Взаимосвязь энтропии и информации

Человечество в прошлом не испытывало потребностей в количественном измерении информации. Такая потребность возникла в связи с развитием средств коммуникаций, измерительной техники, компьютерных систем.

Первую количественную метрику предложил Хартли в 1928 году и назвал её информационной емкостью.

Рассмотрим некоторую ячейку из n реле. Считая, что каждое реле может хранить два состояния m = 2, вся ячейка может содержать N = 2 n состояний. Хартли ввел двоичную логарифмическую меру, позволяющую измерять информацию в двоичных единицах – битах. Один бит – это количество информации, которое может храниться в элементарной ячейке на два состояния: . В ячейке на состояний хранится . Основание логарифма определяет размерность единиц измерения информации. Поскольку используют двоичные единицы – биты, основание логарифма опускают. Двоичная единица информации «бит» произошла от «сжатия» английских слов binary digit – двоичная единица.

Такая мера является аддитивной , она позволяет осуществлятьсложение информации в разных ячейках при объединении их в одну.

Мера Хартли (структурная метрика информации) не отражала вероятностного характера информации и не могла быть использована для оценки информационных свойств источников сообщений. В 1948 году Шенноном была предложена статистическая, т.е. вероятностная мера.

Пусть дискретный источник выдает сообщение а , принадлежащее некоторому конечному ансамблю А (). Определим количество информации, содержащееся в этом сообщении, используя три исходных естественных (очевидных) требования:

1) количество информации должно быть аддитивной величиной, т. е. в двух независимых сообщениях количество информации определяется как сумма количеств информации в каждом из них;

2) количество информации в сообщении о достоверном событии равно 0;

3) количество информации не должно зависеть от качественного содержания сообщения (степени важности, возможных последствий его передачи, эмоциональной окраски и т. п.).

В общем случае сообщение а из ансамбля А характеризуется вероятностью , что источник формирует или посылает это сообщение, т. е. количество информации I (a ), содержащейся в сообщении а , должно быть функцией от вероятности .

,

где – вероятности формирования сообщения а 1 и а 2 соответственно.

Общее количество информации I (a 1 , а 2), содержащейся в этих двух сообщениях, согласно условию аддитивности определяется как сумма количеств информации в каждом из них:



Таким образом, надо найти функцию от вероятности такую, чтобы при перемножении двух аргументов значения функции складывались. Этому условию удовлетворяет только логарифмическая функция

,

где k – произвольный коэффициент.

Логарифм, вообще говоря, может быть взят по любому основанию. Эта формула может быть использована для определения количества информации, содержащейся в сообщении а i . Эта формула удовлетворяет и требованию 2): в случае достоверного события вероятность сообщения = 1. Тогда количество информации согласно полученной формуле:

Поскольку < 1, и следовательно, log ≤ 0, то, чтобы измерять количество информации неотрицательными числами, выбираем значение коэффициента k = –1:

.

Основание логарифма чаще всего в формуле для определения количества информации выбирают равным двум. Получаемая при этом единица информации носит название двоичная единица, или бит.

Такая единица наиболее удобна потому, что в современной вычислительной технике, технике связи широко используются двоичные коды, двоичные дискретные устройства.

Пусть дискретный источник сообщений вырабатывает полный ансамбль сообщений , где – вероятность -го сообщения. Этот источник может быть охарактеризован средним количеством информации, приходящимся на одно сообщение:

.

Эту величину Шеннон назвал энтропией источника . Понятие энтропии (от греческого «эн-тропе» – обращение) существовало и до Шеннона и распространилось на ряд областей знания. В термодинамике энтропия означает вероятность теплового состояния вещества, в математике – степень неопределенности ситуации или задачи, в информатике она характеризует способность источника отдавать информацию . Количество информации, которое переносится одним сообщением источника . Эта мера вытекает из меры Хартли: и является ее обобщением на случай неравновероятности сообщений. Видно, что чем меньше вероятность сообщения, тем большее количество информации оно несет. Мера Шеннона также аддитивна.

И количество информации I в сообщении и энтропия источника H измеряются в одних единицах – в битах, но эти величины различны. Энтропия H источника определяет способность источника производить информацию; при наличии достаточной статистики она может быть вычислена априори, до получения сообщений. Получение информации I снимает часть неопределенности источника, уменьшает его энтропию. Это уменьшение энтропии происходит после (апостериори) получения сообщения, т.е. I определяется апостериорно. Таким образом, количество информации может рассматриваться как противоположность энтропии , в этом проявляется диалектический закон единства и борьбы противоположностей.

Энтропия источника дискретных сообщений обладает следующими свойствами:

1. Энтропия положительна.

2. Энтропия детерминированных сообщений равна нулю. Если одно из сообщений источника достоверно, т.е. его вероятность равна 1, то вероятности других сообщений равны нулю.

3. Энтропия максимальна, если сообщения источника равновероятны.

.

4. В случае равновероятных сообщений энтропия возрастает с увеличением числа сообщений.

5. Энтропия источника бинарных (двоичных) сообщений изменяется от нуля до единицы в зависимости от вероятности сообщений и имеет максимум при . В этом случае мера Шеннона совпадает с мерой Хартли. Источник с энтропией в 1 бит полностью согласован с каналом, например, реле, имеющим информационную емкость в 1 бит. При неравновероятности сообщений канал будет недогружен. Зависимость энтропии от вероятности для бинарного источника иногда называют функцией Шеннона (рис. 40). При большом числе сообщений источника и при равновероятности сообщений они могут быть переданы с помощью равномерного двоичного кода. Так, восемь сообщений кодируются: 000, 001, 010, 011, 100, 101, 110, 111. Энтропия источника равна трем: это совпадает со средним числом символов на сообщение. Иногда используется понятие удельной энтропии , это – энтропия, приходящаяся на один символ. Данный источник имеет энтропию 3 бита на сообщение, можно также сказать, что его энтропия 1 бит/символ. Такая оценка удобна при сравнении различных источников.

Рассмотрим, как можно использовать введенные понятия при вскрытии неопределенности источника.

Пример 1. Пусть, надо отгадать задуманное число от 1 до 32, задавая источнику двоичные вопросы. Так как задуманное число с равной вероятностью может быть любым, энтропия источника Н = log 32 = 5 бит/число. Задаем первый вопрос: Число в нижней половине? Ответ: да. Количество полученной от источника информации I = 1 бит. Энтропия источника уменьшилась и стала Н = 4 бит/число. Задавая подобный вопрос еще раз и получая любой ответ, мы сужаем диапазон поиска вдвое и уменьшаем неопределенность источника на один бит. Таких вопросов и ответов будет ровно пять, после чего энтропия источника будет равна нулю.

Пример 2. Предположим, среди 25 монет одна фальшивая, более легкая. Какое минимальное число взвешиваний на рычажных весах необходимо сделать для нахождения фальшивой монеты?

Прежде всего определяем энтропию источника. Так как весы могут быть в трех состояниях, каждое взвешивание уменьшает энтропию источника на одну троичную единицу информации. Поэтому монеты следует разделить на три примерно равные кучки: 8, 8 и 9 монет. Положив на чашки весов одинаковое число монет 8 и 8, определяем, есть ли среди них фальшивая и, если есть, то в какой чашке. Предположим, что первая кучка легче второй. Значит, монета здесь. Эту кучку делим на три части 3, 3 и 2. Взвешиваем одинаковые части. Допустим, они равны. Значит, искомая монета находится среди двух оставшихся. При третьем взвешивании монета найдена.

Число характеризует число кодовых признаков, используемых при передаче сообщений. Это число определяет алфавит источника. При удельная энтропия источника возрастает. В принципе, такой источник более эффективен, он позволяет передавать больше информации в единицу времени. Так, если алфавит источника равен 32 буквам, то энтропия источника – 5 бит/букву; если в китайском языке используется около 2000 иероглифов, то энтропия такого источника – 11 бит/иероглиф, т.е. 11 бит/символ. Ясно, что использование большого алфавита приводит к техническим сложностям, отсюда, наибольшее распространение в технике получил двоичный алфавит с буквами или символами 0 и 1. Источник, работающий на таком алфавите, не может иметь энтропию больше 1 бит/символ.

Количество и качество информации помимо статистической теории могут характеризоваться также терминами структурной теории, рассматривающей строение массивов информации, а также семантической теории, учитывающей целесообразность, полезность и ценность информации.

Л Е К Ц И Я № 29

Тема:

Текст лекции по дисциплине: «Теория электрической связи»

Г. Калининград 2012 г.

Текст лекции № 30

по дисциплине: «Теория электрической связи»

«Основные понятия теории информации»

Введение

В каналах связи передаётся информация, преобразованная в сигналы.

Для согласования объёма информации с каналом необходимо научиться определять количество информации, подлежащее передаче. Без решения этого вопроса невозможно строить современные системы передачи информации.

Под термином “информация” понимают различные сведения, которые поступают к получателю. В более строгой форме определение информации следующее:

Информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования.

В дальнейшем нас будут интересовать лишь вопросы, связанные с информацией как объектом передачи.

Сообщение является формой представления информации.

Одно и то же сведение может быть представлено в различной форме. Например, передача голосового сообщения по телефону или изображения по телевизионному каналу. В этом случае мы имеем дело с информацией, представленной в непрерывном виде (непрерывное сообщение ). Будем считать, что это сообщение вырабатывается источником непрерывных сообщений. Либо мы передаем сообщение по телеграфному каналу, в этом случае речь идет об информации, представленной в дискретном виде (дискретное сообщение ). Это сообщение вырабатывается источником дискретных сообщений.

В технических устройствах и системах прием, обработка и передача информации осуществляется с помощью сигналов .



Сигнал (от латинского signum знак) представляет собой любой процесс, несущий информацию.

Сигналы отражают физические характеристики изучаемых объектов и процессов. Посредством сигналов информация может передаваться на короткие и большие расстояния. Информация в виде сигнала может различным образом перерабатываться, сохраняться, уничтожаться и т. п.

Различают несколько видов сигналов: звуковые , которые можно услышать при работе милицейской сирены; световые , передающие информацию от пульта дистанционного управления к телевизору, а также электрические.

Основное отличие дискретного и непрерывного источников состоит в следующем. Множество всех различных сообщений, вырабатываемых дискретным источником всегда конечно. Поэтому на конечном отрезке времени количество символов дискретного источника так же является конечным. В то же время число возможных различных значений звукового давления (или напряжения в телефонной линии), измеренное при разговоре, даже на конечном отрезке времени, будет бесконечным.

В нашем курсе мы будем рассматривать вопросы передачи именно дискретных сообщений.

Информация, содержащаяся в сообщении, передается от источника сообщений к получателю по каналу передачи дискретных сообщений (ПДС).

Рис.1. Тракт передачи дискретных сообщений

Вид передаваемого сигнала определяет тип канала связи.

Понятие информации, постановка задачи её определения.

Какое количество информации содержится, к примеру, в тексте романа «Война и мир», во фресках Рафаэля или в генетическом коде человека? Возможно ли, объективно измерить количество информации?

Определить понятие «количество информации» довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к «объемному» подходу .

Вероятностный подход

Этот подход заключается в том, что понятие «количество информации», основывается на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле ее новизны или, иначе, уменьшения неопределенности наших знаний об объекте.

При этом понятие «информация » связывается с вероятностью осуществления того или иного события.

Американский инженер Р. Хартли (1928 г.) процесс получения информации рассматривал как выбор одного сообщения из конечного заранее заданного множества из равновероятных сообщений, а количество информации , содержащееся в выбранном сообщении, определял как двоичный логарифм .

Формула Хартли:

Ту же формулу можно представить иначе:

; (1.2)

Допустим, нужно угадать одно число из набора натуральных целых чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: . То есть сообщение о верно угаданном числе содержит количество информации, приблизительно равное .

Приведем примеры равновероятных сообщений: при бросании монеты: «выпала решка», «выпал орел»; на странице книги: «количество букв четное», «количество букв нечетное».

Определим теперь, являются ли равновероятными сообщения «первой выйдет из дверей здания женщина» и «первым выйдет из дверей здания мужчина». Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский ученый Клод Шеннон предложил в 1948г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Формула Шеннона:

Если вероятности равны, то каждая из них равна , и формула Шеннона превращается в формулу Хартли.

Анализ формулы показывает, что чем выше вероятность события, тем меньшее количество информации возникает после его осуществления, и наоборот.

Если вероятность равна (т.е. событие достоверно), количество информации равно . Если вероятность свершения или не свершения, какого либо события одинакова, т.е. равна , то количество информации, которое несет с собой это событие, равно .

Это – единица измерения информации. Она получила наименование бит.

Если событие имеет равновероятных исходов, как при подбрасывании монеты или при игре в кости, то вероятность конкретного исхода равна , и формула Шеннона приобретает вид: .

В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из букв и знака «пробел» для разделения слов. По формуле Хартли:

; (1.4)

Однако, в словах русского языка (равно как и в словах других языков) различные буквы встречаются неодинаково часто. Ниже приведена таблица вероятностей частоты употребления различных знаков русского алфавита, полученная на основе анализа очень больших по объему текстов.

Воспользуемся для подсчета формулой Шеннона; бит. Полученное значение , как и можно было предположить, меньше вычисленного ранее. Величина ,вычисляемая по формуле Хартли, является максимальным количеством информации, которое могло бы приходиться на один знак.

Таблица . Частотность букв русского языка

i Символ P(i) i Символ P(i) i Символ P(i)
Пробел 0,175 К 0,028 Г 0.012
0,090 М 0,026 Ч 0,012
Е 0,072 Д 0,025 И 0,010
Ё 0,072 П 0,023 X 0,009
А 0,062 У 0,021 Ж 0,007
И 0,062 Я 0,018 Ю 0,006
Т 0,053 Ы 0,016 Ш 0.006
Н 0,053 З 0.016 Ц 0,004
С 0,045 Ь 0,014 Щ 0,003
Р 0,040 Ъ 0,014 Э 0,003
В 0,038 Б 0,014 Ф 0,002
Л 0,035

Запомните комбинацию из наиболее повторяющихся букв русского алфавита СЕНОВАЛИТР. Эти знания использовали дешифровальщики при вскрытии тайных переписок в различные исторические периоды.

Аналогичные подсчеты можно провести и для других языков, например, использующих латинский алфавит – английского, немецкого, французского и др. ( различных букв и «пробел»).

Рассмотрим алфавит, состоящий из двух знаков и . Если считать, что со знаками и в двоичном алфавите связаны одинаковые вероятности их появления , то количество информации на один знак при двоичном кодировании будет равно:

; (1.5)

Таким образом бит можно также определить как количество информации, которое содержит один разряд двоичного числа (отсюда название «бит»: b inary digit - двоичный разряд). Другими словами количество информации (в битах), заключенное в двоичном слове, равно числу двоичных знаков в нем.

Один бит - это количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника состоит из двух равновероятных символов.

Количество информации, равное битам, называется байтом.

В восьми разрядах можно записать различных целых двоичных чисел от до . Этого вполне достаточно для представления в двоичной форме информации об алфавитах Русском и Латинском, всех знаках препинания, цифрах от до , арифметических и алгебраических действиях, а так же специальных символов (например § @ $).

Отметим, что создатели компьютеров отдают предпочтение именно двоичной системе счисления потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: некоторый физический элемент, имеющий два различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т.п.

6.2. Энтропия источника дискретных сообщений

Энтропия источника независимых сообщений. До сих пор определялось количество информации, содержащееся в отдельных сообщениях. Вместе с тем во многих случаях, когда требуется согласовать канал с источником сообщений, таких сведений оказывается недостаточно. Возникает потребность. в характеристиках, которые, бы позволяли оценивать информационные свойства источника сообщений в целом. Одной из важных характеристик такого рода является среднее количество информации, приходящееся на одно сообщение.

В простейшем случае, когда все сообщения равновероятны, количество информации в каждом из них одинаково и, как было показано выше, определяется выражением (6.3). При этом среднее количество информации равно log т. Следовательно, при равновероятных независимых сообщениях информационные свойства источника зависят только от числа сообщений в ансамбле т.

Однако в реальных условиях сообщения, как правило, имеют разную вероятность. Так, буквы алфавита О, Е, А встречаются в тексте сравнительно часто, а буквы Щ, Ы, Ъ - редко. Поэтому знание числа сообщений т в ансамбле является недостаточным, необходимо иметь сведения о вероятностях каждого сообщения: .

Так как вероятности сообщений неодинаковы, то они несут различное количество информации J (a )= - logP (a ). Менее вероятные сообщения несут большее количество информации и наоборот. Среднее количество информации, приходящееся на одно сообщение источника, определяется как математическое ожидание J (a ):

Величину Н(а) называется энтропией. Этот термин заимствован из термодинамики, где имеется аналогичное по своей форме выражение, характеризующее неопределенность состояния физической системы. В теории информации энтропия Н(а) также характеризует неопределенность ситуации до передачи сообщения, поскольку заранее неизвестно, какое из сообщений ансамбля источника будет передано. Чем больше энтропия, тем сильнее неопределенность и тем большую информацию в среднем несет одно сообщение источника.

В качестве примера вычислим энтропию источника сообщений, который характеризуется ансамблем, состоящим из двух сообщений и с вероятностями и . На основании (6.6) энтропия такого источника будет равна:

Рис. 6.1. Зависимость энтропии от вероятности р

Зависимость Н(а) от р показана на рис. 6.1. Максимум имеет место при р=1/2 , т. е. когда ситуация является наиболее неопределенной. При р=1 или р = 0 , что соответствует передаче одного из сообщений или , неопределенность отсутствует. В этих случаях энтропия Н(а) равна нулю.

Среднее количество информации, содержащееся в последовательности из п сообщений, равно:

Отсюда следует, что количество передаваемой информации можно увеличить не только за счет увеличения числа сообщений, но и путем повышения энтропии источника, т. е. информационной емкости его сообщений.

Обобщая полученные выше результаты, сформулируем следующие основные свойства энтропии источника независимых сообщений (6.6):

Энтропия- величина всегда положительная, так как

При равновероятных сообщениях, когда , энтропия максимальна и равна:

(6.7)

Энтропия равняется нулю лишь в том случае, когда все вероятности Р(a ) равны нулю, за исключением одной, величина которой,равна единице;

Энтропия нескольких независимых источников равна сумме энтропии этих источников .

Энтропия источника зависимых сообщений. Рассмотренные выше источники независимых дискретных сообщений являются простейшим типом источников. В реальных условиях картина значительно усложняется из-за наличия статистических связей между сообщениями. Примерам может быть обычный текст, где появление той или иной буквы зависит от предыдущих буквенных сочетаний. Так, например, после сочетания ЧТ вероятность следования гласных букв О, Е, И больше, чем согласных.

Статистическая связь ожидаемого сообщения с предыдущим сообщением количественно оценивается совместной вероятностью или условной вероятностью , которая выражает вероятность появления сообщения при условии, что до этого было передано сообщение а Количество информации, содержащееся в сообщении , при условии, что известно предыдущее сообщение а согласно (6.1) будет равно:. Среднее количество информации при этом определяется условной энтропией , которая вычисляется как математическое ожидание информации по всем возможным сообщениям а и . Учитывая соотношение (2.25), .получаем

В тех случаях, когда связь распространяется на три сообщения , условная энтропия источника определяется аналогичным соотношением

В общем случае n зависимых сообщений

Важным свойством условной энтропии источника зависимых сообщений является то, что при неизменном количестве сообщений в ансамбле источника его энтропия уменьшается с увеличением числа сообщений, между которыми существует статистическая взаимосвязь. В соответствии с этим свойством, а также свойством энтропии источника независимых сообщений можно записать неравенства

Таким образом, наличие статистических связей между сообщениями всегда приводит к уменьшению количества информации, приходящегося в среднем на одно сообщение.

Избыточность источника сообщений. Уменьшение энтропии источника с увеличением статистической взаимосвязи (6.11) можно рассматривать как снижение информационной емкости сообщений. Одно и то же сообщение при наличия взаимосвязи содержит в среднем меньше информации, чем при ее отсутствии. Иначе говоря, если источник создает последовательность сообщений, обладающих статистической связью, и характер этой связи известен, то часть сообщений, выдаваемая источником, является избыточной, так как она может быть восстановлена по известным статистическим связям. Появляется возможность передавать сообщения в сокращенном виде без потери информации, содержащейся в них. Например, при передаче телеграммы мы исключаем из текста союзы, предлоги, знаки препинания, так как они легко восстанавливаются, при чтении телеграммы на основании известных правил построения фраз и слов. и согласно (6.11) является неубывающей функцией п. Для русского языка, например, дв. ед., , , дв. ед. Отсюда на основании (6.12) для русского языка получаем избыточность порядка 50%.

Коэффициент

называется коэффициентом сжатия. Он показывает, до какой величины можно сжать передаваемые сообщения, если устремить избыточность. Источник, обладающий избыточностью, передает излишнее количество сообщений. Это увеличивает продолжительность передачи и снижает эффективность использования канала связи. Сжатие сообщений можно осуществить посредством соответствующего кодирования. Информацию необходимо передавать такими сообщениями, информационная емкость которых используется наиболее полно. Этому условию удовлетворяют равновероятна и независимые сообщения.

Вместе с тем избыточность источника не всегда является отрицательным свойством. Наличие взаимосвязи между буквами текста дает возможность восстанавливать его при искажении отдельных букв, т. е. использовать избыточность для повышения достоверности передачи информации.

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.