Виды помех. Основные виды помех и искажений в системах связи

1.7. Помехи и искажения

Общие сведения. В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев. Как линейные, гак и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отделить искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т. п.

Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Этот вид помех обусловлен нарушением регламента распределения рабочих частот, недостаточной стабильностью частот, и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушение контактов в реле, разъемах и т.п.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

В общем виде влияние помехи ω на передаваемый сигнал s можно выразить оператором

x =Ψ(s ,ω) (1.9)

В частном случае, когда оператор Ψ вырождается в сумм

x = s (1.10)

помеха называется аддитивной. Если же оператор может быть представлен в виде произведения

x = μs (1.11)

то помеху называют мультипликативной. Здесь μ (t ) - случайный процесс. Если μ - медленный по сравнению с сигналом процесс, то его называют замираниями. В реальных каналах обычно имеют место и аддитивные, и мультипликативные помехи, поэтому

x = μs (1.12)

Флуктуационная помеха. Среди аддитивных помех особое место занимает флуктуационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношениях. Этот вид помех практически имеет место во всех реальных каналах. Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи три прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя непрерывный случайный процесс.

С физической точки зрения случайные помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т - абсолютная температура, которую имеет сопротивление R ; F - полоса частот; k=вт. сек/град- постоянная Больцмана.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот. Типичным примером флуктуационных помех являются внутренние шумы приемника. Флуктуационный характер имеют космические помехи, а также некоторые виды атмосферных и индустриальных помех.

Импульсные помехи. К импульсным или сосредоточенным по времени помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания.

Импульсные помехи представляют собой дискретный случайный процесс, состоящий из отдельных редких, случайно распределенных по времени и амплитуде импульсов. Статические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

Сосредоточенные по спектру помехи. К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленные, медицинские) и т. п. Обычно это модулированные колебания, т. е. синусоидальные колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, спектр которых заполняет всю полосу частот приемника, ширина спектра сосредоточенной полежи в большинстве случаев меньше полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

Помеха — всякое постороннее воздействие на полезный сигнал, оказывающее мешающее действие при его приеме и проявляющее себя изменением его формы.

Классификация помех приведена на рисунке 1.

Аддитивной является сумма полезного сигнала Sм(t) и помехи N 0 (t):

Z(t)=Sм(t)+N 0 (t) (6)

Мультипликативной является произведение полезного сигнала и помехи:

Z(t)=Sм(t)?N 0 (t) (7)

Рисунок 1 - Классификация помех

Внешними являются помехи, возникающие вне канала, к ним относятся:

  • атмосферные возникают в атмосфере земли и могут быть вызваны грозовыми разрядами, осадками, пылевыми бурями, северным сиянием;
  • космические возникают в космическом пространстве и могут быть вызваны солнечной активностью, космическими телами;
  • промышленные могут быть вызваны промышленными установками: высокочастотными генераторами, высоковольтными линиями электропередачи, электрифицированным транспортом;
  • от других систем связи обуславливаются воздействием на полезный сигнал одной системы связи сигналов других систем, например, прослушивание радиопередач или другого разговора в телефонной трубке, прием на одной частоте срезу нескольких радиопередач.

Внутренними являются помехи, возникающие внутри канала, к ним относятся собственные шумы , которые, в свою очередь, подразделяются на:

  • тепловые — обусловлены хаотическим движением электрических зарядов в проводниках;
  • дробовые обусловлены неоднородной плотностью носителей заряда в проводниках.

Собственные шумы не могут быть устранены, т. к. они вызваны физикой процесса передачи электрической энергии.

Импульсными помехами являются сконцентрированные по времени скачки тока или напряжения (рисунок 2а).

Флуктуационные помехи вызваны флуктуациями (отклонением от среднего значения) тока и напряжения (рисунок 2б).

Периодические помехами являются периодические скачки тока или напряжения (рисунок 2в).

Рисунок 2 - Виды помех по форме: а) импульсные, б) флуктуационные, в) периодические

Собственные шумы канала являются флуктуационными помехами и имеют спектральную плотность мощности равномерно распределенную во всех диапазонах частот используемых для электросвязи (0…10 14 Гц). По аналогии с белым светом, имеющем в своем спектре составляющие на всех частотах, данные шумы называются белым шумом.

При прохождении сигнала через систему связи и при воздействии на него помехи его форма изменяется. Изменение формы сигнала называется искажением.

Различают нелинейные и линейные искажения.

Нелинейными являются искажения, при которых в спектре сигнала появляются новые составляющие. Такие искажения вызваны нелинейностью характеристик элементов и блоков, входящих в аппаратуру системы связи.

Линейными являются искажения, при которых в спектре сигнала не появляются новые составляющие. Такие искажения возникают из –за изменения соотношения между составляющими спектра сигнала. Линейные искажения бывают амплитудно-частотными (АЧИ), при которых изменяются амплитуды составляющих спектра сигнала и фазо-частотные (ФЧИ), при которых изменяются фазы составляющих спектра. На рисунке 3а приведен сигнал являющийся результатом сложения двух гармонических сигналов с одинаковыми амплитудами и фазами и отличающимися друг от друга частотами (обозначен толстой линией). Соответственно в спектре данного сигнала присутствует две гармонических составляющих на частотах w с и 2w с. На рисунке 3б уменьшилась амплитуда второй гармоники, в результате чего изменилась форма сигнала, т. е. произошли амплитудно-частотные искажения. На рисунке 3в изменилась фаза второй гармоники на 90°, в результате чего, опять произошло изменение формы сигнала, т. е. произошли фазо-частотные искажения. Как видно из диаграмм в спектре сигнала и в первом и во втором случае новые составляющие не появились, хотя форма сигнала изменилась.

Рисунок 3 - Линейные искажения: а) сигнал; б) амплитудно-частотные искажения; в) фазо-частотные искажения

АЧИ объясняются не равномерностью коэффициента передачи для различных составляющих спектра сигнала. При идеальной АЧХ коэффициент передачи одинаков для всех составляющих спектра сигнала и АЧИ отсутствуют. Реальная АЧХ четырехполюсника с увеличением частоты имеет спад (рисунок 4а), что приводит к уменьшению амплитуды высокочастотных составляющих спектра сигнала и соответственно к АЧИ.

ФЧИ вызваны неодинаковым временем задержки tз=j/w для составляющих различных частот.. При идеальной ФЧХ время задержки для всех составляющих одинаковое и ФЧИ отсутствуют. Реальная ФЧХ имеет подъем на высоких частотах, поэтому время задержки для высокочастотных составляющих меньше чем для никочастотных и появляются ФЧИ (рисунок 4б).

Рисунок 4 - Характеристики четырехполюсника: а) АЧХ; б) ФЧХ

Компенсация АЧИ и ФЧИ осуществляется специальными устройствами — корректорами.

Помехи в радиоканалах

В процессе прохождения по каналу связи сигнал подвергается искажениям. Необратимые искажения формы сигнала в канале являются следствием воздействия помех. Помехой мы назовем любое случайное воздействие в канале связи на сигнал, приводящее к неисправимому искажению его формы. В общем случае характер воздействия помехи на сигнал можно выразить через оператор :

В частности, если , оператор имеет характер суммирования, помеха называется аддитивной . Если , помеха является мультипликативной . В более общем случае .

Источниками аддитивных помех являются физические явления, порождающие мешающие воздействия, способные исказить форму полезного сигнала. Среди источников помех следует отметить атмосферные (связанные с грозовыми явлениями), индустриальные (излучения электрических промышленных и медицинских приборов, систем автомобильного зажигания и т. д.), космические (излучения космических объектов), помехи от посторонних радиостанций и т. д. В любом канале связи типичными являются помехи флуктуационного характера, связанные с электрическими колебаниями шумового характера, возникающие вследствие электрических возмущений на уровне молекулярных и атомарных структур физических компонент, составляющих элементную базу функциональных блоков системы связи.

По характеру процессов аддитивные помехи можно разделить на гладкие, непрерывные, широкополосные по спектру частот (тепловые, флуктуационные шумы); импульсные (хаотические последовательности импульсов) - помехи в виде одиночных импульсов, следующие один за другим через такие промежутки времени, что переходные процессы в канале от одного импульса успевают практически завершиться к моменту прихода следующего импульса; сосредоточенные по спектру излучений - сигналы посторонних радиостанций, называемые иногда структурно-детерминированными в предположении известного характера модуляции мешающих радиосигналов; различного рода прицельные помехи - помехи, создаваемые противником.

Мультипликативные помехи чаще всего порождаются явлениями, связанными с особыми условиями распространения радиоволн в атмосфере. Случайные изменения неоднородностей окружающей среды - тропосферные, ионосферные, - приводящие к флуктуациям амплитуд и фаз канальных сигналов, многолучевость радиосигналов, приходящих в точку приема, являются основной причиной возникновения мультипликативных помех.

В радиолокации и радионавигации помехи принято делить на активные - помехи от различных мешающих источников - и пассивные помехи, возникающие в результате переотражения зондирующих сигналов от мешающих объектов. Кроме того, различают преднамеренные специально организованные противником - и непреднамеренные. Рассмотренные выше шумовые, индустриальные и взаимные помехи относятся к активным непреднамеренным. Прицельные или преднамеренные помехи создаются противником с помощью специальных средств радиопротиводействия. Они также могут иметь характер активных помех, создаваемых радиопередатчиками противодействия, либо пассивных помех, возникающих в результате переотражения от искусственных мешающих объектов (к ним можно отнести дипольные отражатели, ложные цели, разбросанную в воздухе металлическую фольгу и др.).

Различные математические модели помех будут рассмотрены далее.

В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Если линейные и нелинейные искажения обусловлены известными характеристиками канала, то они, по крайней мере, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отличать искажения от помех, имеющих случайный характер. Помехи заранее не известны и поэтому не могут быть полностью устранены.

Под помехой понимается любое воздействие на полезный сигнал, затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустановок. Сюда относятся помехи от электротранспорта, электрических двигателей, медицинских установок, систем зажигания двигателей и т. п.

Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Они обусловлены нарушением регламента распределения рабочих частот, недостаточной стабильностью частот и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушения контактов в реле.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн, где другие помехи невелики. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

В общем виде влияние помехи n(t) на передаваемый сигнал u(t) можно выразить оператором

z =ψ(u , n ). (1.5)

В частном случае, когда оператор ψ вырождается в сумму

z =u +n , (1.6)

помеха называется аддитивной . Если же оператор может быть представлен в виде произведения

z =ku , (1.7)

то помеху называют мультипликативной . Здесь k(t) – случайный процесс. 1 В реальных каналах обычно имеют место и аддитивные и мультипликативные помехи, и поэтому

z =ku +n =s +n . (1.8)

Среди аддитивных помех различного происхождения особое место занимает флуктуационная помеха (флуктуационный шум), представляющая собой случайный процесс с нормальным распределением (гауссовский процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах.

С физической точки зрения такие помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи при прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Тепловой шум на входе приемника представляет собой нормальный случайный процесс с нулевым средним и энергетическим спектром:

, (1.9)

где h  6,6·10 -34 Дж·с – постоянная Планка; k  1,38·10 -23 Дж/град. – постоянная Больцмана; Т – абсолютная температура источника шума; f – текущая частота.

В диапазоне звуковых и радиочастот hf <<kT , и поэтому спектральная плотность постоянна и равна

. (1.10)

Величину N 0 = kT называют односторонней спектральной плотностью шума. При ширине полосы пропускания приемника F мощность шума равна P ш =N 0 F , Вт.

В диапазоне оптических частот, который с развитием квантовой электроники становится весьма перспективным для связи, наоборот, hf >>kT и тепловой шум оказывается очень слабым. Однако в этом диапазоне существенное значение получает «квантовый шум», вызванный дискретной природой излучения сигнала. Сущность квантового шума связана с соотношением неопределенности, согласно которому средние квадратичные ошибки при измерении энергии фотона σ Е и времени его прихода σ t подчиняются неравенству σ Е σ t h . Поэтому даже при отсутствия аддитивных помех сигнал не может быть принят абсолютно точно. В первом приближении можно рассматривать квантовый шум как помеху со спектральной плотностью, равной энергии фотона hf . В оптическом диапазоне частота f выше 10 15 Гц, поэтому квантовый шум весьма ощутим.

К импульсным, или сосредоточенным по времени, помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в приемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются понятиями относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приёмник с широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания. Импульсные помехи представляют собой случайный процесс, состоящий из отдельных редких, случайно распределенных во времени и по амплитуде, импульсов. Статистические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

К сосредоточенным по спектру помехам принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленных, медицинских) и т.п. В общем случае это модулированные колебания, т. е. квазигармонические колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, ширина спектра сосредоточенной помехи в большинстве случаев не превышает полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим качество связи.

1 Строгие определения случайного процесса и его энергетического спектра будут даны позже.

Помехи в каналах связи

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора , включенного параллельно приемнику сигнала и имеющего входной импеданс (рис. 4.29). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех такого вида включено последовательно с . Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему .

· токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; - напряжение помехи, наводимой из второго канала связи в первый; - напряжение помехи, наводимой из первого канала связи во второй;

· потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно соответствующего канала: и . Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи

где - изображение напряжения помехи, наводимой из второго канала в первый;

Изображение сигнала второго канала связи;

р - комплексная переменная;

Из рис. 4.29 следует, что