Введение. Сжатие данных. Архивы применяют с целью

Доброго времени суток.
Сегодня я хочу коснуться темы сжатия данных без потерь. Несмотря на то, что на хабре уже были статьи, посвященные некоторым алгоритмам, мне захотелось рассказать об этом чуть более подробно.
Я постараюсь давать как математическое описание, так и описание в обычном виде, для того, чтобы каждый мог найти для себя что-то интересное.

В этой статье я коснусь фундаментальных моментов сжатия и основных типов алгоритмов.

Сжатие. Нужно ли оно в наше время?

Разумеется, да. Конечно, все мы понимаем, что сейчас нам доступны и носители информации большого объема, и высокоскоростные каналы передачи данных. Однако, одновременно с этим растут и объемы передаваемой информации. Если несколько лет назад мы смотрели 700-мегабайтные фильмы, умещающиеся на одну болванку, то сегодня фильмы в HD-качестве могут занимать десятки гигабайт.
Конечно, пользы от сжатия всего и вся не так много. Но все же существуют ситуации, в которых сжатие крайне полезно, если не необходимо.

  • Пересылка документов по электронной почте (особенно больших объемов документов с использованием мобильных устройств)
  • При публикации документов на сайтах, потребность в экономии трафика
  • Экономия дискового пространства в тех случаях, когда замена или добавление средств хранения затруднительно. Например, подобное бывает в тех случаях, когда выбить бюджет под капитальные расходы непросто, а дискового пространства не хватает

Конечно, можно придумать еще множество различных ситуаций, в которых сжатие окажется полезным, но нам достаточно и этих нескольких примеров.

Все методы сжатия можно разделить на две большие группы: сжатие с потерями и сжатие без потерь. Сжатие без потерь применяется в тех случаях, когда информацию нужно восстановить с точностью до бита. Такой подход является единственно возможным при сжатии, например, текстовых данных.
В некоторых случаях, однако, не требуется точного восстановления информации и допускается использовать алгоритмы, реализующие сжатие с потерями, которое, в отличие от сжатия без потерь, обычно проще реализуется и обеспечивает более высокую степень архивации.

Итак, перейдем к рассмотрению алгоритмов сжатия без потерь.

Универсальные методы сжатия без потерь

В общем случае можно выделить три базовых варианта, на которых строятся алгоритмы сжатия.
Первая группа методов – преобразование потока. Это предполагает описание новых поступающих несжатых данных через уже обработанные. При этом не вычисляется никаких вероятностей, кодирование символов осуществляется только на основе тех данных, которые уже были обработаны, как например в LZ – методах (названных по имени Абрахама Лемпеля и Якоба Зива). В этом случае, второе и дальнейшие вхождения некой подстроки, уже известной кодировщику, заменяются ссылками на ее первое вхождение.

Вторая группа методов – это статистические методы сжатия. В свою очередь, эти методы делятся на адаптивные (или поточные), и блочные.
В первом (адаптивном) варианте, вычисление вероятностей для новых данных происходит по данным, уже обработанным при кодировании. К этим методам относятся адаптивные варианты алгоритмов Хаффмана и Шеннона-Фано.
Во втором (блочном) случае, статистика каждого блока данных высчитывается отдельно, и добавляется к самому сжатому блоку. Сюда можно отнести статические варианты методов Хаффмана, Шеннона-Фано, и арифметического кодирования.

Третья группа методов – это так называемые методы преобразования блока. Входящие данные разбиваются на блоки, которые затем трансформируются целиком. При этом некоторые методы, особенно основанные на перестановке блоков, могут не приводить к существенному (или вообще какому-либо) уменьшению объема данных. Однако после подобной обработки, структура данных значительно улучшается, и последующее сжатие другими алгоритмами проходит более успешно и быстро.

Общие принципы, на которых основано сжатие данных

Все методы сжатия данных основаны на простом логическом принципе. Если представить, что наиболее часто встречающиеся элементы закодированы более короткими кодами, а реже встречающиеся – более длинными, то для хранения всех данных потребуется меньше места, чем если бы все элементы представлялись кодами одинаковой длины.
Точная взаимосвязь между частотами появления элементов, и оптимальными длинами кодов описана в так называемой теореме Шеннона о источнике шифрования(Shannon"s source coding theorem), которая определяет предел максимального сжатия без потерь и энтропию Шеннона.

Немного математики
Если вероятность появления элемента s i равна p(s i), то наиболее выгодно будет представить этот элемент - log 2 p(s i) битами. Если при кодировании удается добиться того, что длина всех элементов будет приведена к log 2 p(s i) битам, то и длина всей кодируемой последовательности будет минимальной для всех возможных методов кодирования. При этом, если распределение вероятностей всех элементов F = {p(s i)} неизменно, и вероятности элементов взаимно независимы, то средняя длина кодов может быть рассчитана как

Это значение называют энтропией распределения вероятностей F, или энтропией источника в заданный момент времени.
Однако обычно вероятность появления элемента не может быть независимой, напротив, она находится в зависимости от каких-то факторов. В этом случае, для каждого нового кодируемого элемента s i распределение вероятностей F примет некоторое значение F k , то есть для каждого элемента F= F k и H= H k .

Иными словами, можно сказать, что источник находится в состоянии k, которому соответствует некий набор вероятностей p k (s i) для всех элементов s i .

Поэтому, учитывая эту поправку, можно выразить среднюю длину кодов как

Где P k - вероятность нахождения источника в состоянии k.

Итак, на данном этапе мы знаем, что сжатие основано на замене часто встречающихся элементов короткими кодами, и наоборот, а так же знаем, как определить среднюю длину кодов. Но что же такое код, кодирование, и как оно происходит?

Кодирование без памяти

Коды без памяти являются простейшими кодами, на основе которых может быть осуществлено сжатие данных. В коде без памяти каждый символ в кодируемом векторе данных заменяется кодовым словом из префиксного множества двоичных последовательностей или слов.
На мой взгляд, не самое понятное определение. Рассмотрим эту тему чуть более подробно.

Пусть задан некоторый алфавит , состоящий из некоторого (конечного) числа букв. Назовем каждую конечную последовательность символов из этого алфавита (A=a 1 , a 2 ,… ,a n) словом , а число n - длиной этого слова.

Пусть задан также другой алфавит. Аналогично, обозначим слово в этом алфавите как B.

Введем еще два обозначения для множества всех непустых слов в алфавите. Пусть - количество непустых слов в первом алфавите, а - во втором.

Пусть также задано отображение F, которое ставит в соответствие каждому слову A из первого алфавита некоторое слово B=F(A) из второго. Тогда слово B будет называться кодом слова A, а переход от исходного слова к его коду будет называться кодированием .

Поскольку слово может состоять и из одной буквы, то мы можем выявить соответствие букв первого алфавита и соответствующих им слов из второго:
a 1 <-> B 1
a 2 <-> B 2

a n <-> B n

Это соответствие называют схемой , и обозначают ∑.
В этом случае слова B 1 , B 2 ,…, B n называют элементарными кодами , а вид кодирования с их помощью - алфавитным кодированием . Конечно, большинство из нас сталкивались с таким видом кодирования, пусть даже и не зная всего того, что я описал выше.

Итак, мы определились с понятиями алфавит, слово, код, и кодирование . Теперь введем понятие префикс .

Пусть слово B имеет вид B=B"B"". Тогда B" называют началом, или префиксом слова B, а B"" - его концом. Это довольно простое определение, но нужно отметить, что для любого слова B, и некое пустое слово ʌ («пробел»), и само слово B, могут считаться и началами и концами.

Итак, мы подошли вплотную к пониманию определения кодов без памяти. Последнее определение, которое нам осталось понять - это префиксное множество. Схема ∑ обладает свойством префикса, если для любых 1≤i, j≤r, i≠j, слово B i не является префиксом слова B j .
Проще говоря, префиксное множество – это такое конечное множество, в котором ни один элемент не является префиксом (или началом) любого другого элемента. Простым примером такого множества является, например, обычный алфавит.

Итак, мы разобрались с основными определениями. Так как же происходит само кодирование без памяти?
Оно происходит в три этапа.

  1. Составляется алфавит Ψ символов исходного сообщения, причем символы алфавита сортируются по убыванию их вероятности появления в сообщении.
  2. Каждому символу a i из алфавита Ψ ставится в соответствие некое слово B i из префиксного множества Ω.
  3. Осуществляется кодирование каждого символа, с последующим объединением кодов в один поток данных, который будет являться результатам сжатия.

Одним из канонических алгоритмов, которые иллюстрируют данный метод, является алгоритм Хаффмана.

Алгоритм Хаффмана

Алгоритм Хаффмана использует частоту появления одинаковых байт во входном блоке данных, и ставит в соответствие часто встречающимся блокам цепочки бит меньшей длины, и наоборот. Этот код является минимально – избыточным кодом. Рассмотрим случай, когда, не зависимо от входного потока, алфавит выходного потока состоит из всего 2 символов – нуля и единицы.

В первую очередь при кодировании алгоритмом Хаффмана, нам нужно построить схему ∑. Делается это следующим образом:

  1. Все буквы входного алфавита упорядочиваются в порядке убывания вероятностей. Все слова из алфавита выходного потока (то есть то, чем мы будем кодировать) изначально считаются пустыми (напомню, что алфавит выходного потока состоит только из символов {0,1}).
  2. Два символа a j-1 и a j входного потока, имеющие наименьшие вероятности появления, объединяются в один «псевдосимвол» с вероятностью p равной сумме вероятностей входящих в него символов. Затем мы дописываем 0 в начало слова B j-1 , и 1 в начало слова B j , которые будут впоследствии являться кодами символов a j-1 и a j соответственно.
  3. Удаляем эти символы из алфавита исходного сообщения, но добавляем в этот алфавит сформированный псевдосимвол (естественно, он должен быть вставлен в алфавит на нужное место, с учетом его вероятности).
Шаги 2 и 3 повторяются до тех пор, пока в алфавите не останется только 1 псевдосимвол, содержащий все изначальные символы алфавита. При этом, поскольку на каждом шаге и для каждого символа происходит изменение соответствующего ему слова B i (путем добавление единицы или нуля), то после завершения этой процедуры каждому изначальному символу алфавита a i будет соответствовать некий код B i .

Для лучшей иллюстрации, рассмотрим небольшой пример.
Пусть у нас есть алфавит, состоящий из всего четырех символов - { a 1 , a 2 , a 3 , a 4 }. Предположим также, что вероятности появления этих символов равны соответственно p 1 =0.5; p 2 =0.24; p 3 =0.15; p 4 =0.11 (сумма всех вероятностей, очевидно, равна единице).

Итак, построим схему для данного алфавита.

  1. Объединяем два символа с наименьшими вероятностями (0.11 и 0.15) в псевдосимвол p".
  2. Объединяем два символа с наименьшей вероятностью (0.24 и 0.26) в псевдосимвол p"".
  3. Удаляем объединенные символы, и вставляем получившийся псевдосимвол в алфавит.
  4. Наконец, объединяем оставшиеся два символа, и получаем вершину дерева.

Если сделать иллюстрацию этого процесса, получится примерно следующее:


Как вы видите, при каждом объединении мы присваиваем объединяемым символам коды 0 и 1.
Таким образом, когда дерево построено, мы можем легко получить код для каждого символа. В нашем случае коды будут выглядить так:

A 1 = 0
a 2 = 11
a 3 = 100
a 4 = 101

Поскольку ни один из данных кодов не является префиксом какого-нибудь другого (то есть, мы получили пресловутое префиксное множество), мы можем однозначно определить каждый код в выходном потоке.
Итак, мы добились того, что самый частый символ кодируется самым коротким кодом, и наоборот.
Если предположить, что изначально для хранения каждого символа использовался один байт, то можно посчитать, насколько нам удалось уменьшить данные.

Пусть на входу у нас была строка из 1000 символов, в которой символ a 1 встречался 500 раз, a 2 - 240, a 3 - 150, и a 4 - 110 раз.

Изначально данная строка занимала 8000 бит. После кодирования мы получим строку длинной в ∑p i l i = 500 * 1 + 240 * 2 + 150 * 3 + 110 * 3 = 1760 бит. Итак, нам удалось сжать данные в 4,54 раза, потратив в среднем 1,76 бита на кодирование каждого символа потока.

Напомню, что согласно Шеннону, средняя длина кодов составляет . Подставив в это уравнение наши значения вероятностей, мы получим среднюю длину кодов равную 1.75496602732291, что весьма и весьма близко к полученному нами результату.
Тем не менее, следует учитывать, что помимо самих данных нам необходимо хранить таблицу кодировки, что слегка увеличит итоговый размер закодированных данных. Очевидно, что в разных случаях могут с использоваться разные вариации алгоритма – к примеру, иногда эффективнее использовать заранее заданную таблицу вероятностей, а иногда – необходимо составить ее динамически, путем прохода по сжимаемым данным.

Заключение

Итак, в этой статье я постарался рассказать об общих принципах, по которым происходит сжатие без потерь, а также рассмотрел один из канонических алгоритмов - кодирование по Хаффману.
Если статья придется по вкусу хабросообществу, то я с удовольствием напишу продолжение, так как есть еще множество интересных вещей, касающихся сжатия без потерь; это как классические алгоритмы, так и предварительные преобразования данных (например, преобразование Барроуза-Уилира), ну и, конечно, специфические алгоритмы для сжатия звука, видео и изображений (самая, на мой взгляд, интересная тема).

Литература

  • Ватолин Д., Ратушняк А., Смирнов М. Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео; ISBN 5-86404-170-X; 2003 г.
  • Д. Сэломон. Сжатие данных, изображения и звука; ISBN 5-94836-027-Х; 2004г.

Лекция №4. Сжатие информации

Принципы сжатия информации

Цель сжатия данных - обеспечить компактное представление данных, вырабатываемых источником, для их более экономного сохранения и передачи по каналам связи.

Пусть у нас имеется файл размером 1 (один) мегабайт. Нам необходимо получить из него файл меньшего размера. Ничего сложного - запускаем архиватор, к примеру, WinZip, и получаем в результате, допустим, файл размером 600 килобайт. Куда же делись остальные 424 килобайта?

Сжатие информации является одним из способов ее кодирования. Вообще коды делятся на три большие группы - коды сжатия (эффективные коды), помехоустойчивые коды и криптографические коды. Коды, предназначенные для сжатия информации, делятся, в свою очередь, на коды без потерь и коды с потерями. Кодирование без потерь подразумевает абсолютно точное восстановление данных после декодирования и может применяться для сжатия любой информации. Кодирование с потерями имеет обычно гораздо более высокую степень сжатия, чем кодирование без потерь, но допускает некоторые отклонения декодированных данных от исходных.

Виды сжатия

Все методы сжатия информации можно условно разделить на два больших непересекающихся класса: сжатие с потерей инфор­мации и сжатие без потери информации.

Сжатие без потери информации.

Эти методы сжатия нас инте­ресуют в первую очередь, поскольку именно их применяют при передаче текстовых документов и программ, при выдаче выпол­ненной работы заказчику или при создании резервных копий информации, хранящейся на копьютере.

Методы сжатия этого класса не могут допустить утрату информа­ции, поэтому они основаны только на устранении ее избыточности, а информация имеет избыточность почти всегда (правда, если до этого кто-то ее уже не уплотнил). Если бы избыточности не было, нечего было бы и сжимать.

Вот простой пример. В русском языке 33 буквы, десять цифр и еще примерно полтора десятка знаков препинания и прочих спе­циальных символов. Для текста, который записан только про­писными русскими буквами (как в телеграммах и радиограммах) вполне хватило бы шестидесяти разных значений. Тем не менее, каждый символ обычно кодируется байтом, который содержит 8 битов и может выражать 256 различных кодов. Это первое осно­вание для избыточности. Для нашего «телеграфного» текста вполне хватило бы шести битов на символ.

Вот другой пример. В международной кодировке символов ASCII для кодирования любого символа отводится одинаковое количество битов (8), в то время как всем давно и хорошо извест­но, что наиболее часто встречающиеся символы имеет смысл кодировать меньшим количеством знаков. Так, например, в «азбуке Морзе» буквы «Е» и «Т», которые встречаются часто, кодируются одним знаком (соответственно это точка и тире). А такие редкие буквы, как «Ю» ( - -) и «Ц» (- - ), кодиру­ются четырьмя знаками. Неэффективная кодировка - второе основание для избыточности. Программы, выполняющие сжа­тие информации, могут вводить свою кодировку (разную для разных файлов) и приписывать к сжатому файлу некую таблицу (словарь), из которой распаковывающая программа узнает, как в данном файле закодированы те или иные символы или их груп­пы. Алгоритмы, основанные на перекодировании информации, называют алгоритмами Хафмана.

Наличие повторяющихся фрагментов - третье основание для избыточности. В текстах это встречается редко, но в таблицах и в графике повторение кодов - обычное явление. Так, например, если число 0 повторяется двадцать раз подряд, то нет смысла ставить двадцать нулевых байтов. Вместо них ставят один ноль и коэффициент 20. Такие алгоритмы, основанные на выявлении повторов, называют методами RLE (Run Length Encoding ).

Большими повторяющимися последовательностями одинаковых байтов особенно отличаются графические иллюстрации, но не фотографические (там много шумов и соседние точки сущест­венно различаются по параметрам), а такие, которые художники рисуют «гладким» цветом, как в мультипликационных фильмах.

Сжатие с потерей информации.

Сжатие с потерей информации означает, что после распаковки уплотненного архива мы полу­чим документ, который несколько отличается от того, который был в самом начале. Понятно, что чем больше степень сжатия, тем больше величина потери и наоборот.

Разумеется, такие алгоритмы неприменимы для текстовых документов, таблиц баз данных и особенно для программ. Незна­чительные искажения в простом неформатированном тексте еще как-то можно пережить, но искажение хотя бы одного бита в программе сделает ее абсолютно неработоспособной.

В то же время, существуют материалы, в которых стоит пожерт­вовать несколькими процентами информации, чтобы получить сжатие в десятки раз. К ним относятся фотографические иллюстрации, видеоматериалы и музыкальные композиции. Потеря информации при сжатии и последующей распаковке в таких материалах воспринимается как появление некоторого дополнительного «шума». Но поскольку при создании этих мате­риалов определенный «шум» все равно присутствует, его неболь­шое увеличение не всегда выглядит критичным, а выигрыш в раз­мерах файлов дает огромный (в 10-15 раз на музыке, в 20-30 раз на фото- и видеоматериалах).

К алгоритмам сжатия с потерей информации относятся такие известные алгоритмы как JPEG и MPEG. Алгоритм JPEG исполь­зуется при сжатии фотоизображений. Графические файлы, сжа­тые этим методом, имеют расширение JPG. Алгоритмы MPEG используют при сжатии видео и музыки. Эти файлы могут иметь различные расширения, в зависимости от конкретной программы, но наиболее известными являются.MPG для видео и.МРЗ для музыки.

Алгоритмы сжатия с потерей информации применяют только для потребительских задач. Это значит, например, что если фотография передается для просмотра, а музыка для воспро­изведения, то подобные алгоритмы применять можно. Если же они передаются для дальнейшей обработки, например для редак­тирования, то никакая потеря информации в исходном мате­риале недопустима.

Величиной допустимой потери при сжатии обычно можно управ­лять. Это позволяет экспериментовать и добиваться оптималь­ного соотношения размер/качество. На фотографических иллюст­рациях, предназначенных для воспроизведения на экране, потеря 5% информации обычно некритична, а в некоторых случаях можно допустить и 20-25%.

Алгоритмы сжатия без потери информации

Код Шеннона-Фэно

Для дальнейших рассуждений будет удобно представить наш исходный файл с текстом как источник символов, которые по одному появляются на его выходе. Мы не знаем заранее, какой символ будет следующим, но мы знаем, что с вероятностью p1 появится буква "а", с вероятностью p2 -буква "б" и т.д.

В простейшем случае мы будем считать все символы текста независимыми друг от друга, т.е. вероятность появления очередного символа не зависит от значения предыдущего символа. Конечно, для осмысленного текста это не так, но сейчас мы рассматриваем очень упрощенную ситуацию. В этом случае справедливо утверждение "символ несет в себе тем больше информации, чем меньше вероятность его появления".

Давайте представим себе текст, алфавит которого состоит всего из 16 букв: А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н, О, П, Р. Каждый из этих знаков можно закодировать с помощью всего 4 бит: от 0000 до 1111. Теперь представим себе, что вероятности появления этих символов распределены следующим образом:

Сумма этих вероятностей составляет, естественно, единицу. Разобьем эти символы на две группы таким образом, чтобы суммарная вероятность символов каждой группы составляла ~0.5 (рис). В нашем примере это будут группы символов А-В и Г-Р. Кружочки на рисунке, обозначающие группы символов, называются вершинами или узлами (nodes), а сама конструкция из этих узлов - двоичным деревом (B-tree). Присвоим каждому узлу свой код, обозначив один узел цифрой 0, а другой - цифрой 1.

Снова разобьем первую группу (А-В) на две подгруппы таким образом, чтобы их суммарные вероятности были как можно ближе друг к другу. Добавим к коду первой подгруппы цифру 0, а к коду второй - цифру 1.

Будем повторять эту операцию до тех пор, пока на каждой вершине нашего "дерева" не останется по одному символу. Полное дерево для нашего алфавита будет иметь 31 узел.

Коды символов (крайние правые узлы дерева) имеют коды неодинаковой длины. Так, буква А, имеющая для нашего воображаемого текста вероятность p=0.2, кодируется всего двумя битами, а буква Р (на рисунке не показана), имеющая вероятность p=0.013, кодируется аж шестибитовой комбинацией.

Итак, принцип очевиден - часто встречающиеся символы кодируются меньшим числом бит, редко встречающиеся - большим. В результате среднестатистическое количество бит на символ будет равно

где ni - количество бит, кодирующих i-й символ, pi - вероятность появления i-го символа.

Код Хаффмана.

Алгоритм Хаффмана изящно реализует общую идею статистического кодирования с использованием префиксных множеств и работает следующим образом:

1. Выписываем в ряд все символы алфавита в порядке возрастания или убывания вероятности их появления в тексте.

2. Последовательно объединяем два символа с наименьшими вероятностями появления в новый составной символ, вероятность появления которого полагаем равной сумме вероятностей составляющих его символов. В конце концов построим дерево, каждый узел которого имеет суммарную вероятность всех узлов, находящихся ниже него.

3. Прослеживаем путь к каждому листу дерева, помечая направление к каждому узлу (например, направо - 1, налево - 0) . Полученная последовательность дает кодовое слово, соответствующее каждому символу (рис.).

Построим кодовое дерево для сообщения со следующим алфавитом:

Недостатки методов

Самой большой сложностью с кодами, как следует из предыдущего обсуждения, является необходимость иметь таблицы вероятностей для каждого типа сжимаемых данных. Это не представляет проблемы, если известно, что сжимается английский или русский текст; мы просто предоставляем кодеру и декодеру подходящее для английского или русского текста кодовое дерево. В общем же случае, когда вероятность символов для входных данных неизвестна, статические коды Хаффмана работают неэффективно.

Решением этой проблемы является статистический анализ кодируемых данных, выполняемый в ходе первого прохода по данным, и составление на его основе кодового дерева. Собственно кодирование при этом выполняется вторым проходом.

Еще один недостаток кодов - это то, что минимальная длина кодового слова для них не может быть меньше единицы, тогда как энтропия сообщения вполне может составлять и 0,1, и 0,01 бит/букву. В этом случае код становится существенно избыточным. Проблема решается применением алгоритма к блокам символов, но тогда усложняется процедура кодирования/декодирования и значительно расширяется кодовое дерево, которое нужно в конечном итоге сохранять вместе с кодом.

Данные коды никак не учитывают взаимосвязей между символами, которые присутствуют практически в любом тексте. Например, если в тексте на английском языке нам встречается буква q, то мы с уверенностью сможем сказать, что после нее будет идти буква u.

Групповое кодирование - Run Length Encoding (RLE) - один из самых старых и самых простых алгоритмов архивации. Сжатие в RLE происходит за счет замены цепочек одинаковых байт на пары "счетчик, значение". («красный, красный, ..., красный» записывается как «N красных»).

Одна из реализаций алгоритма такова: ищут наименнее часто встречающийся байт, называют его префиксом и делают замены цепочек одинаковых символов на тройки "префикс, счетчик, значение". Если же этот байт встретичается в исходном файле один или два раза подряд, то его заменяют на пару "префикс, 1" или "префикс, 2". Остается одна неиспользованная пара "префикс, 0", которую можно использовать как признак конца упакованных данных.

При кодировании exe-файлов можно искать и упаковывать последовательности вида AxAyAzAwAt..., которые часто встречаются в ресурсах (строки в кодировке Unicode)

К положительным сторонам алгоритма, можно отнести то, что он не требует дополнительной памяти при работе, и быстро выполняется. Алгоритм применяется в форматах РСХ, TIFF, ВМР. Интересная особенность группового кодирования в PCX заключается в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

LZW-код (Lempel-Ziv & Welch) является на сегодняшний день одним из самых распространенных кодов сжатия без потерь. Именно с помощью LZW-кода осуществляется сжатие в таких графических форматах, как TIFF и GIF, с помощью модификаций LZW осуществляют свои функции очень многие универсальные архиваторы. Работа алгоритма основана на поиске во входном файле повторяющихся последовательностей символов, которые кодируются комбинациями длиной от 8 до 12 бит. Таким образом, наибольшую эффективность данный алгоритм имеет на текстовых файлах и на графических файлах, в которых имеются большие одноцветные участки или повторяющиеся последовательности пикселов.

Отсутствие потерь информации при LZW-кодировании обусловило широкое распространение основанного на нем формата TIFF. Этот формат не накладывает каких-либо ограничений на размер и глубину цвета изображения и широко распространен, например, в полиграфии. Другой основанный на LZW формат - GIF - более примитивен - он позволяет хранить изображения с глубиной цвета не более 8 бит/пиксел. В начале GIF - файла находится палитра - таблица, устанавливающая соответствие между индексом цвета - числом в диапазоне от 0 до 255 и истинным, 24-битным значением цвета.

Алгоритмы сжатия с потерей информации

Алгоритм JPEG был разработан группой фирм под названием Joint Photographic Experts Group. Целью проекта являлось создание высокоэффективного стандарта сжатия как черно-белых, так и цветных изображений, эта цель и была достигнута разработчиками. В настоящее время JPEG находит широчайшее применение там, где требуется высокая степень сжатия - например, в Internet.

В отличие от LZW-алгоритма JPEG-кодирование является кодированием с потерями. Сам алгоритм кодирования базируется на очень сложной математике, но в общих чертах его можно описать так: изображение разбивается на квадраты 8*8 пикселов, а затем каждый квадрат преобразуется в последовательную цепочку из 64 пикселов. Далее каждая такая цепочка подвергается так называемому DCT-преобразованию, являющемуся одной из разновидностей дискретного преобразования Фурье. Оно заключается в том, что входную последовательность пикселов можно представить в виде суммы синусоидальных и косинусоидальных составляющих с кратными частотами (так называемых гармоник). В этом случае нам необходимо знать лишь амплитуды этих составляющих для того, чтобы восстановить входную последовательность с достаточной степенью точности. Чем большее количество гармонических составляющих нам известно, тем меньше будет расхождение между оригиналом и сжатым изображением. Большинство JPEG-кодеров позволяют регулировать степень сжатия. Достигается это очень простым путем: чем выше степень сжатия установлена, тем меньшим количеством гармоник будет представлен каждый 64-пиксельный блок.

Безусловно, сильной стороной данного вида кодирования является большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило его широкое применение в Internet, где уменьшение размера файлов имеет первостепенное значение, в мультимедийных энциклопедиях, где требуется хранение возможно большего количества графики в ограниченном объеме.

Отрицательным свойством этого формата является неустранимое никакими средствами, внутренне ему присущее ухудшение качества изображения. Именно этот печальный факт не позволяет применять его в полиграфии, где качество ставится во главу угла.

Однако формат JPEG не является пределом совершенства в стремлении уменьшить размер конечного файла. В последнее время ведутся интенсивные исследования в области так называемого вейвлет-преобразования (или всплеск-преобразования). Основанные на сложнейших математических принципах вейвлет-кодеры позволяют получить большее сжатие, чем JPEG, при меньших потерях информации. Несмотря на сложность математики вейвлет-преобразования, в программной реализации оно проще, чем JPEG. Хотя алгоритмы вейвлет-сжатия пока находятся в начальной стадии развития, им уготовано большое будущее.

Фрактальное сжатие

Фрактальное сжатие изображений - это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися аффинными преобразованиями) к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия (лучшие примеры - до 1000 раз при приемлемом визуальном качестве) для реальных фотографий природных объектов, что недоступно для других алгоритмов сжатия изображений в принципе. Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Фрактальная архивация основана на том, что с помощью коэффициентов системы итерируемых функций изображение представляется в более компактной форме. Прежде чем рассматривать процесс архивации, разберем, как IFS строит изображение.

Строго говоря, IFS - это набор трехмерных аффинных преобразований, переводящих одно изображение в другое. Преобразованию подвергаются точки в трехмерном пространстве (x координата, у координата, яркость).

Основа метода фрактального кодирования - это обнаружение самоподобных участков в изображении. Впервые возможность применения теории систем итерируемых функций (IFS) к проблеме сжатия изображения была исследована Майклом Барнсли и Аланом Слоуном. Они запатентовали свою идею в 1990 и 1991 гг. Джеквин (Jacquin) представил метод фрактального кодирования, в котором используются системы доменных и ранговых блоков изображения (domain and range subimage blocks), блоков квадратной формы, покрывающих все изображение. Этот подход стал основой для большинства методов фрактального кодирования, применяемых сегодня. Он был усовершенствован Ювалом Фишером (Yuval Fisher) и рядом других исследователей.

В соответствии с данным методом изображение разбивается на множество неперекрывающихся ранговых подизображений (range subimages) и определяется множество перекрывающихся доменных подизображений (domain subimages). Для каждого рангового блока алгоритм кодирования находит наиболее подходящий доменный блок и аффинное преобразование, которое переводит этот доменный блок в данный ранговый блок. Структура изображения отображается в систему ранговых блоков, доменных блоков и преобразований.

Идея заключается в следующем: предположим, что исходное изображение является неподвижной точкой некоего сжимающего отображения. Тогда можно вместо самого изображения запомнить каким-либо образом это отображение, а для восстановления достаточно многократно применить это отображение к любому стартовому изображению.

По теореме Банаха, такие итерации всегда приводят к неподвижной точке, то есть к исходному изображению. На практике вся трудность заключается в отыскании по изображению наиболее подходящего сжимающего отображения и в компактном его хранении. Как правило, алгоритмы поиска отображения (то есть алгоритмы сжатия) в значительной степени переборные и требуют больших вычислительных затрат. В то же время, алгоритмы восстановления достаточно эффективны и быстры.

Вкратце метод, предложенный Барнсли, можно описать следующим образом. Изображение кодируется несколькими простыми преобразованиями (в нашем случае аффинными), то есть определяется коэффициентами этих преобразований (в нашем случае A, B, C, D, E, F).

Например, изображение кривой Коха можно закодировать четырмя аффинными преобразованиями, мы однозначно определим его с помощью всего 24-х коэффициентов.

В результате точка обязательно перейдёт куда-то внутрь чёрной области на исходном изображении. Проделав такую операцию много раз, мы заполним все чёрное пространство, тем самым восстановив картинку.

Наиболее известны два изображения, полученных с помощью IFS: треугольник Серпинского и папоротник Барнсли. Первое задается тремя, а второе - пятью аффинными преобразованиями (или, в нашей терминологии, линзами). Каждое преобразование задается буквально считанными байтами, в то время как изображение, построенное с их помощью, может занимать и несколько мегабайт.

Становится понятно, как работает архиватор, и почему ему требуется так много времени. Фактически, фрактальная компрессия - это поиск самоподобных областей в изображении и определение для них параметров аффинных преобразований.

В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное число раз, не позволит добиться приемлемого времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения.

Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько линз). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, можно очень гибко управлять коэффициентом компрессии изображения: от побитного соответствия, до любой степени сжатия.

Сравнение с JPEG

Сегодня наиболее распространенным алгоритмом архивации графики является JPEG. Сравним его с фрактальной компрессией.

Во-первых, заметим, что и тот, и другой алгоритм оперируют 8-битными (в градациях серого) и 24-битными полноцветными изображениями. Оба являются алгоритмами сжатия с потерями и обеспечивают близкие коэффициенты архивации. И у фрактального алгоритма, и у JPEG существует возможность увеличить степень сжатия за счет увеличения потерь. Кроме того, оба алгоритма очень хорошо распараллеливаются.

Различия начинаются, если мы рассмотрим время, необходимое алгоритмам для архивации/разархивации. Так, фрактальный алгоритм сжимает в сотни и даже в тысячи раз дольше, чем JPEG. Распаковка изображения, наоборот, произойдет в 5-10 раз быстрее. Поэтому, если изображение будет сжато только один раз, а передано по сети и распаковано множество раз, то выгодней использовать фрактальный алгоритм.

JPEG использует разложение изображения по косинусоидальным функциям, поэтому потери в нем (даже при заданных минимальных потерях) проявляются в волнах и ореолах на границе резких переходов цветов. Именно за этот эффект его не любят использовать при сжатии изображений, которые готовят для качественной печати: там этот эффект может стать очень заметен.

Фрактальный алгоритм избавлен от этого недостатка. Более того, при печати изображения каждый раз приходится выполнять операцию масштабирования, поскольку растр (или линиатура) печатающего устройства не совпадает с растром изображения. При преобразовании также может возникнуть несколько неприятных эффектов, с которыми можно бороться либо масштабируя изображение программно (для дешевых устройств печати типа обычных лазерных и струйных принтеров), либо снабжая устройство печати своим процессором, винчестером и набором программ обработки изображений (для дорогих фотонаборных автоматов). Как можно догадаться, при использовании фрактального алгоритма таких проблем практически не возникает.

Вытеснение JPEG фрактальным алгоритмом в повсеместном использовании произойдет еще не скоро (хотя бы в силу низкой скорости архивации последнего), однако в области приложений мультимедиа, в компьютерных играх его использование вполне оправдано.

Предлагаемые материалы легли в основу зачетной работы по курсу "Математические основа информатики"(автор А. Гейн), который я успешно прошла в 2011 году в дистанционном университете "1Сентября". Материалы адаптированы для расширенного курса информатики в 11 классе.

Скачать:


Предварительный просмотр:

Cжатие данных лицей № 329

Андреева О.А.

План урока

11 класс

Тема урока : Cжатие данных.

Тип урока : изучение нового учебного материала с элементами фронтальной беседы.

Цели урока : расширение компетенций в создании собственного информационного пространства.

Задачи урока :

учебная - рассмотреть понятие сжатие данных и ознакомиться с алгоритмами сжатия символьных данных;

познавательная - ввести понятие избыточность данных;

воспитательная - создать условия для активной деятельности каждого ученика.

Программное

обеспечение урока: - презентация по теме “Сжатие данных”;

Техническое

обеспечение урока : - рабочее место ученика с ПК PentiumIII;

  1. фломастерная доска;
  2. проектор для демонстрации презентации.

ХОД УРОКА

I этап : выход на тему урока и мотивация изучения материала;

II этап : сообщение учебного материала;

III этап : актуализация полученных знаний - ответы на вопросы для закрепления;

IV этап : сообщение домашнего задания; подведение итогов урока.

Конспект урока

I этап :


Количество нужной человеку информации неуклонно растет. Возможности устройств для хранения данных и пропускная способность линий связи также растут. Однако количество информации растет быстрее.
У этой проблемы есть три пути решения:

первое - ограничение количества информации. К сожалению, оно не всегда приемлемо. Например, для изображений это означает уменьшение разрешения, что приведет к потере мелких деталей и может сделать изображения вообще бесполезными (например, для медицинских или космических изображений). Для программ и текстов этот путь не применим
второе - увеличение объема носителей информации и пропускной способности каналов связи. Это решение связано с материальными затратами, причем иногда весьма значительными.
третье - использование сжатия информации. Это решение позволяет в несколько раз сократить требования к объему устройств хранения данных и пропускной способности каналов связи без дополнительных издержек (за исключением издержек на реализацию алгоритмов сжатия). Условиями его применимости является избыточность информации и возможность установки специального программного обеспечения либо аппаратуры для выполнения этих процедур.

Характерной особенностью большинства типов цифровых данных является их избыточность. Степень избыточности данных зависит от типа данных. Например, для видеоданных степень избыточности в несколько раз больше, чем для графических данных, а степень избыточности графических данных, в свою очередь, больше чем степень избыточности текстовых данных. Другим фактором, влияющим на степень избыточности, является принятая система кодирования. Эффективность кодирования можно увеличить при работе с определенным набором данных.

Теоретически доказано, что избыточность литературного русского текста составляет 0,6. Другими словами, при передаче текста по каналу связи каждые шесть букв из десяти передаваемых не несут никакой информации и могут безо всяких потерь просто не передаваться.

Такой же, если не более высокой (ρи= 0,9...0,95) избыточностью обладают и другие источники информации - речь, и особенно музыка, телевизионные изображения и т.д.

Сжатие данных применяется во многих информационных системах. Современные радиотехнические системы передачи информации и связи просто не смогли бы работать, если бы в них не производилось такого рода сжатие. Не было бы цифровой сотовой связи стандартов GSM и CDMA. Не работали бы системы цифрового спутникового телевидения, очень неэффективной была бы работа Internet, а уж о том, чтобы посмотреть видеофильм или послушать хорошую музыку с лазерного диска, не могло быть и речи. Все это обеспечивается эффективным или экономным кодированием информации в данных системах.

II этап :

Демонстрация презентации в нужном темпе с пояснениями материала на каждом слайде.

Слайд 5(дополнительные пояснения):

Выбор системы неразрушающего(без потерь) или разрушающего(с потерями) сжатия зависит от типа данных, подлежащих сжатию. При сжатии текстовых данных, компьютерных программ, документов, чертежей и т.п. совершенно очевидно, что нужно применять неразрушающие методы, поскольку необходимо абсолютно точное восстановление исходной информации после ее сжатия. При сжатии речи, музыкальных данных и изображений, наоборот, чаще используется разрушающее сжатие, поскольку при практически незаметных искажениях оно обеспечивает на порядок, а иногда и на два меньшую скорость R . В общем случае разрушающее сжатие обеспечивает, как правило, существенно более высокие коэффициенты сжатия, нежели неразрушающее.

Слайд 18(дополнительные пояснения):

Рассмотрим принцип сжатия на основе словаря. LZ - это способ сжатия данных, который извлекает преимущества при повторяющихся цепочках данных. Исходный словарь для сжатия содержит словарь используемых символов. Затем в словарь будут добавлены цепочки символов, отличающиеся одним символом. Цепочки будут удлиняться, в тексте все чаще будут находиться словарные цепочки, которые будут заменяться ссылками на словарь. В словарь будут добавлены слова, фразы, строки текста. Эффект сжатия достигается за счет кодирования повторяющихся цепочек символов.

Представим себе этот процесс на примере сжатия фразы. Словарь уже построен, и интересующие нас цепочки добавляются в словарь(они будут повторяться в фразе). Они имеют цифровые ссылки. При повторном вхождении в фразу они заменяются ссылками. Очевидно, что данные сжимаются.

Существует целое семейство алгоритмов LZ, эффективных для разных типов данных.

Заключение II этапа:

Таким образом, будущее за новыми алгоритмами с высокими требованиями к ресурсам и все более и более высокой степенью сжатия.

Устаревают не только алгоритмы, но и типы информации, на которые они ориентированы. Так, на смену графике с малым числом цветов и неформатированному тексту пришли высококачественные изображения и электронные документы в различных форматах. Известные алгоритмы не всегда эффективны на новых типах данных. Это делает крайне актуальной проблему синтеза новых алгоритмов.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сжатие данных

Цели сжатия данных – экономия ресурсов при хранении или передаче данных Сжатие данных это процесс, обеспечивающий уменьшение объема данных. Способы сжатия Изменение содержания данных (уменьшение избыточности данных) Изменение структуры данных (эффективное кодирование) Изменение содержания и структуры данных Исходные данные Восстановленные данные Новый формат Исходный формат Сжатые данные Архивация данных – сжатие с возможностью полного восстановления данных

Коэффициент сжатия – это величина для обозначения эффективности метода сжатия, равная отношению количества информации до и после сжатия Исходные данные Сжатые данные Размер файла 2МБ Размер файла 512 КБ К сж = 2 МБ / 0,5 МБ = 4

Сжатие данных может происходить с потерями и без потерь Сжатие без потерь (полностью обратимое) – это методы сжатия данных, при которых данные восстанавливаются после их распаковки полностью без внесения изменений (используется для текстов, программ) Ксж до 50% Сжатие с регулируемыми потерями – это методы сжатия данных, при которых часть данных отбрасывается и не подлежит восстановлению (используется для видео, звука, изображений) Ксж до 99%

Сжатие с потерями Тип данных Тип файла после сжатия Степень сжатия Графика.JPG до 99% Видео.MPG Звук.MP3 Тип данных Тип файла после сжатия Степень сжатия Графика.GIF .TIF .PCX До 50% Видео.AVI Любой тип.ZIP .ARJ .RAR .LZH Сжатие без потерь

Алгоритмы сжатия символьных данных Статистические методы – это методы сжатия, основанные на статистической обработке текста. Словарное сжатие – это методы сжатия, основанные на построении внутреннего словаря.

Упаковка однородных данных 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 _ 1010 + 1011 - 1100 , 1101 Закодируем сообщение длиной 16 символов 0,258-23,5+18,01 В кодировке ASCII сообщение составляет 16 байт. Новая кодовая таблица для упаковки: Код сообщения после упаковки составляет 8 байт: 000011010 01010101 00011000 0100011 110101011 01100011 00011010 0000001 K сж = 16 / 8 = 2

Коэффициент сжатия увеличивается с увеличением размера символьного сообщения; необходимо указывать для распаковки новую кодовую таблицу; эффективен только для однородных сообщений, использующих ограниченный набор символов исходного алфавита; + - - Достоинства и недостатки метода

Статистический метод сжатия Алгоритм Хаффмана Разные символы встречаются в сообщении с разной частотой, например для русского алфавита в среднем на 1000 символов: символ пробел о а р к я г ю ф частота 175 90 62 40 28 18 13 6 2 Зададим коды символам согласно частоте их повторения: чем чаще встречается символ, тем короче его код (неравномерное кодирование)

Хаффмановское кодирование (сжатие) – это метод сжатия, присваивающий символам алфавита коды переменной длины, основы-ваясь на частоте появления этих символов в сообщении. символ код символа пробел 00 о 01 р 101 к 110 ю 0110 ф 1001

Проблема декодирования Пример: пусть коды символов a -10, b -101, c -1010 Декодировать сообщение 10101011010 10 101 1010 10 10 101 10 10 1010 101 1010 a a b c a a b a a c b c Однозначное декодирование возможно при условии Фано: никакое кодовое слово не является началом (префиксом) другого кодового слова.

Префиксный код – это код, в котором никакое кодовое слово не является префиксом любого другого кодового слова. Пример префиксного кода: 00 10 010 110 0110 0111 1110 1111 0 0 0 0 0 0 0 1 1 1 1 1 1 1 Префиксный код задается орграфом с размеченными листьями

Пример: построить код Хаффмана для фразы ОТ_ТОПОТА_КОПЫТ_ПЫЛЬ_ПО_ПОЛЮ_ЛЕТИТ Определим частоту вхождения символов в фразу: Строим орграф Хаффмана: -символ задает вершину- лист орграфа; -вес вершины равен частоте вхождения символа; -соединяются пары вершин с наименьшим весом: -левые ветви обозначаем 0 ; -правые ветви обозначаем 1 ; -определяем код символа от корня к листу; символ А Е И К Л О П Т Ы Ь Ю _ частота 1 1 1 1 3 6 5 6 2 1 1 6

КОРЕНЬ ДЕРЕВА Т- О- Ы- _ П- Л- Ю- Ь- Е- К- И- А- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 00011 00010 11000 11001 11011 11010 001 010 011 111 10 0000 Каждая вершина обозначена стрелкой

Построены префиксные коды символов: Сообщение в новых кодах содержит 110 бит, в кодировке ASCII – 34 * 8 = 272 бита тогда К сж = 272 / 110 = 2 ,47 Символ А Е И К Л О П Т Ы Ь Ю _ Код 11011 11000 11010 11001 001 10 011 010 0000 00011 00010 111 Длина кода 5 5 5 5 3 2 3 3 4 5 5 3

Алгоритм Хаффмана универсальный, его можно применять для сжатия данных любых типов; Классический алгоритм Хаффмана требует хранения кодового дерева, что увеличивает размер файла. + - Достоинства и недостатки метода

Метод словарей Алгоритм сжатия LZ Этот алгоритм был впервые описан в работах А. Лемпеля и Дж. Зива (Abraham Lempel , Jacob Ziv) в 1977-78 гг., поэтому этот метод часто называется Lempel-Ziv , или сокращенно LZ. В его основе лежит идея замены наиболее часто встречающихся цепочек символов (строк) в файле ссылками на «образцы» цепочек, хранящиеся в специально создаваемой таблице (словаре).

Алгоритм ра з ра ботан из ра ильскими мат е мат ика ми Яко бо м Зив ом и Аб ра х ам ом Л ем пе лем. Словарь содержит, кроме многих других, такие цепочки: 1-ра 2-аб 3-ат 4-мат 5-ми_ 6-ам 7-бо 8-ом_ 9-бом 10-ем 11-лем Алгоритм раз1ботан из1ильскими мате4ика5Яко7ом Зив821х68 Л10пе11 Чем длиннее цепочка, заменяемая ссылкой в словарь, тем больше эффект сжатия.

Применим для любых данных; - очень высокая скорость сжатия; - высок коэффициент сжатия; + - Достоинства и недостатки метода - словарь настроен на тип текста; - словарь может быть очень большим;

Слайд 2

  • Слайд 3

    Избыточность данных

    • Большинство данных являются избыточными
    • Избыточность улучшает восприятие и обработку информации
    • При хранении избыточность уменьшают
    • Наибольшая избыточность у видеоинформации, затем идет графическая, звуковая, и самая низкая избыточность у текстовой информации
  • Слайд 4

    Методы сжатия

    • С частичной потерей информации:Производится при сжатии кода изображения, видео и звукаТакая возможность связана с субъективными возможностями человеческого зрения и слуха.
    • Без потери информации:- использование неравномерного символьного кода;- выявления повторяющихся фрагментов кода.
  • Слайд 5

    С частичной потерей

    • На зрение более существенное воздействие оказывает яркость пикселя, нежели его цвет. Поэтому объем видеокода можно сократить за счет того, что коды цвета хранить не для каждого пикселя, а через один, два и т.д. пикселей растра. Чем больше такие пропуски, тем больше сжимаются видеоданные, но при этом ухудшается качество изображения.
    • При кодировании видеофильмов - динамичного изображения, учитывается свойство инерционности зрения. Быстро меняющиеся фрагменты фильма можно кодировать менее подробно, чем статические кадры.
    • Труднее всего сжатию поддается звуковой код. Здесь также используются психофизиологические особенности человеческого слуха. Учитывается, к каким гармоникам естественного звука наш слух более восприимчив, а к каким - менее. Слабо воспринимаемые гармоники отфильтровываются путем математической обработки. Сжатию способствует также учет нелинейной зависимости между амплитудой звуковых колебаний и восприятием нашим ухом громкости звучания.
  • Слайд 6

    • Применяется для таких типов данных, для которых формальная утрата части содержания не приводит к потере потребительских свойств и обеспечивает высокую степень сжатия.
    • Примеры:видео MPG, звук MP3, рисунки JPG.
  • Слайд 7

    Без потери – «обратимый»

    • Применяется к текстам, базам данных, и ко всем остальным вышеназванным типам.
    • Пример: рисунки – GIF, TIF,PCX, видео - AVI, любой тип данных – ZIP, ARJ, RAR и др.
  • Слайд 8

    Архивы

    • Архив – файл, содержащий в себе один или несколько файлов в сжатом виде.
    • Расширение архивного файла зависит от программы-архиватора.
    • Архиватор – программы для создания и чтения архивов.Пример:WinRar, WinZip, WinArj.
  • Слайд 9

    Архивы применяют с целью

    • повысить эффективность носителя – на один носитель поместить больший объем информации
    • создания резервных копий ценных данных, которые в сжатом виде будут храниться на отдельных носителях.
    • защиты данных от несанкционированного доступа паролем - документы даже не откроются
    • увеличения скорости копирования данных с диска на диск, например, электронных страниц, содержащие много мелких графических файлов
    • быстрого восстановления данных, измененных пользователем
    • передачи информации по каналам связи
    • раздробления данных на пакеты
  • Слайд 10

    Возможности архиваторов

  • Просмотр содержимого архива
  • Контроль целостности данных
  • Распаковка архива
  • Восстановление поврежденного архива
  • Установка защиты
  • Добавление файла в архив
  • Создание многотомных архивов
  • Создание самораспаковывающихся архивов
  • Блокировка от случайной модификации
  • Слайд 11

    Самораспаковывающийся

    (SFX, от англ. SelF-eXtracting) - это архив, к которому присоединен исполнимый модуль. Этот модуль позволяет извлекать файлы простым запуском архива как обычной программы. Таким образом, для извлечения содержимого SFX-архива не требуется дополнительных внешних программ. SFX-архивы удобны в тех случаях, когда вам нужно передать кому-то архив, но при этом вы не уверены, что у адресата есть соответствующий архиватор для его распаковки.

    Конспект урока по информатике и ИКТ

    Тип : Урок изучения нового материала

    Тема : Архиваторы. Методы сжатия информации.

    Цели :

      Изучить методы сжатия информации (упаковки и Хаффмана)

      Развить алгоритмическое мышление

      Воспитание ответственного отношения к выполнению задания.

    Метод: Объяснительно-иллюстративный

    Ход урока:

      Организационный момент (2 мин)

      Актуализация знаний. (5 мин)

      Объяснение материала и запись в тетрадь. (25 мин)

      Первоначальное закрепление материала (10 мин)

      Подведение итогов. (3 мин)

    Вопросы по актуализации знаний:

      Как вы понимаете понятие «сжатие информации»?

      Каким образом сжимается цифровая информация?

      Какие программы архиваторы вы знаете?

      Информация в какой форм требует обязательного сжатия?

    Теоретический материал:

    В жизни каждого пользователя ПК регулярно возникают ситуации, когда, например, нужно перенести один или несколько файлов на другой компьютер при помощи ограниченного по объему съемного носителя, переслать объемный файл по электронной почте и др. Как правило, возникает проблема разделения большого файла на несколько более мелких файлов с возможностью его дальнейшего воссоздания, групировки большого количества мелких файлов в более крупные, сжатия файлов для уменьшения их размера и т.д. Для решения подобных задач используют архиваторы.

    Архиваторы - это программы, позволяющие создавать, за счет специальных методов сжатия, копии файлов меньшего размера и объединять копии нескольких файлов в один архивный файл, а также распаковывать архивы (извлекать файлы из архива).

    Существуют различные алгоритмы архивации данных без потери информации, т.е. при разархивации данные будут восстановлены в исходном виде. Для ОС Windows наиболее популярными являются архиваторы WinRAR, WinZIP,WinACE.

    Сжатие информации - это процесс преобразования информации, хранящейся в файле, в результате которого уменьшается ее избыточность, соответственно, требуется меньший объем Памяти для хранения.

    Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

    Метод упаковки

    Входной текс «КОЛ_ОКОЛО_КОЛОКОЛА» содержит всего 5 различных символов (К, О, Л, А, _). Следовательно каждый символ может быть закодирован трем битами. Всего в исходном тесте 18 символов, так что потребуется 18Х3=54бита. Коэффициент сжатия равен 144/54=2,7

    Метод Хаффмана.

    Слабое место метода упаковки заключается в том, что символы кодируются битовыми последовательностями одинаковой длины. Например, любой текст, состоящий только из букв «А» и «В» , сжимается методом упаковки в восемь раз. Однако если к такому тексту добавить всего лишь одну букву, например «С», то степень сжатиясразу уменьшится вдвое, причем независимо от длины текста и количества добавленных символов «С»

    Улучшения степени сжатия можно достичь, кодирую часто встречающиеся символы короткими кодами, а редко встречающиеся – более длинными. Именно такова идея метода, опубликованного Д.Хаффманом в 1952 г.

    Алгоритм Хаффмана

      Символы входного алфавита образуют список свободных узлов. Каждый узел имеет вес, равный количеству вхождений символа в исходное сообщение.

      В списке выбираются два свободных узла с наименьшими весами.

      Создается их узел- «родитель» с весом, равным сумме их весов, он соединяется с «детьми» дугами.

      Одной дуге, выходящей из «родителя», ставится в соответствие бит 1, другой – бит 0.

      «Родитель» добавляется в список свободных узлов, а двое его «детей» удаляются из этого списка.

      Шаги, начиная со второго, повторяются до тех пор, пока в списке свободных узлов не останется только один свободный узел. Он и будет считаться корнем дерева.

    Задания на закрепления

    Упаковать сообщение 2 методами: Архип_осип._Осип_охрип.

    Вопросы для подведения итога урока:

      Что такое сжатие информации?

      Основное назначение программ архиваторов.

      Какие методы сжатия сегодня изучили.

      Какой метод сжатия наиболее эффективный и почему?