Введение в глубинное обучение. Глубинное обучение для автоматической обработки текстов

Что такое глубокое обучение (deep learning) ? March 3rd, 2016

Сейчас говорят о модных технологиях глубокого обучения, как будто это манна небесная. Но понимают ли говорящие, что это на самом деле? А ведь у этого понятия нет формального определения, и объединяет оно целый стек технологий. В этом посте я и хочу популярно, насколько это возможно, и по сути объяснить что стоит за этим термином, почему он так популярен и что дают нам эти технологий.


Если совсем коротко, то этот новомодный термин (deep learning) о том, как собрать из каких-то простых абстракции более сложную и глубокую абстракцию (репрезентацию) притом, что даже самые простые абстракции должен собирать сам компьютер, а не человек . Т.е. речь уже не просто об обучении, а о метаобучении. Образно говоря, компьютер самостоятельно должен научиться как лучше ему учиться. И, по сути, термин «глубокое» именно это и подразумевает. Практически всегда этот термин применяемся к искусственным нейронным сетям, где используется больше одного скрытого слоя, поэтому формально «глубокий» значит ещё и более глубокую архитектуру нейронной сети.

Вот на слайде в развитие хорошо видно, чем отличается глубокое обучение, от обычного. Повторюсь, уникальным для глубокого обучения является то, что машина сама находит признаки (ключевые черты чего-либо, по которым легче всего разделять один класс объектов от другого) и признаки эти структурирует иерархично: из более простых складываются более сложные . Ниже мы разберем это на примере.

Давайте посмотрим на примере задачи распознавания изображений: раньше как — запихивали в обычную нейронную сеть с одним слоем огромную (1024×768 — около 800 000 числовых значений) картинку и смотрели как компьютер медленно умирает, задыхаясь от нехватки памяти и неспособности понять, какие пиксели важны для распознавания, а какие нет. Не говоря уже об эффективности такого способа. Вот архитектура такой обычной (неглубой) нейронной сети.

Потом все же прислушались к тому, как выделяет признаки мозг, а делает он это строго иерархично, и тоже решили извлекать из картинок иерархичную структуру. Для этого необходимо было добавить больше скрытых слоев (слоев, которые находятся между входом и выходом; грубо говоря, этапов преобразования информации) в нейронную сеть. Хотя решили так делать практически сразу, как изобрели нейронки, но тогда успешно обучались сети только с одним скрытом слоем. Т.е. в принципе глубокие сети существуют примерно столько же, сколько обычные, просто мы не могли их обучить. Что же поменялось?

В 2006 году сразу несколько независимых исследователей решили эту проблему (к тому же аппаратные мощности развились уже достаточно, появились достаточно мощные видеокарты). Эти исследователи: Джеффри Хинтон (и его коллега Руслан Салахутидинов) с техникой предварительного обучения каждого слоя нейросети ограниченной машиной Больцмана (простите меня за эти термины...), Ян Лекун с сверточными нейронными сетями и Йошуая Бенджио с каскадными автокодировщиками. Первые два сразу же были рекрутированы Google и Facebook, соответственно. Вот две лекции: одна — Хинтона , другая — Лякуна , в которых они и рассказывают, что такое глубокое обучение. Лучше их об этом не расскажет никто. Ещё одна классная лекция Шмидхубера про развитие глубокого обучения, тоже одного из столпов этой науки. А у Хинтона ещё есть прекрасный курс на курсере по нейронкам.

На что способны глубокие нейронные сети сейчас? Они способны распознавать и описывать объекты, можно сказать «понимают» что это. Речь идет о распознавании смыслов.

Просто посмотрите это видео распознавания того, что видит камера, в реальном времени.

Как я уже сказал, технологии глубокого обучения — это целая группа технологий и решений. Несколько из них я уже перечислил абзацем выше, другой пример — это рекуррентные сети, которые как раз используются в видео выше для описания того, что видит сеть. Но самый популярный представитель технологий данного класса — это все-таки сверточные нейронные сети ЛяКуна. Они построены по аналогии с принципами работы зрительной коры мозга кошки, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные — реакция которых связана с активацией определенного набора простых клеток. Хотя, честно говоря, сам ЛяКун не ориентировался на биологию, он решал конкретную задачу (смотрите его лекции), а потом так совпало.

Если совсем просто, то сверточные сети — это такие сети, где основным структурным элементом обучения является группа (сочетание) нейронов (обычно квадрат 3×3,10×10 и т.д.), а не один. И на каждом уровне сети обучаются десятки таких групп. Сеть находит такие сочетания нейронов, которые максимизируют информацию об изображении. На первом уровне сеть извлекает самые базовые, структурно простые элементы картинки — можно сказать, строительные единицы: границы, штрихи, отрезки, контрасты. Повыше — уже устойчивые комбинации элементов первого уровня, и так далее вверх по цепочке. Хочу ещё раз отдельно подчеркнуть главную особенность глубокого обучения: сети сами формируют эти элементы и решают, какие из них более важный, а какие — нет. Это важно, так как в области машинного обучения, создание признаков — является ключевым и сейчас мы переходим на этап, когда компьютер сам учится создавать и отбирать признаки. Машина сама выделяет иерархию информативных признаков.

Итак, в процессе обучения (просмотра сотен картинок) сверточная сеть формирует иерархию признаков различного уровня глубины. Вот на первом уровне, они могут выделить, например, такие элементы (отражая контрастность, угол, границу и т.д.).


На втором уровне — это уже будет элемент из элементов первого уровня. На третьем — из второго. Надо понимать, что данная картинка — просто демонстрация. Сейчас в промышленной применение, такие сети имеют от 10 до 30 слоев (уровней).

После того, как такая сеть обучилась — мы можем её использовать для классификации. Подав на вход какое-то изображение, группы нейронов первого слоя пробегаются по изображению, активируясь в тех местах, где есть соответствующий конкретному элементу элемент картинки. Т.е. эта сеть разбирает картинку на части — сначала на черточки, штрихи, углы наклона, потом более сложные части и в конце она приходит к выводу, что картинка из такого рода комбинации базовых элементов — это лицо.

Подробнее про сверточные сети —

Грядущая революция умных роботов предсказывалась каждые десять лет начиная с 1950-х годов. Тем не менее, она так и не произошла. Прогресс в области искусственного интеллекта происходил неуверенно, порою скучно, неся многим энтузиастам разочарование. Видимые успехи - компьютер Deep Blue, созданный в середине 1990-х IBM и обыгравший в 1997 году Гарри Каспарова в шахматы, или появление в конце 1990-х электронного переводчика - были скорее результатом «грубых» расчетов, чем переносом механизмов человеческого восприятия на процессы компьютерных вычислений.

Однако история разочарований и провалов теперь резко меняется. Всего десять лет назад алгоритмы компьютерного зрения и распознавания предметов могли идентифицировать шар или параллелепипед на простом фоне. Теперь они могут различать человеческие лица так же хорошо, как это могут делать люди, даже на сложном, естественном фоне. Полгода назад Google выпустил приложение для смартфонов, способное переводить текст с более чем 20-ти иностранных языков, считывая слова с фотографий, дорожных знаков или рукописного текста!

Все это стало возможным после того, как выяснилось, что некоторые старые идеи в области нейронных сетей , если их незначительно видоизменить, добавив «жизни», т.е. спроецировав детали человеческого и животного восприятия, могут дать ошеломляющий результат, которого никто и не ожидал. В этот раз революция искусственного разума кажется действительно реальной.

Исследования нейронных сетей в области машинного обучения в большинстве случаев были всегда посвящены поиску новых методик распознавания различных типов данных. Так, компьютер, подключенный к камере, должен, используя алгоритм распознавания изображений, суметь различить на картинке плохого качества человеческое лицо, чашку чая или собаку. Исторически, однако, использование нейронных сетей для этих целей сопровождалось существенными трудностями. Даже незначительный успех требовал человеческого вмешательства - люди помогали программе определить важные особенности изображения, такие как границы изображения или простые геометрические фигуры. Существующие алгоритмы не могли сами научиться делать это.

Положение дел резко изменилось благодаря созданию так называемых нейронных сетей с глубинным обучением , которые теперь могут проанализировать изображение почти так же эффективно, как человек. Такие нейронные сети используют изображение плохого качества как входные данные для «нейронов» первого уровня, который затем передает «картинку» через нелинейные связи нейронам следующего уровня. После определенной тренировки, «нейроны» более высоких уровней могут применять для распознавания более абстрактные аспекты изображения. Например, они могут использовать такие детали, как границы изображения или особенности его расположения в пространстве. Поразительно, но такие сети способны научиться оценивать наиболее важные особенности изображения без помощи человека!

Замечательным примером использования нейронных сетей с глубинным обучением является распознавание одинаковых объектов, сфотографированных под разными углами или в разных позах (если речь идет о человеке или о животном). Алгоритмы, использующие попиксельное сканирование, «думают» что перед ними два разных изображения, тогда как «умные» нейронные сети «понимают», что перед ними тот же самый объект. И наоборот - изображения двух собак разных пород, сфотографированных в одинаковой позе, прежними алгоритмами могли восприниматься как фотографии одной и той же собаки. Нейронные сети с глубинным обучением могут выявить такие детали изображений, которые помогут им различить животных.

Совмещение методик глубинного обучения, передовых знаний нейронауки и мощностей современных компьютеров открывает для искусственного интеллекта перспективы, которые мы даже не в силах пока оценить. Правда уже очевидно, что разум может иметь не только биологическую природу.

С появления термина «глубокое обучение» прошло уже больше 20 лет, но широко заговорили о нем только недавно. Кратко объясняем, почему так получилось, что такое deep learning, чем оно отличается от машинного обучения и почему вам надо об этом знать.

  • Что это такое?

    Глубокое обучение - это ветвь развития машинного обучения, где используется модель, вдохновленная устройством мозга - взаимодействием нейронов.

    Сам термин появился еще в 1980-х, но до 2012 года для реализации этой технологии не хватало мощностей и на нее почти никто не обращал внимание. После серии статей известных ученых, публикаций в научных изданиях технология быстро стала популярной и получила внимание крупных медиа, - первым из мировых СМИ об этом написал The New York Times. Одним из поводов для материала стала научная работа специалистов из университетов Торонто Алекса Крижевского, Ильи Сатскевера и Джеффа Хинтона. Они описали и проанализировали результаты конкурса распознавания изображений ImageNet, где с большим отрывом победила их нейросеть, обученная с помощью deep learning, - система определила 85% объектов. С тех пор в конкурсе побеждала только глубокая нейросеть

  • Погодите, а что такое машинное обучение?

    Это подобласть искусственного интеллекта и термин - им описывают методы построения алгоритмов, которые учатся на своем опыте, без написания специальной программы. То есть человеку в этом случае не надо объяснять машине, как решить задачу, она находит ответ сама, из данных, которые ей предоставлены. К примеру, если мы хотим, чтобы алгоритм определял лица, мы должны показать ему десять тысяч разных лиц, отметить, где именно находится лицо, и тогда программа научится определять его самостоятельно.

    Обучаться машина может как с помощью учителя, когда он помечает для машины правильные ответы, так и без него. Но результаты лучше при обучении с учителем. Каждый раз, когда происходит обработка данных, система становится точнее.

  • А глубокое обучение как работает?

    Оно имитирует абстрактное мышление человека и умеет обобщать. Например, нейросеть, обученная машинным способом, плохо распознает рукописные буквы - и чтобы она не путалась в различных вариантах написания, все они должны быть в нее загружены.

    Глубокое обучение же используется в случае работы с многослойными искусственными нейронными сетями и сможет справиться с этой задачей.

    «Есть три термина, которые в последнее время часто используют почти взаимозаменяемо: искусственный интеллект, машинное обучение и глубокое обучение. Однако на самом деле это „вложенные“ термины: искусственный интеллект - это всё что угодно, что может помочь компьютеру выполнять человеческие задачи; машинное обучение - это раздел ИИ, в котором программы не просто решают задачи, а обучаются на основе имеющегося у них опыта, а глубокое обучение - это раздел машинного обучения, изучающий глубокие нейронные сети.

    Проще говоря: 1. если вы написали программу, играющую в шахматы, - это искусственный интеллект; 2. если она при этом обучается на базе партий гроссмейстеров или играя против самой себя - это машинное обучение; 3. а если обучается у неё при этом не что-нибудь, а глубокая нейронная сеть, - это глубокое обучение» .

  • Как работает глубокое обучение?

    Возьмем простой пример - мы покажем нейросети фотографии, на которых изображены мальчик и девочка. На первом слое нейроны реагируют на простые визуальные образы - например перепады яркости. На втором - более сложные: углы, окружности. К третьему слою нейроны способны реагировать на надписи и человеческие лица. К каждому следующему слою определяемые образы будут сложнее. Нейронная сеть сама определяет, какие визуальные элементы ей интересны для решения этой задачи, и ранжирует их по степени важности, чтобы в дальнейшем лучше понимать, что изображено на фотографии.

  • И что с помощью него уже разработали?

    Больше всего проектов с глубоким обучением применяется в распознавании фотографии или аудио, диагностике заболеваний. Например, оно уже используется в переводах Google с изображения: технология Deep Learning позволяет определить, есть ли на картинке буквы, а затем переводит их. Другой проект, который работает с фото, - система распознавания лиц под названием DeepFace. Она умеет распознавать человеческие лица с точностью 97,25% - примерно с той же точностью, что и человек.

    В 2016 году Google выпустил WaveNet - систему, которая может имитировать человеческую речь. Для этого компания загрузила в систему миллионы минут записанных голосовых запросов, которые использовались в проекте OK Google, и после изучения, нейросеть смогла сама составить предложения с правильными ударениями, акцентом и без нелогичных пауз.

    При этом глубокое обучение может семантически сегментировать изображение или видео - то есть не просто обозначать, что на картинке есть объект, но и идеально выделить его контуры. Эта технология используется в беспилотных автомобилях, которые определяют, есть ли помехи на дороге, разметку и считывают информацию с дорожных знаков, чтобы избежать аварий. Нейросеть также используют в медицине - чтобы определять диабетическую ретинопатию по фотографиям глаз пациентов например. Министерство здравоохранения США уже разрешило использовать эту технологию в государственных клиниках.

  • А почему глубинное обучение не начали внедрять раньше?

    Раньше это было затратно, сложно и долго - нужны были мощные графические процессоры, видеокарты и объемы памяти. Бум глубинного обучения как раз связан с широким распространением графических процессоров, которые ускоряют и удешевляют вычисления, практически неограниченные возможности хранения данных и развитие технологии «больших данных».

  • Это прорывная технология, она все поменяет?

    Об этом сложно сказать точно, мнения разнятся. С одной стороны, Google, Facebook и другие крупные компании уже вложили миллиарды долларов и настроены оптимистично. По их мнению, нейросети с глубинным обучением способны поменять технологическое устройство мира. Один из главных специалистов по машинному обучению - Эндрю Ынг - говорит: «Если человек может выполнить задачу в уме за секунду, скорее всего, в ближайшее время эта задача будет автоматизирована». Ынг называет машинное обучение «новым электричеством» - это техническая революция, и компании, которые ее проигнорируют, очень быстро обнаружат себя безнадежно отставшими от конкурентов.

    С другой стороны, есть и скептики: они считают, что глубокое обучение - это модное слово или ребрендинг нейронных сетей. К примеру, старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов считает, что этот алгоритм - лишь один из вариантов (и при этом не лучший) обучения нейросети, который быстро подхватили массовые издания и о которых теперь знают все.

    Сергей Николенко, соавтор книги «Глубокое обучение»: «История искусственного интеллекта уже знала две „зимы“, когда за волной хайпа и завышенных ожиданий следовало разочарование. Оба раза, кстати, это было связано с нейронными сетями. Сначала в конце 1950-х решили, что перцептрон Розенблатта тут же приведёт к машинному переводу и осознающим себя компьютерам; но, конечно, не получилось из-за ограниченности железа, данных и отсутствия подходящих моделей.

    А в конце 1980-х ту же ошибку совершили, когда разобрались, как обучать любые архитектуры нейронных сетей. Показалось, что вот он, золотой ключик, открывающий любые двери. Это уже был не такой уж наивный вывод: действительно, если взять нейронную сеть из конца 1980-х, механически сделать её больше (увеличить число нейронов) и обучить на современных наборах данных и современном „железе“, она будет очень даже неплохо работать! Но ни данных, ни „железа“ в то время не хватало, и революцию глубокого обучения пришлось отложить до конца нулевых годов.

    Сейчас мы живём на третьей волне хайпа искусственного интеллекта. Закончится ли она третьей „зимой“ или созданием сильного ИИ - покажет только время».

  • Дізнавалася про бізнес-тренди на масштабній конференції у Києві. Це була насичена інсайтами субота, від якої ми отримали нові знання і знайомства, натхнення та з користю проведений час. На конфі були 4 потоки доповідей для власників бізнесу, ТОП-менеджерів, маркетологів, sales, ейчарів та інших спеціалістів. Одним із спікерів був Міністр інфраструктури Володимир Омелян, який розповідав про розвиток галузі, відновлення доріг та аеропортів.

    Доброго всем времени суток уважаемые коллеги iOS-ники, наверняка каждый из вас работал с сетью и занимался парсингом данных c JSON. Для этого процесса есть куча библиотек, всевозможных инструментов которые можно юзать. Некоторые из них сложные, а некоторые простые. Я и сам очень долго если чесно парсил JSON руками, не доверяя этот процес каким-то сторонним библиотекам и в этом были свои плюсы.

    9 сентября 2014 года в ходе очередной презентации, компания Apple представила собственную систему мобильных платежей — Apple Pay.

    С помощью платежной системы Apple Pay пользователи iPhone 6 и iPhone 6+, а также владельцы новейших версий Apple Watch могут совершать покупки онлайн, пользоваться дополнительными преимуществами apple pay для мобильных приложений и совершать платежи при помощи технологии NFC (Near Field Communication). Для авторизации платежей используются технологии Touch ID или Face ID.

    Технологии не стоят на месте, и процессы разработки движутся вместе с ними. Если раньше компании работали по модели «Waterfall», то сейчас, например, все стремятся внедрить «Scrum». Эволюция происходит и в сфере предоставления услуг по разработке программного обеспечения. Раньше компании предоставляли клиентам качественную разработку в рамках бюджета, останавливаясь на этом, сейчас же они стремятся обеспечить максимальную пользу для клиента и его бизнеса, предоставляя свою экспертизу.

    За последние несколько лет появилось столько хороших шрифтов, в том числе бесплатных, что мы решили написать продолжение нашей для дизайнеров.

    Каждый дизайнер имеет набор любимых шрифтов для работы, с которыми ему привычно работать и которые отражают его графический стиль. Дизайнеры говорят «Хороших шрифтов много не бывает», но сейчас можно смело представить ситуацию когда этот набор состоит только из бесплатных шрифтов.

    Как часто проджект менеджеры оказываются между молотом и наковальней, когда пытаются найти баланс между всеми требованиями и сроками заказчика и ментальным здоровьем всей команды? Сколько нюансов нужно учесть, чтобы по обе стороны ответственности был мир и порядок? Как понять хороший ты менеджер или тебе срочно стоит подтягиваться по всем фронтам? Как определить, в каких аспектах именно ты, как ПМ, отстаешь, а где ты молодец и умничка? Именно об этом была очередная конференция Code’n’Coffee.

    Технология распознавания образов все активнее входит в наш обиход. Компании и учреждения используют ее для решения самых разных задач: от обеспечения безопасности до исследования удовлетворенности клиентов. Инвестиции в продукты, в основе которых — данная функция, обещают вырасти до 39 миллиардов долларов к 2021 году. Вот лишь несколько примеров, как распознавание образов используется в разных сферах.

    И частях, это руководство предназначено для всех, кто интересуется машинным обучением, но не знает, с чего начать. Содержание статей рассчитано на широкую аудиторию и будет достаточно поверхностным. Но разве это кого-то волнует? Чем больше людей заинтересуются машинным обучением, тем лучше.

    Распознавание объектов с помощью глубокого обучения

    Возможно, вы уже видели этот знаменитый комикс xkcd . Шутка в том, что любой 3-летний ребенок может распознать фотографию птицы, но заставить это сделать компьютер заняло у самых лучших компьютерных специалистов более 50 лет.В последние несколько лет мы наконец-то нашли хороший подход к распознаванию объектов с использованием глубоких сверточных нейронных сетей . Это звучит как куча выдуманных слов из фантастического романа Уильяма Гибсона, но все станет понятным, когда мы разберем их по очереди.Итак, давайте же сделаем это – напишем программу, распознающую птиц!

    Начнем с простого

    Прежде чем научиться распознавать изображения птиц, давайте узнаем, как распознать что-то гораздо более простое – рукописную цифру «8».