Закон ома простым языком. Закон ома для замкнутой цепи определение

Закон ома для замкнутой цепи говорит о том что. Величина тока в замкнутой цепи, которая состоит из источника тока обладающего внутренним сопротивлением, а также внешним нагрузочным сопротивлением. Будет равна отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.

Формула 1 — Закон Ома для замкнутой цепи

Где R Сопротивление внешней цепи измеряется в Омах

r внутреннее сопротивление источника тока также измеряется в Омах

I Сила тока в цепи. Измеряется в Амперах

E Электродвижущая сила источника тока измеряется в Вольтах

Иногда возникают ситуации, когда необходимо найти силу тока в цепи, но при этом напряжение на ее концах не задано. Но всё же известно сопротивление цепи и электродвижущая сила источника тока. Применить в этом случае закон Ома для участка цепи невозможно.

В этом случае применяют закон Ома для замкнутой цепи. Для пояснения принципа действия этого закона проведем опыт. Для этого нам понадобится источник тока реостат вольтметр и амперметр.

Для начала построим цепь, состоящую из источника тока реостата и амперметра. Перед началом эксперимента реостат выведем в максимальное положение. После включения в цепи появится ток, который можно наблюдать по амперметру. Двигая ползунок реостата увидим, что при изменении внешнего сопротивления цепи изменяется ток.

Рисунок 1 — измерение тока в цепи

Далее оставив на реостате определённое сопротивление, подключим параллельно источнику тока еще один такой же. И мы увидим, что ток в цепи увеличится. Казалось бы, оба источника имеют одно и то же напряжение сопротивление внешней цепи не изменилось, почему же увеличился ток.

Произошло это по тому, что уменьшилось внутренне сопротивление источника тока. А поскольку в замкнутой цепи оно включено последовательно с внешним сопротивлением и источником тока. То это внутренне сопротивление также участвует в формировании тока в цепи.

Формула 2 — закон Ома для замкнутой цепи с n количеством параллельно включенных источников тока.

Исходя из выше сказанного, можно заключить, что в реальной замкнутой электрической цепи величина тока не способна возрасти бесконечно при возникновении короткого замыкания в источнике тока, так как эту величину ограничивает внутренне сопротивление источника тока.

Рассмотрим простейшую замкнутую цепь, состоящую из источника (гальванического элемента, аккумулятора или генератора)

и резистора сопротивлением (рис. 161). Источник тока имеет и сопротивление Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления цепи. В генераторе это сопротивление обмоток, а в гальваническом элементе - сопротивление раствора электролита и электродов

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля - Ленца (9.17).

Пусть за время через поперечное сечение проводника пройдет заряд Тогда работу сторонних сил по перемещению заряда можно записать так: Согласно определению силы тока Поэтому

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и выделяется некоторое количество теплоты. По закону Джоуля - Ленца оно равно:

Согласно закону сохранения энергии Приравнивая (9.20) и (9.21), получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.

Обычно закон Ома для замкнутой цепи записывают в форме:

Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех величин: сопротивлений и внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи При этом напряжение на зажимах источника приблизительно равно

Но при коротком замыкании сила тока в цепи определяется именно внутренним сопротивлением источника и может при электродвижущей силе в несколько вольт быть очень большой, если мало (например, у аккумулятора Ом). Провода могут расплавиться, а сам источник - выйти из строя.

Если цепь содержит несколько последовательно соединенных элементов с то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов. Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке 162 положительным (произвольно) считает направление обхода против часовой стрелки.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то Сторонние силы внутри источника совершают при этом положительную работу. Если же при обходе цепи переходят от положительного полюса источника к отрицательному, ЭДС будет отрицательной. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображенной на рисунке 162:

Если то согласно (9.23) сила тока т. е. направление тока совпадает с направлением обхода контура. При наоборот, направление тока противоположно направлению обхода контура. Полное сопротивление цепи равно сумме всех сопротивлений:

При параллельном соединении гальванических элементов с одинаковыми ЭДС (или других источников) ЭДС батареи равна ЭДС одного из элементов (рис. 163). Внутреннее же сопротивление батареи рассчитывают по обычному правилу параллельного соединения проводников. Для цепи, изображенной на рисунке 163, согласно закону Ома для замкнутой цепи сила тока определяется следующей формулой:

1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи? 2. Что называют сторонними силами? 3. Что называют электродвижущей силой?

4. Сформулируйте закон Ома для замкнутой цепи. 5. От чего зависит знак ЭДС в законе Ома для замкнутой цепи?

Закон Ома для замкнутой цепи показывает - значение тока в реальной цепи зависит не только от сопротивления нагрузки, но и от сопротивления источника.

Формулировка закона Ома для замкнутой цепи звучит следующим образом: величина тока в замкнутой цепи, состоящей из источника тока, обладающего внутренним и внешним нагрузочным сопротивлениями, равна отношению электродвижущей силы источника к сумме внутреннего и внешнего сопротивлений.

Впервые зависимость тока от сопротивлений была экспериментально установлена и описана Георгом Омом в 1826 году.

Формула закона Ома для замкнутой цепи записывается в следующем виде:

  • I [А] – сила тока в цепи,
  • ε [В] – ЭДС источника напряжения,
  • R [Ом] – сопротивление всех внешних элементов цепи,
  • r [Ом] – внутреннее сопротивление источника напряжения

Физический смысл закона

Потребители электрического тока вместе с источником тока образуют замкнутую электрическую цепь. Ток, проходящий через потребитель, проходит и через источник тока, а значит, току кроме сопротивления проводника оказывается сопротивление самого источника. Таким образом, общее сопротивление замкнутой цепи будет складываться из сопротивления потребителя и сопротивления источника.

Физический смысл зависимости тока от ЭДС источника и сопротивления цепи заключается в том, что чем больше ЭДС, тем больше энергия носителей зарядов, а значит больше скорость их упорядоченного движения. При увеличении сопротивления цепи энергия и скорость движения носителей зарядов, следовательно, и величина тока уменьшаются.

Зависимость можно показать на опыте. Рассмотрим цепь, состоящую из источника, реостата и амперметра. После включения в цепи идет ток, наблюдаемый по амперметру, двигая ползунок реостата, увидим, что при изменении внешнего сопротивления ток будет меняться.

Примеры задач на применение закона Ома для замкнутой цепи

К источнику ЭДС 10 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 4 Ом. Найти силу тока в цепи и напряжение на зажимах источника.

При подключении к батарее гальванических элементов резистора сопротивлением 20 Ом сила тока в цепи была 1 А, а при подключении резистора сопротивлением 10 Ом сила тока стала 1,5 А. Найти ЭДС и внутреннее сопротивление батареи.

Если точки 1 и 2 совпадают, то и выражение закона Ома для участка приобретает более простой вид:

где представляет собой полное сопротивление замкнутой цепи включая внутреннее сопротивление источников, а - алгебраическую сумму э.д.с. в данной цепи.

Ток, возникающий при внешнем сопротивлении равном нулю, называется током короткого замыкания.

Лекция 10.

Соединение проводников.

Используя закон Ома для участка цепи, можно показать, что сопротивление последовательного и параллельного соединения проводников равны соответственно:

Доказательство:

Отметим, что при параллельном соединении проводников, общее сопротивление всегда меньше наименьшего сопротивления в параллельном соединении. Убедитесь в этом самостоятельно.

Закон Джоуля - Ленца.

При прохождении тока через проводник сопротивлением выделяется теплота, которая рассеивается в окружающей среде. Найдем это количество теплоты. Воспользуемся для этого законом сохранения энергии и законом Ома.

Рассмотрим однородный участок цепи, на котором поддерживается постоянная разность потенциалов . Электрическое поле при этом совершает работу:

Если на участке отсутствует превращение в механическую, химическую или иные виды энергии кроме тепловой, то выделяющее количество теплоты равно работе электрического поля:

.

Тепловая мощность при этом равна:

Конечное количество теплоты находится интегрированием по времени:

Это формула выражает закон Джоуля – Ленца. Механизм тепловыделения связан с превращением дополнительной кинетической энергии, которую приобретают носители тока в электрическом поле, в энергию возбуждения колебаний решетки при столкновении носителей с атомами в узлах решетки.

Найдём выражение для закона Джоуля – Ленца в локальной форме. Для этой цели выделим в проводнике элементарный объём в форме цилиндра с образующей вдоль вектора . Пусть поперечное сечение цилиндра , а его длина . Тогда согласно закону Джоуля – Ленца в этом объеме за время выделяется количество теплоты:

где - объём цилиндра. Разделив последнее соотношение на получим формулу которая определяет тепловую мощность, выделяющуюся в единице объёма проводника:

Удельная тепловая мощность измеряется в .

Полученное соотношение выражает закон Джоуля – Ленца в локальной форме: удельная тепловая мощность тока пропорциональна квадрату плотности тока и удельному сопротивлению проводника в данной точке.

В такой форме закон Джоуля – Ленца применим к неоднородным проводникам любой формы, и не зависят от природы сторонних сил. Если на носители действуют только электрические силы, то на основании закона Ома :

Если участок цепи содержит источник э.д.с., то на носители тока будут действовать не только электрические, но и сторонние силы. В этом случае тепло, которое выделяется на участке, равно алгебраической сумме работ электрических и сторонних сил.

Умножим закон Ома в интегральной форме на силу тока :

Здесь слева стоит (тепловая мощность), а справа алгебраическая сумма мощностей электрических и сторонних сил, которую называютмощностью тока.

В замкнутой цепи :

т.е. мощность тепловыделения равна мощности сторонних сил.

Дифференциальный закон Ома

В
ыделим из массива проводника (по которому протекает электрический токI ) маленький цилиндр расположенный вдоль линий электрического тока в проводнике Рис.5.2. Пусть длина цилиндра будет dl а сечение dS . Тогда

О
тсюда

И
спользуя определение для плотности тока (5.1) и для проводимости проводника (5.4) получаем окончательно выражение, которое получило название дифференциальный закон Ома

Работа и мощность, производимые электрическим током

При перемещении заряда между точками с некоторой разностью потенциалов соответствующей падению напряжения U производится работа и мощность:

Э
тот закон был получен экспериментально и получил название закон Джоуля – Ленца. Если подобно предыдущему случаю перейти к рассмотрению малых объемов то нетрудно получить закон Джоуля – Ленца в дифференциальной форме (5.6-5.8):

Законы Кирхгофа

Первое правило Кирхгофа

Рассмотрим электрическую цепь имеющую разветвления Рис.5.3. Точки разветвления будем называть узлами. При установившемся процессе, когда электрический ток протекающий по цепи постоянен потенциалы всех точек цепи так же неизменны. Это может происходить в том случае если электрические заряды не накапливаются и не исчезают в узлах цепи.

Таким образом при установившемся режиме количество притекшего электричества к узлу равно количеству электричества ушедшего из узла. Отсюда вытекает первое правило Кирхгофа:

Алгебраическая сумма сил электрических токов сходящихся в узле равна нулю (5.9) (токи приходящие в узел берутся со знаками +, а токи отходящие от узла со знаком -)

I1+i2+i3-i4-i5=0

ΣI i =0 5.9.

Соединения проводников

На практике часто приходится пользоваться различным соединением проводников

П оследовательное соединение Рис.5.4.

П
ри таком соединении электрический ток во всех участках цепи и на всех ее элементах одинаковI = I 1 = I 2 = I 3 =… I n . Напряжение на концах цепи между точками А и В складывается из напряжений на каждом ее элементе U AB = U 1 + U 2 + U 3 +… U n . Таким образом.

Параллельное соединение Рис.5.5

Закон Ома для замкнутой цепи содержащей э.Д.С.

Р ассмотрим неразветвленную электрическую цепь содержащую Э.Д.С.(E ) с внутренним сопротивлением r и содержащую внешнее сопротивление R Рис.5.6

Полная работа по перемещению заряда по всему контуру будет складываться из работы во внешней цепи и работы внутри источника А=А внешн источн .

Причем работа во внешней цепи отнесенная к величине заряда это по определению разность потенциалов на внешней цепи (падение напряжения на внешней цепи) А внешн / q = U . А работа, по всей цепи отнесенная к заряду это по определению Э.Д.С. A / q = E . Отсюда E = U + А источн / q . С другой стороны А источн = I 2 rt . Отсюда А источн / q = Ir . Таким образом окончательно получаем: E = U + Ir

Или E = I (R + r ) 5.12

Под E подразумевается сумма всех Э.Д.С. входящих в неразветвленную цепь, а под r и R подразумевается сумма всех внутренних и внешних сопротивлений в неразветвленной цепи.

Сила тока одинаковая для всей неразветвленной замкнутой цепи содержащей Э.Д.С. прямо пропорциональна Э.Д.С. и обратно пропорциональна полному сопротивлению цепи.

Второе правило Кирхгофа

Рассмотрим разветвленную цепь Рис.5.7. Участок между двумя соседними узлами назовем ветвью. Так как разветвление имеет место лишь в соседних узлах, то в пределах ветви сила тока сохраняется по величине и направлению. Любую цепь можно рассматривать как совокупность контуров, а для каждого контура справедливо:

В любом замкнутом контуре, мысленно выделенном из электрической цепи алгебраическая сумма произведений сопротивлений соответствующих участков цепи, включая и внутренние сопротивления источников на силу тока в цепи равна алгебораической сумме всех Э.Д.С. в цепи

Закон Ома для замкнутой цепи

Если в проводнике создать электрическое поле и не принять мер для его поддержания, то перемещение зарядов очень быстро приведет к тому, что поле внутри проводника исчезнет и ток прекратится, поэтому для поддержания постоянного тока в течение длительного времени необходимо выполнение двух условий: электрическая цепь должна быть замкнутой; в электрической цепи наряду с участками, на которых положитель-

ные заряды движутся в сторону убывания потенциала, должны быть участки, на которых эти заряды движутся в сторону возрастания потенциала, т. е. против сил электростатического поля (см. изображенную штриховой линией часть цепи на рис. 5).

Перемещать положительные заряды против сил электростатического поля могут только силы неэлектростатического происхождения, называемые сторонними силами. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) e , действующей в цепи или на ее участке. ЭДС e измеряется в вольтах (В). Источник ЭДС имеет некоторое внутреннее сопротивление , зависящее от его устройства. Это сопротивление оказывается включенным последовательно с источником в общую электрическую цепь. В качестве источников ЭДС используют гальванические элементы и генераторы постоянного тока (рис. 6).

Если неразветвленная замкнутая электрическая цепь (рис. 7) содержит несколько последовательно соединенных элементов с сопротивлением и источников ЭДС e к , имеющих внутреннее сопротивление то ее можно заменить эквивалентной цепью, изображенной на рис. 6. Сила тока в эквивалентной цепи определяется законом Ома для замкнутой цепи:

;

ЭДС, как и сила тока, есть величина алгебраическая. Если ЭДС способствует движению положительных зарядов в выбранном направлении, то e > 0, если ЭДС препятствует движению положительных зарядов в данном направлении, то e < 0. Чтобы определить знак ЭДС, необходимо показать в электрической цепи направление движения положительных зарядов. Положительные заряды в электрической цепи движутся от положительного полюса источника к отрицательному полюсу. Если по ходу этого направления перейти внутри источника от отрицательного полюса к положительному, то e > 0, если перейти внутри источника от положительного полюса к отрицательному, то e < 0.

Рис. 6 Рис. 7

Из закона Ома для замкнутой цепи следует, что падение напряжения U на зажимах источника меньше, чем ЭДС. Действительно, e , или e . Так как по закону Ома для однородного участка цепи напряжение на зажимах источника , то

3) используя закон Ома для замкнутой цепи, установить связь между силой тока и ЭДС.

Подскажите закон ома

Зако́н Ома - это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.
Так случилось, что в этом разделе страницы оказалось две словесных формулировки закона Ома:
1. Суть закона проста: если, при прохождении тока, напряжение и свойства проводника не изменяются, то
сила тока в проводнике прямо пропорциональна напряжению между концами проводника и обратно пропорциональна сопротивлению проводника.
2. Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.
Следует также иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. , также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Пользователь удален

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы) , пропорциональна напряжению U на концах проводника:

где R = const.
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
В СИ единицей электрического сопротивления проводников служит ом (Ом) . Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:
IR = U12 = φ1 – φ2 + E = Δφ12 + E.
Это соотношение принято называть обобщенным законом Ома.
На этом рис. изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

По закону Ома,
IR = Δφcd.
Участок (ab) содержит источник тока с ЭДС, равной E.
По закону Ома для неоднородного участка,
Ir = Δφab + E.
Сложив оба равенства, получим:
I(R + r) = Δφcd + Δφab + E.
Но Δφcd = Δφba = – Δφab.
Поэтому

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Little prince

В интегральной форме: i=L*U | L-электропроводность, 1/R
В дифференциальной форме: j=A*E | A- электропроводность среды, j- плотность тока
Для замкнутого контура: i= E/(r+R) | уже приводили.. .
Для переменных токов: uo=io*sqrt (r^2 + (w*L -1/w*C)^2) |uo io - амплитуды тока и напряжения, r- активное сопротивление цепи, что в скобках и в квадрате - реактивная составляющая, sqrt = корень квадратный....

Оля семенова

Зако́н О́ма - эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Замкнутая цепь (рис. 2) состоит из двух частей - внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r ; внешняя - различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R . Тогда полное сопротивление цепи равно r + R .

По закону Ома для внешнего участка цепи 1 → 2 имеем:

\(~\varphi_1 - \varphi_2 = IR .\)

Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, \(~\varphi_2 - \varphi_1 + \varepsilon = Ir\). Сложив эти равенства, получим

\(~\varepsilon = IR + Ir . \qquad (1)\)

\(~I = \frac{\varepsilon}{R + r} . \qquad (2)\)

Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи .

Так как для однородного участка цепи разность потенциалов есть напряжение, то \(~\varphi_1 - \varphi_2 = IR = U\) и формулу (1) можно записать:

\(~\varepsilon = U + Ir \Rightarrow U = \varepsilon - Ir .\)

Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.

Подставим в последнюю формулу силу тока (2), получим

\(~U = \varepsilon \left(1 - \frac{r}{R + r} \right) .\)

Проанализируем это выражение для некоторых предельных режимов работы цепи.

а) При разомкнутой цепи (R → ∞) U = ε , т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.

На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока (\(~R_v \gg r\)). Для этого вольтметр подключают к клеммам источника тока.

б) Если к клеммам источника тока подключить проводник, сопротивление которого \(~R \ll r\), то R + r r , тогда \(~U = \varepsilon \left(1 - \frac{r}{r} \right) = 0\) , а сила тока \(~I = \frac{\varepsilon}{r}\) - достигает максимального значения.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием , а максимальную для данного источника силу тока называют током короткого замыкания:

\(~I_{kz} = \frac{\varepsilon}{r} .\)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 - 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), I kz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников "-" одного источника соединяется с "+" второго, "-" второго с "+" третьего и т.д. (рис. 3, а). Если ε 1 = ε 2 = ε 3 а r 1 = r 2 = r 3 то ε b = 3ε 1 , r b = 3r 1 . В этом случае закон Ома для полной цепи имеет вид\[~I = \frac{\varepsilon_b}{R + r_b} = \frac{3 \varepsilon_1}{R + 3r_1}\], или для n одинаковых источников \(~I = \frac{n \varepsilon_1}{R + nr_1}\).

Последовательное соединение применяют в том случае, когда внешнее сопротивление \(~R \gg nr_1\), тогда \(~I = \frac{n \varepsilon_1}{R}\) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.

При параллельном соединении источников тока все "+" источников соединены вместе и "-" источников - также вместе (рис. 3, б). В этом случае

\(~\varepsilon_b = \varepsilon_1 ; \ r_b = \frac{r_1}{3}.\)

Откуда \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{3}}\) .

Для n одинаковых источников \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{n}}\) .

Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.

Параллельное соединение выгодно, когда R невелико по сравнению с r .

Иногда применяют смешанное соединение источников.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 262-264.