Языки программирования высокого и низкого уровня: какие из них вам следует изучать. Уровни программирования

Уровни языков программирования.

Лекция 9. Языки программирования.

Контрольные вопросы

1.Что такое алгоритм?

2.Что такое исполнитель алгоритма?

3. Какие основные свойства алгоритмов?

4. В какой форме записываются алгоритмы?

5. Что такое графический способ записи алгоритма?

6. Что такое псевдокод?

7. Что такое базовые алгоритмические структуры?

8. Какие циклы называют итерационными?

9. Чем отличается программный способ записи алгоритмов от других?

В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.

Любой алгоритм, как мы знаем, есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования - чем меньше детализация, тем выше уровень языка.

По этому критерию можно выделить следующие уровни языков программирования:

  • машинные;
  • машинно-оpиентиpованные (ассемблеpы);
  • машинно-независимые (языки высокого уровня).

Машинные языки и машинно-ориентированные языки - это языки низкого уровня , требующие указания мелких деталей процесса обработки данных. Языки же высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека.

Языки высокого уровня делятся на:

  • процедурные (алгоритмические) (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов; для решения задачи процедурные языки требуют в той или иной форме явно записать процедуру ее решения;
  • логические (Prolog, Lisp и др.), которые ориентированы не на разработку алгоритма решения задачи, а на систематическое и формализованное описание задачи с тем, чтобы решение следовало из составленного описания;
  • объектно-ориентированные (Object Pascal, C++, Java и др.), в основе которых лежит понятие объекта, сочетающего в себе данные и действия над нами. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути описывает часть мира, относящуюся к этой задаче. Описание действительности в форме системы взаимодействующих объектов естественнее, чем в форме взаимодействующих процедур.

9.2. Какие у машинных языков достоинства и недостатки?



Каждый компьютер имеет свой машинный язык, то есть свою совокупность машинных команд, которая отличается количеством адресов в команде, назначением информации, задаваемой в адресах, набором операций, которые может выполнить машина и др.

При программировании на машинном языке программист может держать под своим контролем каждую команду и каждую ячейку памяти, использовать все возможности имеющихся машинных операций.

Но процесс написания программы на машинном языке очень трудоемкий и утомительный . Программа получается громоздкой, труднообозримой, ее трудно отлаживать, изменять и развивать.

Поэтому в случае, когда нужно иметь эффективную программу, в максимальной степени учитывающую специфику конкретного компьютера, вместо машинных языков используют близкие к ним машинно-ориентированные языки (ассемблеры).

9.3. В чем преимущества алгоритмических языков перед машинными?

Основные преимущества таковы:

  • алфавит алгоритмического языка значительно шире алфавита машинного языка, что существенно повышает наглядность текста программы;
  • набор операций, допустимых для использования, не зависит от набора машинных операций, а выбирается из соображений удобства формулирования алгоритмов решения задач определенного класса;
  • формат предложений достаточно гибок и удобен для использования, что позволяет с помощью одного предложения задать достаточно содержательный этап обработки данных;
  • требуемые операции задаются с помощью общепринятых математических обозначений;
  • данным в алгоритмических языках присваиваются индивидуальные имена, выбираемые программистом;
  • в языке может быть предусмотрен значительно более широкий набор типов данных по сравнению с набором машинных типов данных.

Таким образом, алгоритмические языки в значительной мере являются машинно-независимыми . Они облегчают работу программиста и повышают надежность создаваемых программ.

9.4. Какие компоненты образуют алгоритмический язык?

Алгоритмический язык – это система обозначений для формальной записи алгоритмов над величинами. Алгоритмический язык дает возможность составлять программы – то есть алгоритмы для исполнения машиной и записываемые на специальных языках программирования. Можно сказать, что алгоритмический язык - это система обозначений и понятий, присущих в той или иной форме любому языку программирования.

Алгоритмический язык (как и любой другой язык) образуют три его составляющие: алфавит, синтаксис и семантика.

Алфавит - это фиксированный для данного языка набор основных символов, т.е. "букв алфавита", из которых должен состоять любой текст на этом языке - никакие другие символы в тексте не допускаются.

Синтаксис - это правила построения фраз , позволяющие определить, правильно или неправильно написана та или иная фраза. Точнее говоря, синтаксис языка представляет собой набор правил, устанавливающих, какие комбинации символов являются осмысленными предложениями на этом языке.

Семантика определяет смысловое значение предложений языка. Являясь системой правил истолкования отдельных языковых конструкций,семантика устанавливает, какие последовательности действий описываются теми или иными фразами языка и, в конечном итоге, какой алгоритм определен данным текстом на алгоритмическом языке.

9.5. Какие понятия используют алгоритмические языки?

Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу (конструкцию) и определяемые ею свойства программных объектов или процесса обработки данных.

Понятие языка определяется во взаимодействии синтаксических и семантических правил. Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия

Основными понятиями в алгоритмических языках обычно являются следующие.

1. Имена (идентификаторы) - употpебляются для обозначения объектов пpогpаммы (пеpеменных, массивов, функций и дp.).

2. Опеpации . Типы операций:

· аpифметические опеpации + , - , * , / и дp. ;

· логические опеpации и, или, не ;

· опеpации отношения < , > , <= , >= , = , <> ;

· опеpация сцепки (иначе, "присоединения", "конкатенации") символьных значений дpуг с другом с образованием одной длинной строки; изображается знаком "+".

3. Данные - величины, обpабатываемые пpогpаммой . Имеется тpи основных вида данных: константы, пеpеменные и массивы .

  • Константы - это данные, которые зафиксированы в тексте программы и не изменяются в процессе ее выполнения.

Пpимеpы констант:

    • числовые 7.5 , 12 ;
    • логические да (истина), нет (ложь);
    • символьные (содержат ровно один символ) "А" , "+" ;
    • литеpные (содержат произвольное количество символов) "a0", "Мир", "" (пустая строка).
  • Пеpеменные обозначаются именами и могут изменять свои значения в ходе выполнения пpогpаммы. Пеpеменные бывают целые, вещественные, логические, символьные и литерные .
  • Массивы - последовательности однотипных элементов, число которых фиксировано и которым присвоено одно имя. Положение элемента в массиве однозначно определяется его индексами (одним, в случае одномерного массива, или несколькими, если массив многомерный). Иногда массивы называют таблицами.

4. Выpажения - пpедназначаются для выполнения необходимых вычислений , состоят из констант, пеpеменных, указателей функций (напpимеp, exp(x)), объединенных знаками опеpаций.

Выражения записываются в виде линейных последовательностей символов (без подстрочных и надстрочных символов, "многоэтажных" дробей и т.д.), что позволяет вводить их в компьютер, последовательно нажимая на соответствующие клавиши клавиатуры.

Различают выражения арифметические, логические и строковые.

  • Арифметические выражения служат для определения одного числового значения. Например, (1+sin(x))/2. Значение этого выражения при x=0 равно 0.5, а при x=p/2 - единице.
  • Логические выражения описывают некоторые условия, которые могут удовлетворяться или не удовлетворяться. Таким образом, логическое выражение может принимать только два значения - "истина" или "ложь" (да или нет ). Рассмотрим в качестве примера логическое выражение x*x + y*y < r*r , определяющее принадлежность точки с координатами (x, y) внутренней области круга радиусом r c центром в начале координат. При x=1, y=1, r=2 значение этого выражения - "истина" , а при x=2, y=2, r=1 - "ложь".
  • Cтроковые (литерные) выражения, значениями которых являются текcты . В строковые выражения могут входить литерные и строковые константы, литерные и строковые переменные, литерные функции, разделенные знаками операции сцепки. Например, А + В означает присоединение строки В к концу строки А. Если А = "куст " , а В = "зеленый" , то значение выражения А + В есть "куст зеленый".

5. Операторы (команды). Оператор - это наиболее крупное и содержательное понятие языка: каждый оператор представляет собой законченную фразу языка и определяет некоторый вполне законченный этап обработки данных. В состав опеpатоpов входят:

  • ключевые слова;
  • данные;
  • выpажения и т.д.

Операторы подpазделяются на исполняемые и неисполняемые. Неисполняемые опеpатоpы пpедназначены для описания данных и стpуктуpы пpогpаммы, а исполняемые - для выполнения pазличных действий (напpимеp, опеpатоp пpисваивания, опеpатоpы ввода и вывода, условный оператор, операторы цикла, оператор процедуры и дp.).

Контрольные вопросы:

1. Как подразделяются языки программирования?

2. Чем отличаются машинно-ориентированные языки от языков высокого уровня?

3. Как подразделяются языки высокого уровня? Приведите примеры.

4. Какие у машинных языков достоинства и недостатки?

5. В чем преимущества алгоритмических языков перед машинными?

6. Что такое алфавит языка?

7. Какие компоненты образуют алгоритмический язык?

8. Какие понятия используются в алгоритмическом языке?

9. Какие существуют типы операций?

10. Приведите примеры констант.

11. Что такое переменные? Приведите примеры.

12. Дайте определение массивам.

13. Что такое выражение? Какие бывают выражения.

14. Что такое операторы?

Уровни языков программирования

Наименование параметра Значение
Тема статьи: Уровни языков программирования
Рубрика (тематическая категория) Программирование

Компиляторы и интерпретаторы

С помощью языков программирования создается не готовая программа, а только ее текст, описывающий ранее разработанный алгоритм.

Программы, которые принято называть – компиляторами.

Программы - интерпретаторы используют машинный код отдельно от исход­ного текста͵ либо сразу выполняют команды языка, указанные в тексте программы.

Интерпретато р берет очередной оператор языка из текста программы, анализирует его структуру и затем сразу исполняет (обычно после анализа оператор транслируется в неĸᴏᴛᴏᴩᴏᴇ промежуточное представление или даже машинный код для более эффективного дальнейшего исполнения). Только после того как текущий оператор успешно выполнен, интерпретатор перейдет к следующему.

Компиляторы автоматически переводят текст программы в машинный код (полностью обрабатывают весь текст программы). Οʜᴎ просматривают его в поисках синтаксических ошибок (иногда несколько раз), выполняют определœенный смысловой анализ и затем автоматически переводят (транслируют) на машинный язык - генерируют машинный код. В реальных системах программирования перемешаны технологии и компиляции, и интерпретации.

Разные типы процессоров имеют разные наборы команд. В случае если язык программиро­вания ориентирован на конкретный тип процессора и учитывает его особенности, то он принято называть языком программирования низкого уровня. В данном случае ʼʼнизкий уровеньʼʼ не значит ʼʼплохойʼʼ. Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.

Языком самого низкого уровня является язык ассемблера, который просто представ­ляет каждую команду машинного кода, но не в виде чисел, а с помощью условных символьных обозначений, называемых мнемониками. Однозначное преобразование одной машинной инструкции в одну команду ассемблера принято называть транслите­рацией. Так как наборы инструкций для каждого модели процессора отличаются, конкретной компьютерной архитектуре соответствует свой язык ассемблера, и написанная на нем программа должна быть использована только в этой среде.

С помощью языков низкого уровня создаются очень эффективные и компактные программы, так как разработчик получает доступ ко всœем возможностям процессора. С другой стороны, при этом требуется очень хорошо понимать устройство компью­тера, затрудняется отладка больших приложений, а результирующая программа не должна быть перенесена на компьютер с другим типом процессора. Подобные языки обычно применяют для написания небольших системных приложений, драй­веров устройств, модулей стыковки с нестандартным оборудованием, когда важней­шими требованиями становятся компактность, быстродействие и возможность пря­мого доступа к аппаратным ресурсам. В некоторых областям (к примеру, в машинной графике), на языке ассемблера пишутся библиотеки, эффективно реализующие требующие интенсивных вычислений алгоритмы обработки изображений.

Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, в связи с этим создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка. Разрабатывать программы на языках высокого, уровня с помощью понятных и мощ­ных команд значительно проще, а ошибок при создании программ допускается гораздо меньше.

Программирование - ϶ᴛᴏ процесс составления компьютерной программы на базе некоторого алгоритма. Компьютерная программа - ϶ᴛᴏ закодированная информация о действиях, которые предписывается выполнить компьютеру, записанный или на языке машинных двоичный кодов, или на специальном языке программирования.

Переменная в программировании: тип, имя и значение . Мы знаем что в математике переменные - ϶ᴛᴏ данные которые меняют свои значения. В программировании переменная - ϶ᴛᴏ небольшая область в оперативной памяти компьютера, куда во время работы программы можно занести и хранить в закодированном виде неĸᴏᴛᴏᴩᴏᴇ значение, которым при крайне важно сти можно пользоваться и ĸᴏᴛᴏᴩᴏᴇ можно изменять.

Имя переменной - ϶ᴛᴏ название места (ячейки) в общем объёме ОЗУ используемое в программе на алгоритмическом языке вместо указания адреса , определяемого номером в шестнадцатеричной системе счисления. Языки программирования позволяют работать с простыми переменными и индексированными (элементами массива).

Типы переменных. Значение переменной, занесенное и хранимое в ячейке с ее именем, должна быть, как уже отмечалось, различным по типу числом либо символьным текстом. В соответствии со значением переменные называются целыми, действительными, символьными . Очевидно, что операции, которые можно произвести с числами, нельзя осуществить с символьным текстом. Объем памяти для хранения разных по типу значений тоже потребуется различный. По этой причине в некоторых языках программирования предусмотрены операторы, объявляющие тип переменной с указанным именем, в других языках программирования прямо в имени переменной употребляют значки, чтобы указать транслятору, сколько может понужнобиться места для хранение значения данной переменной.

Основные этапы решения задач на ЭВМ:

Вне зависимости от того, на каком алгоритмическом языке создается программа, этапы подготовки и решения задач на ЭВМ выглядят следующим образом:

1. Математическая постановка задачи - это формулировка задачи как задачи некоторого раздела математики.

2. Построение математической модели.

Модель - Это замещение изучаемого объекта другим объектом, который отражает существенные стороны данного объекта. Изучаемый объект может иметь несколько моделœей исходя из требуемой точности результатов вычислений.

Пример . Определить периметр крышки стола.

рисунок 1 рисунок 2

Здесь нас интересуют лишь размеры крышки стола, в связи с этим заменим реальный объект - “стол” плоской геометрической фигурой, размеры и конфигурация которой соответствуют поверхности крышки. Это должна быть такая фигура (рис.1)

При этом предварительно следует доказать, что радиусы закругления всœех углов крышки стола, с точки зрения требуемой точности вычисления результатов, можно считать равными, и только после того фигура на рис.1 может считаться моделью крышки стола.

В случае если это доказано, то математическая постановка задачи имеет такой вид:

исходные данные : r- радиус закругления,

a, b, c, d- размеры прямолинœейных частей фигуры;

результат : Р (периметр);

Вычислить значение Р: Р= 2Пr+a+b+c+d.

В случае если величина r такова, что при требуемой точности вычисления результатов закруглением углов можно пренебречь, то в качестве модели объекта можно взять четырехугольник общего вида (рис.2). В этом случае приходим к такой задаче:

исходные данные : а, b, с, d- размеры прямолинœейной части фигуры;

результат : Р (периметр).

Вычислить значение Р: Р=a+b+c+d.

В качестве модели объекта задачи можно взять прямоугольник со сторонами а и b. В случае если окажется, что при заданной точности вычисления противоположенные стороны крышки можно считать равными, как и диагонали ее, МПЗ имеет такой вид:

исходные данные: a, b - размеры прямоугольника;

результат : P (периметр)

Вычислить значение Р:

3. Выбор метода решения.

4. Построение алгоритма.

5. Запись алгоритма на языке программирования.

6. Отладка программы на ЭВМ.

Пример решения задачи . Составить программу начисления зарплаты согласно следующему правилу:

если стаж сотрудника менее 5 лет, то зарплата 130 руб., при стаже работы от 5 до 15 лет - 180 руб., при стаже свыше 15 лет зарплата повышается с каждым годом на 10 руб.

Сформулируем задачу в математическом виде: Вычислить

130, в случае если ST< 5;

ZP < 180, в случае если 5

180 +(T-15)10, в случае если 15

ZP - заработанная плата͵ ST - стаж работы.

Описание алгоритма на естественном языке:

2. В случае если ST< 5, то ZP:=130, перейти в п.5,

3. В случае если ST< 15, то ZP:=180, перейти к п. 5

4. ZP = 180+(ST-15)‣‣‣10

5. Сообщить значение, ST

Пример блок-схемы алгоритма решения задачи

Уровни языков программирования - понятие и виды. Классификация и особенности категории "Уровни языков программирования" 2017, 2018.

2 года назад я написал статью о классификации знаний в области программирования. Это было на волне интереса и моей активной деятельности по самообразованию в компьютерных науках. Написал статью и забыл о ней. Публиковать на Хабре не собирался. В конце концов, она базируется на моем личном опыте и знаних, которые могут оказаться весьма субъективны.

Недавно, на фоне постоянно поступающих вопросов «как научиться программированию?», я вспомнил про этот материал и перечитал его. Прошло уже 2 года, пополнился опыт, добавились знания, изменились взгляды. Но эта статья для меня не утратила актуальности, и я не нашел почти ничего, что хотел бы в ней изменить. Мне показалось, что она все же достойна публикации. И, возможно, кому-то она поможет в собственном профессиональном развитии.

Но прежде, чем «запустить» материал, еще небольшое отступление. О том, почему вообще я все это писал. Дело в том, что у нас в странах бывшего СССР с образованием в области IT очень туго. С одной стороны нет программ обучения, которые подготовят специалистов на должном уровне (наверное, за очень редкими исключениями, которые можно отнести к погрешности). С другой стороны, из-за широких возможностей самообразования, программисты и не спешат учиться в ВУЗах - все стремятся начать практиковать как можно раньше. Часто изучается только одно направление (например PHP+Mysql - самое популярное) и в бой. Причем, на этом все заканчивается. В итоге у нас огромное количество программистов, которые и базовых вещей не знают. Отсюда вытекают проблемы с качеством кода, и с эффекивностью алгоритмов, с велосипедированием.

Но программирование - это полноценная область знаний, которая требует в том числе и инженерной подготовки. Точно так же, как строительство или телекоммуникации. Да, построить дом (особняк) можно своими руками и без образования. А поднять большинство сайтов можно прочитав пару книг по PHP и HTML. Но многоэтажку без специальной подготовки не построишь, как и Гугл не напишешь, не зная основ.

Возможности для самообразования в компьютерных науках сейчас огромны. Единственное, чего не хватает, - это системности подготовки. Как разобраться, что и в какой последовательности изучать? Мне кажется, что этот материал поможет разложить по полочкам области знаний в компьютерных науках и составить для себя программу изучения по книгам. Выбор книг - тема отдельная, в рамки статьи не входит, но это можно обсудить в комментариях.

Поехали.

Меня иногда спрашивают, что нужно выучить, чтобы стать программистом. Вопрос несколько наивный, т.к. нормально ответить на него по-моему невозможно. Т.е. для начала нужно выяснить, каким программистом нужно стать. Да и вообще, программистом ли? Кроме того, на рынке востребованы как высококвалифицированные дорогие специалисты, так и “рабочая сила”. Пакет знаний и опыта первых и вторых отличается в значительной степени.

Но, не смотря на такую расплывчатость вопроса, дать ответ на него все же можно. Можно описать примерный максимум знаний, которые так или иначе относятся к программированию. Собственно, этот максимум обычно и стремятся преподать в ВУЗах на специальностях, в названии которых фигурирует слово “программист”.

Я учился на программиста в колледже, потом в университете. Именно университет немного разложил по полочкам понимание и взаимосвязь дисциплин, относящиеся к так называемым компьютерным наукам. Пусть знания, которые там давали, были недалекими и немного устаревшими, но системный подход у них был сформирован неплохой. Спустя годы практики после окончания обучения я пришел к выводу, что ВУЗовская классификация дисциплин вполне хороша и позволяет ответить на вопрос, что же следует знать любому программисту.

Конечно, знать все невозможно. Да и не нужно. Кроме того, какие-то вопросы нужно знать глубоко, а в других достаточно поверхностного обзорного понимания. По-этому в зависимости от специализации некоторые дисциплины более актуальны, некоторые менее. Но общие базовые знания необходимы почти по всем из них для любого инженера-программиста, от системщика до веб-разработчика.

В предыдущем абзаце я специально ввел термин “инженер-программист”. Как-то получается так, что программист - это не обязательно инженер. Даже из определения Википедии следует, что инженер - это в первую очередь проектировщик. Это тот, кто создает, т.е. проектирует системы. А в практике программирования проектирование нужно не всегда. Иногда достаточно кодирования: используя данный набор технологий, слепить что-то работающее. Типичный пример - стадо корпоративных или маркетинговых сайтов на джумлах, ворпрессах, друпалах и т.д. Это уровень техника, не инженера. Это уровень среднего образования. И работать техником можно даже после окончания курсов какого-либо языка программирования, крепкая теоретическая база там не нужна.

И, возвращаясь к инженерам-программистам, я хочу предложить свой граф дисциплин, которые изучают программисты. Очевидно, что одни дисциплины активно используют знания других, либо вовсе вырастают из других. Соответственно для полного понимания “верхнего” предмета, необходим какой-то уровень понимания нижнего.

Граф состоит из предметов (дисциплин) и разбит на уровни. Самый нижний - Общая база - вообще отношения к компьютерным наукам не имеет. Он приведен только для того, чтобы показать, на чем базируются дисциплины компьютерных наук.

Между дисциплинами существуют 2 вида связей: использование (обычная стрелка) и расширение (контур стрелки). Использование подразумевает необходимость фрагментарных знаний другого предмета, а расширение - необходимость как минимум обзорных, но полных знаний расширяемой дисциплины.

Первый уровень из CS (computer science) - Специальная база . Это стартовая площадка для любого программиста по четырем фронтам:

  1. арифметические основы ЭВМ (системы счисления и операции с числами, логические операции);
  2. физические основы ЭВМ (полупроводники, транзисторы, логические элементы, схемы, интегральные микросхемы);
  3. теория алгоритмов (алгоритмы и структуры данных; сложность, эффективность; способы представления информации в памяти);
  4. языки программирования (задача и понятие ЯП, уровни, типы языков, абстракция, уровни абстракции, трансляция/компиляция, шаблоны, принципы, парадигмы - обзор).

Специальная база предлагает фундаментальные теоретические знания, на которых строятся дисциплины более высоких уровней. Для среднего программиста необходимы обзорные знания по всем предметам специальной базы. Для некоторых специализаций требуется углубленное понимание теории алгоритмов (прежде всего - разработчикам разного рода библиотек).

Уровнем выше располагаются дисциплины, которые являются базовыми именно в программировании. По-этому я назвал этот уровень Основы . В него входят:

  1. архитектура ЭВМ (процессоры, микроархитектура, память, шины, ввод/вывод);
  2. обработка информации (теория информации, статистика, модели, поиск данных, лингвистические аспекты, обработка информации средствами табличных процессоров);
  3. основы C/C++ (базовые свойства языка, синтаксис, указатели, ввод/вывод, массивы, основы STL).

Следом за Основами идет Уровень 1 . Это первый прикладной уровень, и особо нетерпеливые могут начать коммерческую практику, овладев этим уровнем. Он включает 5 дисциплин:

  1. основы ASM (развитие архитектуры ЭВМ в направлении программирования, написание простейших драйверов и алгоритмов, ассемблерные вставки в C/C++);
  2. C/C++ (ООП, разработка прикладных приложений, библиотеки, WinAPI, make utils, параллельное программирование).
  3. операционные системы (архитектура ОС, процессы, межпроцессное взаимодействие, потоки, планирование, работы с памятью и переферией, POSIX-системы);
  4. системный анализ (предметная область, бизнес-процессы, потоки, диаграммы, принципы и теория системного анализа);
  5. базы данных (теория множеств, виды СУБД, реляционные СУБД, модели данных, SQL, конкретные БД).

Следующий уровень - Уровень 2 - развивает предыдущий. Кстати, компьютерные сети попали в него только по той причине, что для их изучения желательно (но не обязательно) предварительно освоить операционные системы. По развитости этот предмет ближе все-таки к первому уровню.

Уровень 2 включает:

  1. разработку ПО (жизненный цикл ПО, этапы разработки, основы ведения программных проектов, инструменты);
  2. анализ данных (Data Mining, OLAP, машинное обучение, нейронные сети, ИИ);
  3. компьютерные сети (по уровням стеков TCP/IP и/или ISO/OSI “от и до”, протоколы, сетевое программирование на C/C++);
  4. языки программирования с управляемым кодом (управляемый код, виртуальные машины, сборщики мусора, юнит-тестирование, собственно практика на C# или Java);

Уровень 3 - последний уровень для среднего программиста. Он самый объемный и включает только те дисциплины, которые непосредственно связаны с разработкой ПО. Всего их получилось 6:

  1. разработка UI и юзабилити (принципы построения интерфейсов пользователя);
  2. управление командами и проектами (методологии разработки и другие вопросы управления);
  3. тестирование ПО (обзорно: виды тестирования, инструменты);
  4. веб-технологии (HTTP-протокол, веб-сервер, CGI, кэширование и проксирование, клиентское программирование);
  5. распределенные системы (архитектуры распределенных систем, протоколы сетевого взаимодействия компонентов, инструменты, принципы, подходы к построению распределенных систем, отказоустойчивость, большие данные, высокие нагрузки);
  6. интерпретируемые языки программирования (особенности, основы по двум-трем языкам, практика по одному-двум языкам: JS, PHP, Python, Ruby).

Все, что идет выше, - расширенные Экспертные знания . По большому счету этот уровень можно расширять неограниченно, добавляя в него смежные с разработкой дисциплины и наиболее сложные аспекты разработки ПО. Я привел 3 примера - разработка компиляторов, разработка операционных систем и построение архитектур больших программно-аппаратных систем, либо архитектур, рассчитанных на особо высокие нагрузки. Зависимости к нижним уровням га графе не рисовал, т.к. получится слишком много стрелок, идущих через все уровни, вплоть до Общей базы. Наверное, широкие зависимости - это один из признаков вопросов экспертного характера. Здесь как раз подтверждается то, что экспертный уровень требует самых широких знаний и хорошего опыта.

Интересно в графе то, что он не только показывает предпочтительный порядок изучения предметов, но также:

  1. дает возможность понять, какие дисциплины нужны больше, какие меньше для работы в определенной специализации (просто выбрать основной предмет специализации и смотреть по связям и удаленности до других);
  2. дает понимание, как изучать компьютерные науки, если начинать не с фундаментальных основ, а с прикладных знаний (например, PHP) - можно двигаться по связям в стороны и вниз - собственно именно таким был мой личный путь развития (и я никак не могу назвать его самым легким, эффективным и оптимальным).

Граф - это модель. А хорошая модель как правило дает ответы сразу на множество вопросов. Я поставил перед собой задачу сделать хороший граф, близкий к реальности. Естественно, он основан на моем личном опыте и не претендует на идеал. Я старался сделать его наиболее объективным. И еще раз напоминаю, что это граф для программиста. Т.е. для тестировщика, сисадмина и других близких к программированию профессий он будет более или менее близким, но явно другим.

P.S. Убедительная просьба не развивать холивары на тему, что должен и что не должен знать программист. Это личный выбор каждого и статья совсем не об этом. Здесь приведена классификация знаний и взаимосви между ними. Это интересно не всем, это нужно не всем.

Понятие языков программирования

Компьютер воспринимает только программы, представленные на машинном языке (в машинном коде). Самому написать программу в машинном коде весьма сложно, причем эта сложность резко возрастает с увеличением размера программы и трудоемкости решения нужной задачи. Условно можно считать, что машинный код приемлем, если размер программы не превышает нескольких десят­ков байтов и нет потребности в операциях ручного ввода/вывода данных.

Поэтому сегодня практически все программы создаются с помощью языков про­граммирования. Теоретически программу можно написать и средствами обычного че­ловеческого (естественного) языка – это называется программированием на метаязы­ке (подобный подход обычно используется на этапе составления алгоритма), но авто­матически перевести такую программу в машинный код пока невозможно из-за высо­кой неоднозначности естественного языка.

Языки программирования – искусственные языки. От естественных они отли­чаются ограниченным числом «слов», значения которых понятны транслятору, и очень строгими правилами записи команд (операторов). Совокупность подобных требований образует синтаксис языка программирования, а смысл каждой команды и других кон­струкций языка – его семантику. Нарушение формы записи программы приводит к тому, что транслятор не может понять назначение оператора и выдает сообщение о синтаксической ошибке. Правильное написание команд языка, не отвечающее алгорит­му, приводит к семантическим ошибкам (называемым еще логическими ошибками или ошибками времени выполнения).

Процесс поиска ошибок в программе называется тестированием, процесс уст­ранения ошибок – отладкой.

Уровни языков программирования

Процессоры разных типов имеют разные наборы команд. Если язык программи­рования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня. В данном случае «низкий уровень» не значит «плохой». Имеется в виду, что операторы языка близки к машин­ному коду и ориентированы на конкретные команды процессора.

Языком самого низкого уровня является язык ассемблера , который просто пред­ставляет каждую команду машинного кода, но не в виде чисел, а с помощью условных символь­ных обозначений, называемых мнемониками. Однозначное преобразование одной машинной инструкции в одну команду ассемблера называется транслитерацией. Так как наборы инструкций для разных моделей процессоров отличаются, конкретной компьютерной архитектуре соответствует свой язык ассемблера, и написанная на нем программа может быть использована только в этой среде.

С одной стороны, с помощью языков низкого уровня создаются очень эффективные и компактные программы, так как разработчик получает доступ ко всем возможностям процессора. С другой стороны, при этом требуется очень хорошо понимать устройство компьютера, затрудняется отладка больших приложений, а результирующая программа не может быть перенесена на компьютер с другим типом процессора.

Подобные языки обычно применяют для написания небольших системных при­ложений, драйверов устройств, модулей стыковки с нестандартным оборудованием, ко­гда важнейшими требованиями становятся компактность, быстродействие и возмож­ность прямого доступа к аппаратным ресурсам. В некоторых областях, например, в

машинной графике, на языке ассемблера пишутся библиотеки, эффективно реализую­щие алгоритмы обработки изображений, требующие интенсивных вычислений.

значительно ближе и понятнее чело­веку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка. Разра­батывать программы на языках высокого уровня с помощью понятных и мощных ко­манд значительно проще, а ошибок при создании программ допускается гораздо мень­ше.

Поколения языков программирования

Языки программирования принято делить на пять поколений.

В первое поколе­ние входят языки, созданные в начале 1950-х годов, когда первые компьютеры только появились на свет. Это был первый язык ассемблера, созданный по принципу «одна ин­струкция – одна строка».

Расцвет второго поколения языков программирования пришелся на конец 1950-х – начало 1960-х годов. Тогда был разработан символический ассемблер, в котором появилось понятие переменной. Он стал первым полноценным языком программирования. Благодаря его возникновению заметно возросли скорость разработки и надежность программ.

Появление третьего поколения языков программирования принято относить к 60-м годам. В это время родились универсальные языки высокого уровня, с их помо­щью удается решать задачи из любых областей. Такие качества новых языков, как от­носительная простота, независимость от конкретного компьютера и возможность ис­пользования мощных синтаксических конструкций, позволили резко повысить произ­водительность труда программистов. Понятная большинству пользователей структура этих языков привлекла к написанию небольших программ (как правило, инженерного или экономического характера) значительное число специалистов из некомпьютерных областей. Подавляющее большинство языков этого поколения успешно применяется и сегодня.

С начала 1970-х годов по настоящее время продолжается период языков четверто­го поколения.


Эти языки предназначены для реализации крупных проектов, повышения их надежности и скорости создания. Они обычно ориентированы на специализированные области применения, где хороших результатов можно добиться, используя не универсальные, а проблемно-ориентированные языки, оперирующие конкретными понятиями узкой предметной об­ласти. Как правило, в эти языки встраиваются мощные операторы, позволяющие одной строкой описать такую функциональность, для реализации которой на языках младших поколений потребовались бы тысячи строк исходного кода.

Рождение языков пятого поколения произошло в середине 1990-х годов. К ним от­носятся также системы автоматического создания прикладных программ с помощью визуальных средств разработки, без знания программирования. Главная идея, которая закладывается в эти языки, – возможность автоматического формирования результи­рующего текста на универсальных языках программирования (который потом требует­ся откомпилировать). Инструкции же вводятся в компьютер в максимально наглядном виде с помощью методов, наиболее удобных для человека, не знакомого с программи­рованием.

Языки программирования высокого уровня

Fortran (Фортран). Это первый компилируемый язык, созданный Джимом Бэ-кусом в 1950-е годы. Программисты, разрабатывавшие программы исключительно на ас­семблере, выражали серьезное сомнение в возможности появления высокопроизводи­

тельного языка высокого уровня, поэтому основным критерием при разработке компи­ляторов Фортрана являлась эффективность исполняемого кода.

Хотя в Фортране впервые был реализован ряд важнейших понятий программи­рования, удобство создания программ было принесено в жертву возможности получе­ния эффективного машинного кода. Однако для этого языка было создано огромное ко­личество библиотек, начиная от статистических комплексов и кончая пакетами управ­ления спутниками. Поэтому Фортран продолжает активно использоваться во многих организациях, а сейчас ведутся работы над очередным стандартом Фортрана F2k. Име­ется стандартная версия Фортрана – HPF (High Performance Fortran) для параллельных суперкомпьютеров со множеством процессоров.

Cobol (Кобол). Это компилируемый язык для решения бизнес-задач в экономи­ческой области, разработанный в начале 1960-х годов. Он отличается большой «много-словностно» – его операторы иногда выглядят как обычные английские фразы. В Ко­боле были реализованы очень мощные средства работы с большими объемами данных, хранящимися на различных внешних носителях. На этом языке создано очень много приложений, которые активно эксплуатируются и сегодня.

Algol (Алгол). Компилируемый язык, созданный в 1960 году. Он был призван заменить Фортран, но из-за более сложной структуры не получил широкого распро­странения. В 1968 году была создана версия Алгол 68, по своим возможностям и сего­дня опережающая многие языки программирования, однако из-за отсутствия достаточ­но эффективных компьютеров для нее не удалось своевременно создать хорошие ком­пиляторы.

Pascal (Паскаль). Язык Паскаль, созданный в конце 1970-х годов основоположни­ком множества идей современного программирования Никлаусом Виртом, во многом напоминает Алгол, но в нем ужесточен ряд требований к структуре программы и име­ются возможности, позволяющие успешно применять его при создании крупных про­ектов.

Basic (Бейсик). Для этого языка имеются и компиляторы, и интерпретаторы, а по популярности он занимает первое место в мире. Он создавался в 1960-х годах в каче­стве учебного языка и очень прост в изучении.

С (Си). Данный язык был создан в лаборатории Bell и первоначально не рас­сматривался как массовый. Он планировался для замены ассемблера, чтобы иметь воз­можность создавать столь же эффективные и компактные программы и в то же время не зависеть от конкретного типа процессора.

Си во многом похож на Паскаль и имеет дополнительные средства для прямой работы с памятью (указатели). На этом языке в 1970-е годы написано множество при­кладных и системных программ и ряд известных операционных систем (Unix).

C++ (Си++). Си++ – это объектно-ориентированное расширение языка Си, соз­данное Бьярном Страуструпом в 1980 году. Множество новых мощных возможностей, позволивших резко повысить производительность программистов, наложилось на унаследованную от языка Си определенную низкоуровневость, в результате чего соз­дание сложных и надежных программ потребовало от разработчиков высокого уровня профессиональной подготовки.

Java (Джава, Ява). Этот язык был создан компанией Sun в начале 1990-х годов на основе Си++. Он призван упростить разработку приложений на основе Си++ путем ис­ключения из него всех низкоуровневых возможностей. Но главная особенность этого языка – компиляция не в машинный код, а в платформно-независимый байт-код (каж­дая команда занимает один байт). Этот байт-код может выполняться с помощью интер­претатора – виртуальной Java-машины JVM (Java Virtual Machine), версии которой созданы сегодня для любых платформ.

Благодаря наличию множества Java-машин программы на Java можно перено­сить не только на уровне исходных текстов, но и на уровне двоичного байт-кода, по­этому по популярности язык Ява сегодня занимает второе место в мире после Бейсика.

Особое внимание в развитии этого языка уделяется двум направлениям: под­держке всевозможных мобильных устройств и микрокомпьютеров, встраиваемых в бы­товую технику (технология Jini), а также созданию платформно-независимых про­граммных модулей, способных работать на серверах в глобальных и локальных сетях с различными операционными системами (технология Java Beans). Пока основной недос­таток этого языка – невысокое быстродействие.

Язык программирования - язык (знаковая система), предназначенный для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, определяющих внешний вид программы и действия, которые выполнит исполнитель (обычно - ЭВМ) под её управлением. Язык программирования предназначен для написания компьютерных программ, которые представляют собой набор правил, позволяющих компьютеру выполнить тот или иной вычислительный процесс, организовать управление различными объектами, и т. п. Язык программирования отличается от естественных языков тем, что предназначен для взаимодействия человека с ЭВМ, в то время как естественные языки используются для общения людей между собой.

Существуют различные классификации языков программирования. делят на языки низкого и высокого уровня .

Если язык близок к естественному языку программирования, то он называется языком высокого уровня, если ближе к машинным командам, – языком низкого уровня.

В группу языков низкого уровня входят машинные языки и языки символического кодирования: Автокод, Ассемблер. Операторы этого языка – это те же машинные команды, но записанные мнемоническими кодами, а в качестве операндов используются не конкретные адреса, а символические имена. Все языки низкого уровня ориентированы на определенный тип компьютера, т. е. являются машинно–зависимыми.

К языкам программирования высокого уровня относят Фортран (переводчик формул), Алгол , Кобол (коммерческий язык – используется, в первую очередь, для программирования экономических задач), Паскаль , Бейсик , Си , Пролог и т.д.

Эти языки машинно–независимы , т.к. они ориентированы не на систему команд той или иной ЭВМ, а на систему операндов, характерных для записи определенного класса алгоритмов. Однако программы, написанные на языках высокого уровня, занимают больше памяти и медленнее выполняются, чем программы на машинных языках.

Языки программирования также можно разделять на поколения:

языки первого поколения : машинно–ориентированные с ручным управлением памяти на компьютерах первого поколения.

языки второго поколения : с мнемоническим представлением команд, так называемые автокоды.

языки третьего поколения : общего назначения, используемые для создания прикладных программ любого типа. Например, Бейсик, Кобол, Си и Паскаль.

языки четвертого поколения : усовершенствованные, разработанные для создания специальных прикладных программ, для управления базами данных.

языки программирования пятого поколения : языки декларативные, объектно–ориентированные и визуальные. Например, Пролог, ЛИСП (используется для построения программ с использованием методов искусственного интеллекта), Си++, Visual Basic, Delphi.

7. Прикладное программное обеспечение. Ппп ms Office.

Прикладное программное обеспечение – это комплекс программных средств и документации к ним, предназначенных для решения сравнительно узких классов задач в конкретных предметных областях, рассчитанных на определенного потребителя: научно-технических, экономических, инженерных, конструкторских и других специальных задач в различных сферах человеческой деятельности.

Таким образом, каждая прикладная программа (чаще всего именно такие программы называют приложениями ) предназначена для решения конкретной задачи в определенной области применения (например: офисные программы, правовые системы, бухгалтерские программы, издательские системы и т.п.).

Пакет прикладных программ – это комплекс программ, предназначенный для решения задач определенного класса (функциональная подсистема, бизнес-приложение).

Различают следующие типы ППП:

· общего назначения (универсальные);

· метод-ориентированные;

· проблемно-ориентированные;

· глобальных сетей;

· организации (администрирования) вычислительного процесса

ППП общего назначения – универсальные программные продукты, предназначенные для автоматизации разработки и эксплуатации функциональных задач пользователя и информационных систем в целом.

Метод-ориентированные ППП отличаются тем, что в их алгоритмической основе реализован какой-либо экономико-математический метод решения задачи.

Проблемно-ориентированными ППП называются программные продукты, предназначенные для решения какой-либо задачи в конкретной функциональной области.

ППП отдельных предметных областей. Одним из основных направлений развития софтверной индустрии на протяжении нескольких лет является разработка ППП для различных предметных областей: бухгалтерского учета, финансового менеджмента, правовых систем и т.д.

ППП бухгалтерского учета (ППП БУ). Несмотря на то, что в мире существует более тысячи тиражируемых бухгалтерских пакетов различной мощности и стоимости, российские предприниматели предпочитают отечественные пакеты, более подходящие для условий переходной экономики и быстрой смены законодательных актов, регулирующих порядок бухгалтерского учета. В настоящее время появляется третье поколение российских автоматизированных бухгалтерских систем.

ППП финансового менеджмента (ППП ФМ ) появились в связи с необходимостью финансового планирования и анализа деятельности фирм.

ППП правовых справочных систем представляют собой эффективный инструмент работы с огромным объемом законодательной информации, поступающей непрерывным потоком.

ППП глобальных сетей ЭВМ . Основным назначением глобальных вычислительных сетей является обеспечение удобного, надежного доступа пользователя к территориально распределенным общесетевым ресурсам, базам данных, передаче сообщений и т.д.

Для обеспечения организации администрирования вычислительного процесса в локальных и глобальных сетях ЭВМ в более чем 50% систем мира используется ППП фирмы Bay Networks (США), управляющий администрированием данных, коммутаторами, концентраторами, маршрутизаторами, трафиком сообщений.