. Указания к выполнению отдельных заданий К заданию 4.2.1. Нормирование вероятностей производится по формуле:

/W-HO / *Рк " JC=AT

где Pi - вероятности появления символов, приведенные в табл.4.

К заданию 4.2.2. Правила построения двоичных кодов изло­жены в /4,6/.

К заданию 4.2.3. При построении троичного кода в качестве кодовых слов берутся слова, записанные в троичной системе счис­ления. Оптимальный троичный код строится с помощью процедуры Хафмана (с помощью процедуры Шеннона-Фано строится субоп-тимальный код). При этом разбиение алфавита ведется на три груп­пы, первой группе приписывается "О", второй - "1", третьей - "2".

Распространение информации происходит в процессе ее передачи.

При передаче информации всегда есть два объекта – источник и приемник информации. Эти роли могут меняться, например, во время диалога каждый из участников выступает то в роли источника, то в роли приемника информации.

Информация проходит от источника к приемнику через канал связи, в котором она должна быть связана с каким-то материальным носителем. Для передачи информации свойства этого носителя должны изменяться со временем. Так лампочка, которая все время горит, передает информацию только о том, что какой-то процесс идет. Если же включать и выключать лампочку, можно передавать самую разную информацию, например, с помощью азбуки Морзе.

При разговоре людей носитель информации – это звуковые волны в воздухе. В компьютерах информация передается с помощью электрических сигналов или радиоволн (в беспроводных устройствах). Информация может передаваться с помощью света, лазерного луча, системы телефонной или почтовой связи, компьютерной сети и др.

Информация поступает по каналу связи в виде сигналов, которые приемник может обнаружить с помощью своих органов чувств (или датчиков) и «понять» (раскодировать).

Сигнал – это изменение свойств носителя, которое используется для передачи информации.

Примеры сигналов – это изменение частоты и громкости звука, вспышки света, изменение напряжения на контактах и т.п.

Человек может принимать сигналы только с помощью своих органов чувств. Чтобы передавать информацию, например, с помощью радиоволн, нужны вспомогательные устройства: радиопередатчик, преобразующий звук в радиоволны, и радиоприемник, выполняющий обратное преобразование. Они позволяют расширить возможности человека.

С помощью одного сигнала невозможно передать много информации. Поэтому чаще всего используется не одиночный сигнал, а последовательность сигналов, то есть сообщение. Важно понимать, что сообщение – это только «оболочка» для передачи информации, а информация – это содержание сообщения. Приемник должен сам «извлечь» информацию из полученной последовательности сигналов. Можно принять сообщение, но не принять информацию, например, услышав речь на незнакомом языке или перехватив шифровку.

Одна и та же информация может быть передана с помощью разных сообщений, например, через устную речь, с помощью записки или с помощью флажного семафора, который используется на флоте. В то же время одно и то же сообщение может нести разную информацию для разных приемников. Так фраза «В Сантьяго идет дождь», переданная в 1973 году на военных радиочастотах, для сторонников генерала А. Пиночета послужила сигналом к началу государственного переворота в Чили.

Таким образом, информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Передача информации возможна с помощью любого языка кодирования информации, понятного как источнику, так и приёмнику.

Кодирующее устройство – устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи.

Декодирующее устройство – устройство для преобразования кодированного сообщения в исходное.

Пример. При телефонном разговоре: источник сообщения – говорящий человек; кодирующее устройство – микрофон – преобразует звуки слов (акустические волны) в электрические импульсы; канал связи – телефонная сеть (провод); декодирующее устройство – та часть трубки, которую мы подносим к уху, здесь электрические сигналы снова преобразуются в слышимые нами звуки; приёмник информации – слушающий человек.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума. Существует наука, разрабатывающая способы защиты информации – криптология, широко применяющаяся в теории связи.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи. Иными словами, чтобы содержание сообщения, искаженного помехами, можно было восстановить, оно должно быть избыточным, то есть, в нем должны быть «лишние» элементы, без которых смысл все равно восстанавливается. Например, в сообщении «Влг впдт в Кспск мр» многие угадают фразу «Волга впадает в Каспийское море», из которой убрали все гласные. Этот пример говорит о том, что естественные языки содержат много «лишнего», их избыточность оценивается в 60-80%.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.

Каналом связи называется совокупность технических средств и физической среды, способной к передаче посылаемых сигналов, которая обеспечивает передачу сообщений от источника информации к получателю.

Каналы принято делить на непрерывные и дискретные.

В наиболее общем случае всякий дискретный канал включает в себя непрерывный как составную часть. Если влиянием мешающих факторов на передачу сообщений в канале можно пренебречь, то такой идеализированный канал называется каналом без помех . В таком канале каждому сообщению на входе однозначно соответствовало определенное сообщение на выходе и наоборот. Если влиянием помех в канале пренебречь нельзя, то при анализе особенностей передаваемых сообщений по такому каналу используются модели характеризующие работу канала при наличии помех.

Под моделью канала понимается математическое описание канала, позволяющие рассчитать или оценить его характеристики, на основании которых исследуются способы построения систем связи без проведения экспериментальных исследований.

Канал в котором вероятности отождествления первого сигнала со вторым и второго с первым одинаковы называется симметричным .

Канал, алфавит сигналов на входе которого отличается от алфавита сигналов на его выходе называется каналом со стиранием.

Канал передачи сообщения от источника к получателю, дополненный обратным каналом, служит для повышения достоверности передачи называется каналом с обратной связью.

Канал связи считается заданным, если известны данные по сообщению на его входе, а также ограничения которые накладываются на входные сообщения физическими характеристиками каналов.

Для характеристики каналов связи используют два понятия скорости передач:

1 – техническая скорость передачи, которая характеризуется числом элементарных сигналов, передаваемых по каналу связи в единицу времени, она зависти от свойств линий связи и от быстродействия аппаратуры канала:

2 – информационная скорость, которая определяется средним количеством информации, передающимся по каналу связи в единицу времени:

Пропускной способностью канала называется максимальная скорость передачи информации по этому каналу, достигаемая при самых совершенных способах передачи и приема.

Лекция №8

Согласование физических характеристик канала связи и сигнала

Каждый конкретный канал связи обладает физическими параметрами, определяющими возможности передачи по этому каналу тех или иных сигналов. Независимо от конкретного типа и назначения каждый канал может быть охарактеризован тремя основными параметрами:

    Т К – время доступа канала [с];

    F K – полоса пропускания каналов [Гц];

    Н К – допустимое превышение сигнала над помехами в канале.

На основании этих характеристик используется интегральная характеристика – объем канала.

Рассмотрим следующие случаи:

а)

Чтобы оценить возможность передачи данного сигнала по конкретному каналу нужно соотнести характеристики канала с соответствующими характеристиками сигнала:

    T C – длительность сигнала [с];

    F C – полоса частот (ширина спектра) сигнала [Гц];

    H C – уровень превышения сигнала над помехой.

Тогда можем ввести понятие объема сигнала .

Государственный экзамен

(State examination)

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».

(Пляскин )


Канал связи. 3

Классификация. 5

Характеристики (параметры) каналов связи. 10

Условие передачи сигналов по каналам связи. 13

Литература. 14


Канал связи

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) - техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.



По типу среды распространения каналы связи делятся на:

Проводные;

Акустические;

Оптические;

Инфракрасные;

Радиоканалы.

Каналы связи также классифицируют на:

· непрерывные (на входе и выходе канала – непрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала – дискретные сигналы),

· непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),

· дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

1. Классификация по диапазону используемых частот

Ø Километровые (ДВ) 1-10 км, 30-300 кГц;

Ø Гектометровые (СВ) 100-1000 м, 300-3000 кГц;

Ø Декаметровые (КВ) 10-100 м, 3-30 МГц;

Ø Метровые (МВ) 1-10 м, 30-300 МГц;

Ø Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;

Ø Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;

Ø Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;

Ø Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.

2. По направленности линий связи

- направленные (используются различные проводники):

Ø коаксиальные,

Ø витые пары на основе медных проводников,

Ø волоконнооптические.

- ненаправленные (радиолинии);

Ø прямой видимости;

Ø тропосферные;

Ø ионосферные

Ø космические;

Ø радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).


3. По виду передаваемых сообщений:

Ø телеграфные;

Ø телефонные;

Ø передачи данных;

Ø факсимильные.

4. По виду сигналов:

Ø аналоговые;

Ø цифровые;

Ø импульсные.

5. По виду модуляции (манипуляции)

- В аналоговых системах связи :

Ø с амплитудной модуляцией;

Ø с однополосной модуляцией;

Ø с частотной модуляцией.

- В цифровых системах связи :

Ø с амплитудной манипуляцией;

Ø с частотной манипуляцией;

Ø с фазовой манипуляцией;

Ø с относительной фазовой манипуляцией;

Ø с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).

6. По значению базы радиосигнала

Ø широкополосные (B>> 1);

Ø узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

Ø одноканальные;

Ø многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

Ø односторонние;

Ø двусторонние.
9. По порядку обмена сообщения

Ø симплексная связь - двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;

Ø дуплексная связь - передача и прием осуществляется одновременно (наиболее оперативная);

Ø полудуплексная связь - относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

Ø открытая связь;

Ø закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

Ø неавтоматизированные - управление радиостанцией и обмен сообщениями выполняется оператором;

Ø автоматизированные - вручную осуществляется только ввод информации;

Ø автоматические - процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

Радиовещательные

2. По направлению передачи

Симплексные (передача только в одном направлении)

Полудуплексные (передача поочередно в обоих направлениях)

Дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

Электрические (проводные)

Радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

Аналоговые (непрерывные)

Дискретные по времени

Дискретные по уровню сигнала

Цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) ипоказывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

-- отношение спектра выходного сигнала к входному
- полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

2. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.

3. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

Мощность сигнала на выходе канала,

Мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду - бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.