«Яндекс» представил новую версию поиска на основе нейронных сетей. Изучаем нейронные сети за четыре шага

Исторически, искусственные нейронные сети за свою уже более чем полувековую историю испытывали как периоды стремительных взлетов и повышенного внимания общества, так и сменявшие их периоды скепсиса и равнодушия. В хорошие времена ученым и инженерам кажется, что наконец-то найдена универсальная технология, способная заменить человека в любых когнитивных задачах. Как грибы после дождя, появляются различные новые модели нейронных сетей, между их авторами, профессиональными учеными-математиками, идут напряженные споры о большей или меньшей степени биологичности предложенных ими моделей. Профессиональные ученые-биологи наблюдают эти дискуссии со стороны, периодически срываясь и восклицая «Да такого же в реальной природе не бывает!» – и без особого эффекта, поскольку нейросетевики-математики слушают биологов, как правило, только тогда, когда факты биологов согласуются с их собственными теориями. Однако, с течением времени, постепенно накапливается пул задач, на которых нейронные сети работают откровенно плохо и энтузиазм людей остывает.

В наши дни нейронные сети снова в зените славы благодаря изобретению метода предобучения «без учителя» на основе Ограниченных Больцмановских Машин (Restricted Bolzmann Machines, RBM), что позволяет обучать глубокие нейронные сети (т.е. с экстра-большим, порядка десятков тысяч, количеством нейронов) и успехам глубоких нейронных сетей в практических задачах распознавания устной речи и изображений . К примеру, распознавание речи в Android реализовано именно на глубоких нейронных сетях. Как долго это продлится и насколько сильно глубокие нейронные сети оправдают возложенные на них ожидания – неизвестно.
Между тем, параллельно всем научным спорам, течениям и тенденциям, отчетливо выделяется сообщество пользователей нейронных сетей – инженеров-программистов-практиков, которых интересует прикладной аспект нейросетей, их способность обучаться на собранных данных и решать задачи распознавания. Со многими практическими задачами классификации и прогнозирования великолепно справляются хорошо проработанные, относительно небольшие модели многослойных персептронов (Multilayer Perceptron, MLP) и сети радиальных базисных функций (Radial Basis Function network, RBF). Эти нейронные сети многократно описаны, я бы посоветовать следующие книжки, в порядке моей личной симпатии к ним: Осовский , Бишоп , Хайкин ; также есть хорошие курсы на Coursera и подобных ресурсах.

Однако, что касается общего подхода использования нейронных сетей на практике, он кардинально отличается от обычного детерминированного девелоперского подхода «запрограммировал, работает – значит, работает всегда». Нейронные сети по своей природе являются вероятностными моделями, и подход к ним должен быть совершенно иной. К сожалению, многие программисты-новички технологий машинного обучения вообще и нейронных сетей в частности делают системные ошибки при работе с ними, разочаровываются и забрасывают это дело. Идея написания настоящего трактата на Хабр возникла после общения с такими разочарованными пользователями нейронных сетей – отличными, опытными, уверенными в себе программистами.

Вот мой список правил и типичных ошибок использования нейронных сетей.

1. Если есть возможность не использовать нейронные сети – не используйте их.
Нейронные сети позволяют решить задачу в случае, если предложить алгоритм путем многократного (или очень многократного) просмотра данных глазами невозможно. Например, если данных много, они нелинейные, зашумленные и/или большой размерности.

2. Сложность нейронных сетей должна быть адекватна сложности задачи.
Современные персональные компьютеры (к примеру, Core i5, 8 GB RAM) позволяют за комфортное время обучать нейронные сети на выборках объемом в десятки тысяч примеров, с размерностью входных данных до сотни. Большие выборки – задача для упомянутых выше глубоких нейронных сетей, которые обучают на многопроцессорных GPU. Эти модели очень интересны, но находятся вне фокуса внимания настоящей хабр-статьи.

3. Данные для обучения должны быть репрезентативными.
Обучающая выборка должна полно и разносторонне представлять описываемый феномен, включать в себя различные возможные ситуации. Хорошо, когда данных много, но это само по себе тоже не всегда помогает. В узких кругах широко распространен анекдот, когда к распознавальщику приходит геолог, выкладывает перед ним кусок минерала и просит разработать по нему систему распознавания такого вещества. «А можно ли еще примеров данных?» - спрашивает распознавальщик. «Конечно!» - отвечает геолог, достает кирку и раскалывает свой кусок минерала еще на несколько штук. Как вы понимаете, проку от такой операции не будет – никакой новой информации такая увеличившаяся выборка в себе не несет.

4. Перемешивайте выборку.
После того, как входные и выходные векторы данных собраны, если измерения независимы между собой – поменяйте порядок следования векторов произвольным образом. Это критично для корректного разделения выборки на Train/Test/Validation и всех методов обучения типа «пример-за-примером» («sample-by-sample»).

5. Нормируйте и центрируйте данные.
Для многослойных персептронов, и для многих других моделей значения входных данных должны лежать в пределах [-1;1]. Перед тем, как подавать их на нейросеть, вычтите из данных среднее и поделите все значения на максимальное значение.

6. Делите выборку на Train, Test и Validation.
Основная ошибка новичков – обеспечить минимальную ошибку работы нейросети на обучающей выборке, попутно адски ее переобучив и затем желать такого же хорошего качества на новых реальных данных. Это особенно легко сделать, если данных мало (или они все «из одного куска»). Результат может очень расстроить: нейросеть максимально подстроится под выборку и потеряет работоспособность на реальных данных. Для того, чтобы контролировать обобщающие способности вашей модели – разделите все данные на три выборки соотношении 70: 20: 10. Обучайтесь на Train, периодически проверяя качество модели на Test. Для финальной непредвзятой оценки – Validation.
Техника кросс-валидации, когда Train и Test несколько раз формируется по очереди произвольным способом из одних и тех же данных, может проявить коварство и дать ложное впечатление о хорошем качестве работы системы – например, если данные взяты из разных источников и это критично. Используйте правильный Validation!

7. Применяйте регуляризацию.
Регуляризация – это техника, которая позволяет избежать переобучения нейросети во время обучения, даже если данных мало. Если вы обнаружили галочку с таким словом, обязательно ее ставьте. Признак переобучившейся нейросети – большие значения весов, порядка сотен и тысяч, такая нейросеть не будет нормально работать на новых, не виденных ранее, данных

8. Не нужно дообучать нейронную сеть в режиме он-лайн.
Идея дообучать нейросеть перманентно все время на новых поступающих данных – сама по себе правильная, в реальных биологических системах все именно так и происходит. Мы учимся каждый день и редко сходим с ума. Тем не менее, для обычных искусственных нейронных сетей на современном этапе технического развития такая практика является рискованной: сеть может переобучиться или подстроиться под самые последние поступившие данные данные – и потеряет свои обобщающие способности. Для того, чтобы систему можно было использовать на практике, нейросеть нужно: 1) обучить, 2) протестировать качество на тестовых и валидационных выборках, 3) выбрать удачный вариант сети, зафиксировать ее веса и 4) использовать обученную нейросеть на практике, веса в процессе использования не менять.

9. Используйте новые алгоритмы обучения: Левенберга-Марквардта, BFGS, Conjugate Gradients и др.
Я глубоко убежден, что реализовать обучение методом обратного распространения ошибки (backpropagation) – святой долг каждого, кто работает с нейронными сетями. Этот метод самый простой, относительно легко программируется и позволяет хорошо изучить процесс обучения нейронных сетей. Между тем, backpropagation был изобретен в начале 70-х и стал популярен в середине 80-х годов прошлого столетия, с тех пор появились более продвинутые методы, которые могут в разы улучшить качество обучения. Лучше используйте их.

10. Обучайте нейронные сети в MATLAB и подобных дружественных средах.
Если вы не ученый, разрабатывающий новые методы обучения нейронных сетей, а программист-практик, я бы не рекомендовал кодировать процедуру обучения нейронных сетей самостоятельно. Существует большое количество программных пакетов, в основном на MATLAB и Python, которые позволяют обучать нейронные сети, при этом контролировать процесс обучения и тестирования, используя удобные средства визуализации и отладки. Пользуйтесь наследием человечества! Мне лично нравится подход «обучение в MATLAB хорошей библиотекой – реализация обученной модели руками», он достаточно мощный и гибкий. Исключение – пакет STATISTICA, который содержит продвинутые методы обучения нейросетей и позволяет генерировать их в виде программного кода на С, удобного для иплементации.

В следующей статье я планирую подробно описать реализованный на основе описанных выше принципов полный промышленный цикл подготовки нейросети, использующейся для задач распознавания в коммерческом программном продукте.

Желаю удачи!

Литература

Hinton G., Deng L., Yu D., Dahl G., Mohamed A., Jaitly N., Senior A., Vanhoucke V., Nguyen P., Sainath T. and Kingsbury B. Deep Neural Networks for Acoustic Modeling in Speech Recognition, IEEE Signal Processing Magazine, Vol. 29, No. 6, 2012, pp. 82 – 97.
Ciresan D., Meier U., Masci J and Schmidhuber J. Multi-column Deep Neural Network for Traffic Sign Classification. Neural Networks, Vol. 34, August 2012, pp. 333 – 338
С. Осовский. Нейронные сети для обработки информации – пер. с польского. М.: Финансы и статистика, 2002. – 344с.
Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006 – 738 p.
С. Хайкин. Нейронные сети: полный курс. Вильямс, 2006.
  • Python ,
  • Машинное обучение ,
  • Поисковые технологии
  • Сегодня Яндекс выложил в open source собственную библиотеку CatBoost, разработанную с учетом многолетнего опыта компании в области машинного обучения. С ее помощью можно эффективно обучать модели на разнородных данных, в том числе таких, которые трудно представить в виде чисел (например, виды облаков или категории товаров). Исходный код, документация, бенчмарки и необходимые инструменты уже опубликованы на GitHub под лицензией Apache 2.0.

    CatBoost – это новый метод машинного обучения, основанный на градиентном бустинге. Он внедряется в Яндексе для решения задач ранжирования, предсказания и построения рекомендаций. Более того, он уже применяется в рамках сотрудничества с Европейской организацией по ядерным исследованиям (CERN) и промышленными клиентами Yandex Data Factory. Так чем же CatBoost отличается от других открытых аналогов? Почему бустинг, а не метод нейронных сетей? Как эта технология связана с уже известным Матрикснетом? И причем здесь котики? Сегодня мы ответим на все эти вопросы.

    Термин «машинное обучение» появился еще в 50-х годах. Этот термин обозначает попытку научить компьютер решать задачи, которые легко даются человеку, но формализовать путь их решения сложно. В результате машинного обучения компьютер может демонстрировать поведение, которое в него не было явно заложено. В современном мире мы сталкиваемся с плодами машинного обучения ежедневно по многу раз, многие из нас сами того не подозревая. Оно используется для построения лент в социальных сетях, списков «похожих товаров» в интернет-магазинах, при выдаче кредитов в банках и определении стоимости страховки. На технологиях машинного обучения работает поиск лиц на фотографиях или многочисленные фотофильтры. Для последних, кстати, обычно используются нейронные сети, и о них пишут так часто, что может сложиться ошибочное мнение, будто бы это «серебряная пуля» для решения задач любой сложности. Но это не так.

    Нейросети или градиентный бустинг

    На самом деле, машинное обучение очень разное: существует большое количество разных методов, и нейросети – лишь один из них. Иллюстрацией этого являются результаты соревнований на платформе Kaggle, где на разных соревнованиях побеждают разные методы, причем на очень многих побеждает градиентный бустинг.

    Нейросети прекрасно решают определенные задачи – например, те, где нужно работать с однородными данными. Из однородных данных состоят, например, изображения, звук или текст. В Яндексе они помогают нам лучше понимать поисковые запросы, ищут похожие картинки в интернете, распознают ваш голос в Навигаторе и многое другое. Но это далеко не все задачи для машинного обучения. Существует целый пласт серьезных вызовов, которые не могут быть решены только нейросетями – им нужен градиентный бустинг. Этот метод незаменим там, где много данных, а их структура неоднородна.

    Например, если вам нужен точный прогноз погоды, где учитывается огромное количество факторов (температура, влажность, данные с радаров, наблюдения пользователей и многие другие). Или если вам нужно качественно ранжировать поисковую выдачу – именно это в свое время и подтолкнуло Яндекс к разработке собственного метода машинного обучения.

    Матрикснет

    Первые поисковые системы были не такими сложными, как сейчас. Фактически сначала был просто поиск слов – сайтов было так мало, что особой конкуренции между ними не было. Потом страниц стало больше, их стало нужно ранжировать. Начали учитываться разные усложнения - частота слов, tf-idf . Затем страниц стало слишком много на любую тему, произошёл первый важный прорыв - начали учитывать ссылки.

    Вскоре интернет стал коммерчески важным, и появилось много жуликов, пытающихся обмануть простые алгоритмы, существовавшие в то время. И произошёл второй важный прорыв - поисковики начали использовать свои знания о поведении пользователей, чтобы понимать, какие страницы хорошие, а какие - нет.

    Лет десять назад человеческого разума перестало хватать на то, чтобы придумывать, как ранжировать документы. Вы, наверное, замечали, что количество найденного почти по любому запросу огромно: сотни тысяч, часто - миллионы результатов. Большая часть из них неинтересные, бесполезные, лишь случайно упоминают слова запроса или вообще являются спамом. Для ответа на ваш запрос нужно мгновенно отобрать из всех найденных результатов десятку лучших. Написать программу, которая делает это с приемлемым качеством, стало не под силу программисту-человеку. Произошёл следующий переход - поисковики стали активно использовать машинное обучение.

    Яндекс еще в 2009 году внедрили собственный метод Матрикснет, основанный на градиентном бустинге. Можно сказать, что ранжированию помогает коллективный разум пользователей и «мудрость толпы ». Информация о сайтах и поведении людей преобразуется во множество факторов, каждый из которых используется Матрикснетом для построения формулы ранжирования. Фактически, формулу ранжирования теперь пишет машина. Кстати, в качестве отдельных факторов мы в том числе используем результаты работы нейронных сетей (к примеру, так работает алгоритм Палех, о котором в прошлом году).

    Важная особенность Матрикснета в том, что он устойчив к переобучению. Это позволяет учитывать очень много факторов ранжирования и при этом обучаться на относительно небольшом количестве данных, не опасаясь, что машина найдет несуществующие закономерности. Другие методы машинного обучения позволяют либо строить более простые формулы с меньшим количеством факторов, либо нуждаются в большей обучающей выборке.

    Ещё одна важная особенность Матрикснета - в том, что формулу ранжирования можно настраивать отдельно для достаточно узких классов запросов. Например, улучшить качество поиска только по запросам про музыку. При этом ранжирование по остальным классам запросов не ухудшится.

    Именно Матрикснет и его достоинства легли в основу CatBoost. Но зачем нам вообще понадобилось изобретать что-то новое?

    Практически любой современный метод на основе градиентного бустинга работает с числами. Даже если у вас на входе жанры музыки, типы облаков или цвета, то эти данные все равно нужно описать на языке цифр. Это приводит к искажению их сути и потенциальному снижению точности работы модели.

    Продемонстрируем это на примитивном примере с каталогом товаров в магазине. Товары мало связаны между собой, и не существует такой закономерности между ними, которая позволила бы упорядочить их и присвоить осмысленный номер каждому продукту. Поэтому в этой ситуации каждому товару просто присваивают порядковый id (к примеру, в соответствии с программой учета в магазине). Порядок этих чисел ничего не значит, однако алгоритм будет этот порядок использовать и делать из него ложные выводы.

    Опытный специалист, работающий с машинным обучением, может придумать более интеллектуальный способ превращения категориальных признаков в числовые, однако такая предварительная предобработка приведет к потере части информации и приведет к ухудшению качества итогового решения.

    Именно поэтому было важно научить машину работать не только с числами, но и с категориями напрямую, закономерности между которыми она будет выявлять самостоятельно, без нашей ручной «помощи». И CatBoost разработан нами так, чтобы одинаково хорошо работать «из коробки» как с числовыми признаками, так и с категориальными. Благодаря этому он показывает более высокое качество обучения при работе с разнородными данными, чем альтернативные решения. Его можно применять в самых разных областях - от банковской сферы до промышленности.

    Кстати, название технологии происходит как раз от Categorical Boosting (категориальный бустинг). И ни один кот при разработке не пострадал.

    Бенчмарки

    Можно долго говорить о теоретических отличиях библиотеки, но лучше один раз показать на практике. Для наглядности мы сравнили работу библиотеки CatBoost с открытыми аналогами XGBoost, LightGBM и H20 на наборе публичных датасетов. И вот результаты (чем меньше, тем лучше): https://catboost.yandex/#benchmark

    Не хотим быть голословными, поэтому вместе с библиотекой в open source выложены описание процесса сравнения, код для запуска сравнения методов и контейнер с использованными версиями всех библиотек. Любой пользователь может повторить эксперимент у себя или на своих данных.

    CatBoost на практике

    Новый метод уже протестировали на сервисах Яндекса. Он применялся для улучшения результатов поиска, ранжирования ленты рекомендаций Яндекс.Дзен и для расчета прогноза погоды в технологии Метеум - и во всех случаях показал себя лучше Матрикснета. В дальнейшем CatBoost будет работать и на других сервисах. Не будем здесь останавливаться – лучше сразу расскажем про Большой адронный коллайдер (БАК).

    CatBoost успел найти себе применение и в рамках сотрудничества с Европейской организацией по ядерным исследованиям. В БАК работает детектор LHCb, используемый для исследования асимметрии материи и антиматерии во взаимодействиях тяжёлых прелестных кварков. Чтобы точно отслеживать разные частицы, регистрируемые в эксперименте, в детекторе существуют несколько специфических частей, каждая из которых определяет специальные свойства частиц. Наиболее сложной задачей при этом является объединение информации с различных частей детектора в максимально точное, агрегированное знание о частице. Здесь и приходит на помощь машинное обучение. Используя для комбинирования данных CatBoost, учёным удалось добиться улучшения качественных характеристик финального решения. Результаты CatBoost оказались лучше результатов, получаемых с использованием других методов.

    Как начать использовать CatBoost?

    Для работы с CatBoost достаточно установить его на свой компьютер. Библиотека поддерживает операционные системы Linux, Windows и macOS и доступна на языках программирования Python и R. Яндекс разработал также программу визуализации

    Рассмотрим импульсные нейронные сети: особенности, перспективы и преимущества, благодаря которым успешно вытесняется 2-е поколение.

    Всякий, кто следит за текущим прогрессом в анализе данных, слышал о применении в машинном обучении искусственных нейронных сетей второго поколения. Эти сети обычно полносвязные, принимающие и выдающие непрерывно изменяющиеся значения. Хотя нейронные сети осуществили прорыв , в биологическом отношении они не вполне соответствуют структуре реальных нейронов и механизмам обработки информации в человеческом мозге.

    Импульсные нейронные сети: принцип работы

    К природной физиологии ближе импульсные (спайковые) нейронные сети (spiking neural network, SNN). Импульсные нейронные сети преодолевают разрыв между нейронаукой и машинным обучением, используя для обработки информации биологически реалистичные модели нейронов.

    Импульсная нейронная сеть принципиально отличается от нейронных сетей второго поколения, используемых аналитиками данных. Такая сеть вместо непрерывно меняющихся во времени значений оперирует дискретными событиями, происходящими в определенные моменты времени. Сеть получает на входы серию импульсов и выдаёт импульсы на выходе.


    Пример сигналов на трех нейронах импульсной нейронной сети

    В реальном нейроне передача импульса определяется дифференциальными уравнениями, соответствующим биофизическим процессам образования потенциала на мембране нейрона. Как только потенциал достигает определенной величины, нейрон реагирует на это, передавая импульс, а мембрана приобретает исходный потенциал.


    Потенциал на мембране нейрона в процессе передачи сигнала

    Для описания процесса используются различные модели . Импульсные нейронные сети также отличаются от сетей второго поколения менее связной и более специфичной топологией.

    Импульсные нейронные сети: расстояние и время

    На первый взгляд, подход SNN может показаться шагом назад – от непрерывной, своего рода аналоговой картины, к импульсной, двоичной. Однако преимущество SNN состоит в том, что импульсный подход позволяет оперировать данными, учитывая расстояния между нейронами и длительность распространения сигнала, то есть в контексте пространства и времени. За счет этого сети SNN гораздо лучше приспособлены для обработки данных от настоящих сенсоров.

    Пространственный аспект отражает тот факт, что нейроны в первую очередь соединены с ближайшими соседями, и поэтому фрагменты ввода обрабатываются отдельно.

    Временной аспект соответствует тому, что тренировочные импульсы приходят с различными задержками, и та информация, что мы «теряем» при переходе от непрерывного сигнала к импульсному, на самом деле сохраняется в информации о задержке импульсов друг относительно друга. Это позволяет естественным образом обрабатывать временны́е данные без дополнительной сложности. Доказано, что импульсные нейроны являются более мощными вычислительными единицами, чем традиционные искусственные нейроны.

    Пр облемы для практического использования

    Учитывая, что SNN в теории являются более мощными нейронными сетями, чем сети второго поколения, остается удивляться, почему мы не видим их широкого применения. Основная проблема практического использовании SNN – обучение. Несмотря на наличие методов биологического неконтролируемого обучения (без учителя), таких как Hebbian и STDP , пока неизвестны эффективные методы обучения SNN, обеспечивающие более высокую производительность, чем сети второго поколения.

    Ввиду проблем с дифференцированием импульсов, SNN невозможно обучать, используя градиентный спуск, не теряя точную временную информацию об импульсах. Поэтому, чтобы эффективно использовать SNN для реальных задач, необходимо разработать соответствующие методы контролируемого обучения. Это трудная задача – учитывая биологический реализм этих сетей, она предполагает точное понимание того, как учится человеческий мозг.

    Другая, более близкая к решению, проблема, заключается в аппаратной составляющей. Симуляция SNN на стандартном оборудовании представляет трудоемкую задачу, так как требует моделирования дифференциальных уравнений. Нейроморфные аппаратные средства, такие как IBM TrueNorth , направлены на решение этой проблемы путем моделирования нейронов с использованием специализированного аппаратного обеспечения, соответствующего дискретности и разреженности биологических нейронных сетей.

    Перспективы развития

    Будущее SNN остается неясным. С одной стороны, они являются естественными преемниками современных нейронных сетей. С другой стороны, SNN пока далеки от практических инструментов для большинства задач. Уже существуют реальные приложения SNN для обработки изображений и звука в режиме реального времени, однако литература по практическим применениям остается скудной.

    Большинство публикаций по SNN являются либо теоретическими, либо демонстрируют неудовлетворительную для современных задач производительность. В виду чрезвычайной перспективности этого направления над решением указанных задач работают многие научные группы.

    В этот раз я решил изучить нейронные сети. Базовые навыки в этом вопросе я смог получить за лето и осень 2015 года. Под базовыми навыками я имею в виду, что могу сам создать простую нейронную сеть с нуля. Примеры можете найти в моих репозиториях на GitHub. В этой статье я дам несколько разъяснений и поделюсь ресурсами, которые могут пригодиться вам для изучения.

    Шаг 1. Нейроны и метод прямого распространения

    Так что же такое «нейронная сеть»? Давайте подождём с этим и сперва разберёмся с одним нейроном.

    Нейрон похож на функцию: он принимает на вход несколько значений и возвращает одно.

    Круг ниже обозначает искусственный нейрон. Он получает 5 и возвращает 1. Ввод - это сумма трёх соединённых с нейроном синапсов (три стрелки слева).

    В левой части картинки мы видим 2 входных значения (зелёного цвета) и смещение (выделено коричневым цветом).

    Входные данные могут быть численными представлениями двух разных свойств. Например, при создании спам-фильтра они могли бы означать наличие более чем одного слова, написанного ЗАГЛАВНЫМИ БУКВАМИ, и наличие слова «виагра».

    Входные значения умножаются на свои так называемые «веса», 7 и 3 (выделено синим).

    Теперь мы складываем полученные значения со смещением и получаем число, в нашем случае 5 (выделено красным). Это - ввод нашего искусственного нейрона.

    Потом нейрон производит какое-то вычисление и выдает выходное значение. Мы получили 1, т.к. округлённое значение сигмоиды в точке 5 равно 1 (более подробно об этой функции поговорим позже).

    Если бы это был спам-фильтр, факт вывода 1 означал бы то, что текст был помечен нейроном как спам.

    Иллюстрация нейронной сети с Википедии.

    Если вы объедините эти нейроны, то получите прямо распространяющуюся нейронную сеть - процесс идёт от ввода к выводу, через нейроны, соединённые синапсами, как на картинке слева.

    Шаг 2. Сигмоида

    После того, как вы посмотрели уроки от Welch Labs, хорошей идеей было бы ознакомиться с четвертой неделей курса по машинному обучению от Coursera , посвящённой нейронным сетям - она поможет разобраться в принципах их работы. Курс сильно углубляется в математику и основан на Octave, а я предпочитаю Python. Из-за этого я пропустил упражнения и почерпнул все необходимые знания из видео.

    Сигмоида просто-напросто отображает ваше значение (по горизонтальной оси) на отрезок от 0 до 1.

    Первоочередной задачей для меня стало изучение сигмоиды , так как она фигурировала во многих аспектах нейронных сетей. Что-то о ней я уже знал из третьей недели вышеупомянутого курса , поэтому я пересмотрел видео оттуда.

    Но на одних видео далеко не уедешь. Для полного понимания я решил закодить её самостоятельно. Поэтому я начал писать реализацию алгоритма логистической регрессии (который использует сигмоиду).

    Это заняло целый день, и вряд ли результат получился удовлетворительным. Но это неважно, ведь я разобрался, как всё работает. Код можно увидеть .

    Вам необязательно делать это самим, поскольку тут требуются специальные знания - главное, чтобы вы поняли, как устроена сигмоида.

    Шаг 3. Метод обратного распространения ошибки

    Понять принцип работы нейронной сети от ввода до вывода не так уж и сложно. Гораздо сложнее понять, как нейронная сеть обучается на наборах данных. Использованный мной принцип называется