Восстановление дискретизированного сигнала с помощью ряда котельникова. Восстановление сигналов

При выборе шага дискретизации непрерывных процессов, в частности сигналов и помех, необходимо оценить погрешность замены непрерывных процессов дискретными. В настоящем параграфе рассматриваются вопросы оценки этой погрешности.

Пусть непрерывный процесс изображается, на ЦВМ. в виде последовательности его значений в равноотстоящих точках . Ясно, что дискретный процесс лишь приближенно изображает непрерывный процесс. Требуется найти количественную меру этого приближения, т. е. найти погрешность дискретизации. Величина погрешности дискретизации, очевидно, зависит от того, что понимается под погрешностью. Определение погрешности дискретизации зависит от той задачи, в которой используется дискретный процесс вместо непрерывного. При рассмотрении некоторой конкретной задачи погрешность дискретизации целесообразно определить как величину отклонения результата ее решения при использовании дискретного процесса от результата решения этой же задачи при использовании непрерывного процесса. Поскольку задачи могут быть самыми разнообразными, то определить заранее, к чему может привести дискретизация, не представляется возможным. Поэтому обычно под погрешностью дискретизации процессов понимается та погрешность, с которой может быть восстановлен непрерывный процесс по его дискретным значениям, т. е. понимается погрешность в задаче интерполяции непрерывного процесса по дискретным точкам.

Восстановление непрерывного процесса по соответствующему ему дискретному процессу обычно можно представить как пропускание последовательности «мгновенных» импульсов (-функций) с огибающей и периодом через линейный интерполирующий фильтр (ИФ) (восстанавливающий элемент) с некоторой импульсной переходной характеристикой (интерполирующей функцией) . Этому соответствует схема восстановления, показанная на рис. 1.4. Она содержит ключ, замыкающийся в моменты времени , и интерполирующий фильтр (восстановление как процесс прерывания и сглаживания ). В результате восстановления образуется сигнал

(1.34)

В соответствии с данной схемой осуществляется восстановление процессов при наиболее распространенных видах интерполяции: ступенчатой несимметричной и симметричной (метод прямоугольников, рис. 1.5 а, б), линейной (метод трапеций, рис. 1.5, в) и др.

Ошибку интерполяции

(1.35)

можно рассматривать как выходной сигнал схемы, представленной на рис. 1.6, при воздействии на входе сигнала .

Ниже найдены достаточно простые общие выражения для корреляционной функции, энергетического спектра и дисперсии ошибки в предположении, что - стационарный центрированный случайный процесс. Из общих соотношений в качестве примеров выведены частные соотношения, соответствующие наиболее распространенным типам интерполирующих фильтров.

Аналогичная задача, но иными методами, решалась в работах . Однако в них получены более сложные, а в ряде случаев лишь частные и приближенные решения. Здесь предложен новый подход к рассматриваемой задаче, позволяющий найти ее общее точное решение, отличающееся, кроме того, тем, что из него следует простое решение задачи оптимизации характеристик интерполирующих фильтров по критерию минимума среднеквадратической ошибки интерполяции.

Восстановление сигналов сводится к оценке некоторого числа неизвестных параметров полезного сигнала. Ограничимся рассмотрением случая оценки одного из параметров сигнала, например амплитуды В , при заданной форме сигнала. При этом помехи будем полагать аддитивными типа белого гауссова шума. Представим полезный сигнал в виде

где f (t) - известная функция времени; В - параметр сигнала.

Задача состоит в том, чтобы по принятой выборке Y определить, каково значение параметра В в полезном сигнале X .

В отличие от случаев обнаружения и различия сигналов здесь имеет место бесконечное множество возможных значений параметра В и, соответственно, бесконечное множество гипотез. Методы, рассматриваемые в случае двухальтернативных и многоальтернативных ситуаций, применимы и для задачи восстановления сигнала.

Произведем оценку параметра В методом максимума правдоподобия. Если отсчет принятого сигнала производится в дискретные моменты времени, то функция правдоподобия для параметра В будет равна

(2.38)

Задача состоит в том, чтобы найти такое значение параметра В для которого функция правдоподобия максимальна. Максимуму функции правдоподобия соответствует минимальное значение показателя степени в выражении (2.38)

Из условия минимума

откуда получаем оценочное значение параметра

(2.39)

Осуществив переход к непрерывному примеру, получим

(2.40)

На рис. 2.3 приведена схема решающего устройства, осуществляющего операцию оценки параметра сигнала. Устройство содержит генератор сигнала f(t) , множительное звено МЗ, осуществляющее умножение y(t) на f(t) , и интегратор, производящий интегрирование произведения y(t)f(t) .

Для оценки точности восстановления сигнала используем критерий среднеквадратического отклонения. С этой целью в (2.40) принимаемый сигнал выразим в виде суммы y(t) = Bf (t) + (t) . Тогда 2.40

Рис 2.3 Устройство оценки неизвестного параметра

Погрешность восстановления

Дисперсия погрешности

Среднее от произведения представляет корреляционную функцию помехи

где G o - спектральная плотность помехи; - дельта-функция;

Следовательно, среднеквадратическое значение погрешности восстановления

Задача восстановления сигнала может быть также решена методом оптимальной фильтрации. В общем виде формулировка следующая. Пусть колебание , принятое на некотором интервале времени, является функцией от сигнала и шума :

(2.42)

Сигнал может зависеть не от одного, а от нескольких параметров , причем либо сам сигнал , либо его параметр являются случайными процессами. Вид функции , т.е. способ комбинирования сигнала и шума, и их некоторые статистические характеристики полагаются априорно известными. Исходя из них, необходимо определить структуру устройства (рис. 1), решающего оптимальным образом, какая реализация самого сигнала или его параметра содержится принятом колебании.

Рис. 2.4 Решающее устройство

Из-за наличия шума и случайного характера сигнала оценка реализаций сигнала или его параметра не будет совпадать с истинной реализацией, т.е. будут иметь место ошибки фильтрации. Для количественной оценки качества фильтрации чаще используются критерии минимума среднеквадратической погрешности, критерий максимального отношения сигнал/шум и критерий максимума апостеорной вероятности. Рассмотрим задачу линейной фильтрации, также будем предполагать, что сигнал и шум взаимодействуют аддитивно, т.е.

Остановимся в начале на критерии минимума среднеквадратической ошибки. Считаем, что сигнал и шум представляют собой стационарные нормальные, случайные процессы с известными корреляционными функциями

Необходимо определить систему, которая из принимаемой смеси

С минимальной среднеквадратической ошибкой выделяет полезный сигнал . Т.е. искомая оптимальная система должна минимизировать величину

(2.43)

Необходимо определить структуру фильтра (рис. 2.4)

При оценка на выходе системы должна предсказывать (прогнозировать) значение входного сигнала на вперед, при задача сводится к выделению (сглаживанию) сигнала из колебания .

Строгое решение данной задачи было получено А. Н. Колмогоровым и Н. Винером.

Они показали, что оптимальное устройство относится к классу линейных фильтров с постоянными параметрами. Проиллюстрируем их результаты. Предположим, что на вход физически реализуемой линейной системы (рис. 2.4) с импульсной характеристикой

(2.44)

Воздействует стационарный случайный процесс . При этом стационарный случайный процесс на ее выходе будет определяться соотношением

(2.45)

Подставляя (2.45) в (2.43) получим следующее выражение для среднеквадратичной ошибки фильтрации:

Которая после несложных преобразований приводится к виду:

Здесь - взаимная корреляционная функция процессов и

а - автокорреляционная функция случайного процесса

Чтобы определить импульсную характеристику оптимального фильтра, минимизирующего среднеквадратическую ошибку, пользуются следующим приемом вариационного исчисления. Пусть:

где - параметр, не зависящий от , а - произвольная функция. При этом условие минимума среднеквадратичной ошибки принимает вид

После подстановки (8) в (5) условие (9) принимает вид:

Последе соотношение должно выполняться при произвольной функции , отсюда следует, что импульсная характеристика должна удовлетворять интегральному уравнению Фредгольма первого рода

(10)

Это уравнение является основным уравнением теории линейной фильтрации и называется уравнением Винера-Хопфа.

Таким образом, задача нахождения оптимального сглаживающего или прогнозирующего физически реализуемого фильтра сводится к решению интегрального уравнения (10). Это решение имеет определение сложности, обусловленные в основном требованием физической реализуемости оптимального фильтра. В частном, но важном с практической точки зрения случае дробно-рациональной спектральной плотности входного процесса из (10) можно получить следующее выражение для передаточной функции :

(12)

При этом минимальная среднеквадратичная ошибка фильтрации равна

(13)

где, (14)

Для частного случая сглаживания аддитивной смеси взаимно независимых стационарного случайного процесса и белого шума с функцией корреляции

Формула (11) упрощается:

Где индекс + означает, что если выражение в квадратных скобках разложить на простые дроби, то в разложении должны быть оставлены только те из них, которые соответствуют полюсам, расположенным в верхней полуплоскости. Все простые дроби функции , соответствующие полюсам в нижней полуплоскости, а так же целая часть должны быть отброшены. Минимальная среднеквадратичная ошибка для рассматриваемого случая может быть вычислена по формуле

Все равно практическим вычислениям по вышеуказанным формулам оказываются громоздкими. Значительное упрощение получается, если не накладывать на оптимальный фильтр требования физической реализуемости (3), т.е. полагать в (4) и в последующих формулах нижний придел равным . При этом вместо уравнения (10) получаем интегральное уравнение:

(15)

решение которого приводит к следующему выражению для передаточной функции физически нереализуемого фильтра:

(16)

Минимальная среднеквадратическая ошибка в этом случае вычисляется по формуле (13). Для частного случая статистически независимых сигнала и шума , имеющих нулевые средние значения, формула (16) приводится к виду:

Хотя последние соотношения соответствуют физически нереализуемым оптимальным фильтрам, они полезны, так как любой физически реализуемый фильтр не может дать меньшей среднеквадратической ошибки, чем фильтры, определенные выражением (16). Это объясняется тем, что наложение на фильтр условия физической реализуемости (3) сужает возможности выбора оптимальной характеристики фильтра и по этой причине привести лишь к ухудшению конечного результата.

В заключении отметим, что выражение для среднеквадратичной ошибки воспроизведения будет иметь вид

Из которого следует, что идеальная фильтрация возможна только в случае, когда , т.е. когда спектры сигнала и помехи не перекрываются.

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Если период дискретизации

достаточно мал, так что выполняется условие то соседние составляющие спектра дискретизированного колебания не перекрываются, как показано на рис. 2.5, а. В этом случае легко указать способ восстановления непрерывного колебания из дискретного, который состоит в том, что дискретный сигнал следует пропустить через идеальный фильтр нижних частот с полосой пропускания (рис. 2.5, б).

Рис. 2.5. Спектр дискретного колебания в виде последовательности модулированных импульсов частотная характеристика фильтра нижних частот и спектр восстановленного сигнала

При этом из спектра дискретизированного сигнала будет выделена средняя часть (рис. 2.5, в), которая с точностью до постоянного множителя совпадает со спектром исходного непрерывного колебания

Однако если исходное непрерывное колебание таково, что его спектр с ростом частоты не обращается строго в нуль, то при любом выборе интервала дискретизации соседние составляющие спектра дискретизированного колебания будут частично перекрываться (рис. 2.6, а). Если сигнал с таким спектром пропускать через идеальный фильтр нижних частот, то на выходе фильтра получится колебание, отличающееся от исходного непрерывного сигнала Это отличие состоит не только в том, что «отрезана» часть спектра выше частоты но также и в том,

что на спектр этого колебания накладываются «хвосты» от соседних спектральных составляющих (рис. 2.6, б).

Наиболее простой и очевидный способ уменьшения ошибки дискретизации - это повышение частоты дискретизации. Однако для получения достаточно малой ошибки частоту дискретизации приходится брать очень высокой, особенно если спектр сигнала убывает медленно, что в ряде случаев бывает нежелательно.

Рис. 2.6. Ошибки дискретизации сигнала со спектром, убывающим асимптотически: а - спектр дискретизированного сигнала; б - спектр сигнала после прохождения через идеальный фильтр нижних частот; в - спектр сигнала ошибки

Для уменьшения погрешности дискретизации можно перед дискретизацией пропустить сигнал через фильтр нижних частот с частотной характеристикой, близкой к прямоугольной. При этом спектр сигнала становится быстро убывающим, почти ограниченным, и дальнейшая дискретизация происходит практически без ошибок. Результирующая ошибка в этом случае определяется искажениями спектра при прохождении сигнала через фильтр нижних частот. Вследствие того, что на спектр сигнала в области частот не накладываются «хвосты» от соседних составляющих, эта ошибка получается приблизительно в 2 раза меньше, чем при непосредственной дискретизации сигнала.

Пропускание сигнала через фильтр нижних частот перед дискретизацией является очень полезной мерой для снижения погрешности, если дискретизация сигнала производится при наличии широкополосного шума на входе. При прохождении через фильтр нижних частот дисперсия шума уменьшается и соответственно уменьшается ошибка дискретизации.

Рис. 2.7. Ошибки восстановления сигнала при неидеальной характеристике фильтра нижних частот: а - спектр дискретизированного сигнала; б - характеристика ФНЧ; в - спектр сигнала на выходе ФНЧ

Еще одним источником ошибки является неидеальная фильтрация в процессе восстановления непрерывного сигнала из дискретного. Идеальная прямоугольная форма частотной характеристики фильтра нижних частот практически не может быть реализована; для сглаживания сигнала обычно применяют фильтры, имеющие монотонно спадающую характеристику (рис. 2.7, б). Если на вход такого фильтра подать дискретизированный сигнал со спектром, изображенным на рис. 2.7, а, то на выходе фильтра помимо основного сигнала, которому соответствует центральная часть спектра, появятся дополнительные составляющие, вызванные неполным подавлением боковых частей спектра (рис 2.7, в). Вследствие этого восстановленный сигнал будет отличаться по форме от исходного непрерывного сигнала. Главный метод борьбы с этими

погрешностями состоит в увеличении частоты дискретизации. Однако увеличение частоты дискретизации приводит к усложнению и удорожанию устройства обработки сигналов. Поэтому в каждом конкретном случае приходится искать компромиссное решение, исходя из характера сигнала, требуемой точности его восстановления, характеристик применяемого сглаживающего фильтра и других факторов. Все это приводит к тому, что в реальных устройствах частота дискретизации выбирается равной не как следует из теоремы Котельникова, а в 2-5 раз выше.

Рис. 2.8. Сигнал с конечной длительностью и его спектр

Теорема Котельникова точно справедлива только для сигналов с финитным (конечным) спектром. На рис. 4.15 показаны некоторые варианты финитных спектров.

Однако спектры реальных информационных сигналов бесконечны (рис. 4.16). В этом случае теорема Котельникова справедлива с погрешностью.

Погрешность дискретизации определяется энергией спектральных составляющих сигнала, лежащих за пределами частоты
(рис. 4.16).

.

Вторая причина возникновения погрешностей - неидеальность восстанавливающего ФНЧ.

Таким образом? погрешность дискретизации и восстановления непрерывного сигнала определяется следующими причинами:

    Спектры реальных сигналов не финитны.

    АЧХ реальных ФНЧ неидеальны.

Рис.4.17. Структурная схема RC-фильтра

Например, если в качестве ФНЧ использовать RC-фильтр (рис.4.17), то восстановленный сигнал на его выходе будет иметь вид, представленный на рис.4.18.

Импульсная реакция RC-фильтра равна:

.

Вывод: чем выше
и чем ближе характеристики ФНЧ к идеальным, тем ближе восстановленный сигнал к исходному.

4.6. Квантование сообщений. Ошибки квантования

Итак показано, что передачу практически любых сообщений
можно свести к передаче их отсчетов, или чисел
, следующих друг за другом с интервалом дискретности
. Тем самым непрерывное (бесконечное ) множество возможных значений сообщения
заменяетсяконечным числом его дискретных значений
. Однако сами эти числа имеют непрерывную шкалу уровней (значений), то есть принадлежат опять же континуальному множеству. Дляабсолютно точного представления таких чисел, к примеру, в десятичной (или двоичной) форме, необходимо теоретически бесконечное число разрядов. Вместе с тем, на практике нет необходимости в абсолютно точном представлении значений
, как и любых чисел вообще.

Во-первых, сами источники сообщений обладают ограниченным динамическим диапазоном и вырабатывают исходные сообщения с определенным уровнем искажений и ошибок. Этот уровень может быть большим или меньшим, но абсолютной точности воспроизведения достичь невозможно.

Во-вторых, передача сообщений по каналам связи всегда производится в присутствии различного рода помех. Поэтому, принятое (воспроизведенное) сообщение (оценка сообщения
) всегда в определенной степени отличается от переданного, то есть на практикеневозможна абсолютно точная передача сообщений при наличии помех в канале связи.

Наконец, сообщения передаются для их восприятия и использования получателем. Получатели же информации - органы чувств человека, исполнительные механизмы и т.д. - также обладают конечной разрешающей способностью, то есть не замечают незначительной разницы между абсолютно точным и приближенным значениями воспроизводимого сообщения. Порог чувствительности к искажениям также может быть различным, но он всегда есть.

С учетом этих замечаний процедуру дискретизации сообщений можно продолжить, а именно подвергнуть отсчеты
квантованию.

Процесс квантования состоит в замене непрерывного множества значений отсчетов дискретным множеством
. Тем самым точные значения чисел
заменяются их приблизительными (округленными до ближайшего разрешенного уровня) значениями. Интервал между соседними разрешенными уровнями, или уровнями квантования,
называетсяшагом квантования .

Различают равномерное и неравномерное квантование. В большинстве случаев применяется и далее подробно рассматривается равномерное квантование (рис. 4.19), при котором шаг квантования постоянный: ; однако иногда определенное преимущество дает неравномерное квантование, при котором шаг квантования разный для различных (рис. 4.20).

Квантование приводит к искажению сообщений. Если квантованное сообщение, полученное в результате квантования отсчета
, обозначить как , то

где - разность между истинным значением элементарного сообщения и квантованным сообщением (ближайшим разрешенным уровнем) , называемая ошибкой квантования, или шумом квантования . Шум квантования оказывает на процесс передачи информации по существу такое же влияние, как и помехи в канале связи. Помехи, так же как и квантование, приводят к тому, что оценки , получаемые на приемной стороне системы связи, отличаются на некоторую величину от истинного значения.

Поскольку квантование сообщений приводит к появлению ошибок и потере некоторой части информации, можно определить цену таких потерь
и среднюю величину ошибки, обусловленной квантованием:

Чаще всего в качестве функции потерь (цены потерь) используется квадратичная функция вида

В этом случае мерой ошибок квантования служит дисперсия этих ошибок. Для равномерного
-уровневого квантования с шагом дисперсия ошибок квантования определяется следующим образом:

Абсолютное значение ошибки квантования не превосходит половины шага квантования , и тогда при достаточно большом числе уровней квантования
и малой величине плотность распределения вероятностей ошибок квантования
можно считать равномерной на интервале + -:

В результате величина ошибки квантования определится соотношением

и соответствующим выбором шага квантования может быть сделана сколь угодно малой или сведена к любой наперед заданной величине.

Относительно требуемой точности передачи отсчетов сообщений можно высказать те же соображения, что и для ошибок временной дискретизации: шумы квантования или искажения, обусловленные квантованием, не имеют существенного значения, если эти искажения меньше ошибок, обусловленных помехами и допустимых техническими условиями.