4 ионные каналы клеточной мембраны. Биологические мембраны и ионные каналы

Ионные каналы (ИК) - это мембранные молекулярные структуры, образованные интегральными (трансмембранными) белками, пронизывающими клеточную мембрану поперёк в виде нескольких петель и образующими в мембране сквозной канал (пору). Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются дополнительные молекулярные системы: открытия, закрытия, избирательности, инактивации, рецепции и регуляции. ИК могут иметь не один, а несколько участков (сайтов) для связывания с управляющими веществами (лигандами).

ИК состоят из белков сложной структуры (белков-каналоформеров).

Белки ИК имеют определённую конформацию, образующую трансмембранную пору, и "вшиты" в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах по-отдельности и затем собираться в виде целостного канала. В другом случае канал может представлять собой единый полипептид, который в виде петель прошивает мембрану несколько раз. На начало XXI века известно более 400 белков-каналоформеров, для биосинтеза которых используется 1-2% генома человека.

Домены - это отдельные компактно оформленные части канального белка или субъединиц. Сегменты - это части белкка-каналоформера, свёрнутые спирально и прошивающие мембрану. Концевые домены белка-каналоформера (N- и С-терминальные домены) могут торчать из мембраны как наружу, так и внутрь клетки.

Практически все ИК имеют в составе своих субъединиц регуляторные домены , способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал-активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. При изменении потенциала такой сенсор меняет состояние канала с открытого на закрытое или наоборот. Таким образом, ИК могут управляться определёнными воздействиями извне, это важное их свойство.

ИК в своём составе могут иметь также вспомогательные субъединицы , выполняющие модуляторные, структурные или стабилизирующие функции. Один класс таких субъединиц - внутриклеточные, расположенные полностью в цитоплазме, а второй - мембранные, т.к. они имеют трансмембранные домены, прошивающие мембрану.

Классификация ионных каналов:

По типу активации
-Потенциалзависимые
-Лигандзависимые

Механоактивируемые

По селективности
-Селективные (Na, K, Ca, Cl)
-Неселективные

По кинетике
-Быстрые
-Медленные

Смешанные

Натриевый канал

Является потенциалзависимым ионным каналом, который обеспечивает быстрое увеличение натриевой проводимости, ответственное за фазу деполяризации при развитии потенциала действия в нервных и мышечных клетках. Каналы, выделенные из тканей млекопитающих, имеют молекулярную массу ~335000. Na+ -каналы взаимодействуют с различными токсинами, в частности с тетродотоксином, сакситоксином и α-токсином скорпиона, которые очень прочно связываются с канальными белками и могут использоваться при количественных биохимических измерениях.

Калиевый канал

Потенциалзависимые К-каналы расположенны как в плазматической мембране, так и в саркоплазматическом ретикулуме. Общим свойством этих каналов является чувствительность к ингибирующему действию тетраэтиламмония, 4-аминопиридина и Cs , хотя эффективность действия этих ингибиторов на разные подтипы каналов существенно различна. Эти каналы активируются при деполяризации и осуществляют реполяризацию мембраны во время потенциала действия. Скорость их инактивации низка - от 100 мс до нескольких секунд.

5. Понятие о возбудимости. Параметры возбудимости нервно-мышечной системы: порог раздражения (реобаза), полезное время (хронаксия). Зависимость силы раздражения от времени его действия (кривая Гоорвега-Вейса). Рефрактерность.

Возбудимость – это способность (свойство) некоторых физиологических систем отвечать на внешнее или внутреннее воздействие специализированной ответной реакцией – генерацией потенциала действия.

Клетки, способные к возбуждению (в организме человека), - мышечные, нервные, секреторные - называют возбудимыми. Все прочие клетки являются раздражимыми. Из этого следует, что раздражимость более общее свойство живых систем, тогда как возбудимость является частным и специализированным проявлением раздражимости.

Для любой возбудимой системы существует своя минимальная сила стимула, вызывающая возбуждение. Она получила название порог или реобаза.

Любой раздражитель должен действовать не меньше определенного времени, чтобы вызвать реакцию возбуждения это время именуют латентное или полезное время.

Хронаксия - это частный случай полезного времени действия стимула величиной в 2 порога (2 реобазы).

Лабильность – мера возбудимости или максимальный ритм импульсации, который способна воспроизвести возбудимая система в единицу времени. Величина лабильности обратно пропорциональна длительности фазы абсолютной рефрактерности, т.е. 1/АРФ (сек).

Закон длительности раздражений . Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега-Вейса-Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

График зависимости «сила-время/длительность» (кривая Гоорвега-Вейса-Лапика)

Рефрактерность – (физиологическое свойство возбудимых тканей) временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

6. Ионные насосы (АТФ-азы): К+-Na+-евая, Са2+-евая (плазмолеммы и саркоплазматического ретикулума). Н+-К+-лбменник.

Ионные каналы образованы белками, они весьма разнообразны по устройству и меха­низму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управ­ляемого ионного канала обычно длится око­ло 1 мс, иногда до 3 мс и значительно боль­ше, при этом через один канал может пройти 12-20 млн ионов.

Классификация ионных каналов прово­дится по нескольким признакам.

По возможности управления их функцией различают управляемые и неуправляе­мые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

По скорости движения ионов каналы могут быть быстрыми и медленными. Напри­мер, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с бы­стрыми каналами для Nа + и К + важную роль играют медленные каналы - кальциевые, ка­лиевые и натриевые.

В зависимости от стимула, активирую­щего или инактивирующего, управляемые ионные каналы различают несколько их видов: а) потенциалчувствительные, б) хемочувствительные,в) механочувствительные, г) кальцийчувствительные, д) каналы, чувст­вительные ко вторым посредникам. Послед­ние расположены во внутриклеточных мем­бранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить от­крытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д - это биологи­чески активное вещество или фармакологи­ческий препарат, активирующий или блокирующий рецептор. Открытие хемочувстви­тельных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых ка­налов открываются и закрываются при изме­нении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие элект­рический заряд. Механочувствительные ка­налы активируются и инактивируются сдав­ливанием и растяжением. Кальцийчувстви­тельные каналы активируются, как видно из названия, кальцием, причем Са 2+ может ак­тивировать как собственные каналы, напри­мер Са-каналы саркоплазматического ретикулума, так и каналы других ионов, напри­мер каналы ионов К + . Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные ка­налы. Следует заметить, что кальций-чувствительные каналы - это один из примеров хемо­чувствительных каналов.

В зависимости от селективности разли­чают ионоселективные каналы, пропускаю­щие только один ион, и каналы, не обладаю­щие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть кана­лы, пропускающие несколько ионов, напри­мер Nа + , К + и Са 2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нерв­но-мышечном синапсе активируются ионные каналы, через которые проходят одновремен­но ионы Nа + , К + и Са 2+ . Механочувствитель­ные каналы являются вообще неселективны­ми для одновалентных ионов и Са 2+ .

Один и тот же ион может иметь не­сколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К + :

а) неуправляемые каналы покоя (каналы утечки) через которые К + постоянно выходит из клетки, что является глав­ным фактором в формировании мем­бранного потенциала(потенциала покоя);

б) потенциалчувствительные управляемые К-каналы;

в) К-каналы, активируемые Са 2+ ;

г) каналы, активируемые и другими иона­ми и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца.

Каналы для Nа + - управляемые быстрые и медленные и неуправляемые (каналы утечки ионов):

а) потенциалчувствительные быстрые Na-каналы - быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа + в клетку во вре­мя ее возбуждения;

б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мы­шечном синапсе, глутаматом - в си­напсах нейронов ЦНС;

в) медленные неуправляемые Nа-каналы-каналы утечки, через которые Nа + постоянно диффундирует в клетку и пере носит с собой другие молекулы, напри­мер глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа + в фор­мировании мембранного потенциала.

Каналы для Са 2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и бы­стрые:

а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембра­ны, обусловливают медленный вход Са 2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС;

б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са 2+ в гиалоплазму и электромеханическое со­пряжение.

Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в неболь­шом количестве в нейронах и сконцентри­рованы в синапсах. Потенциалуправляемые С1 - каналы имеются в кардиомиоцитах, ре­цепторуправляемые в синапсах ЦНС и ак­тивируются тормозными медиаторами ГАМК и глицином.

Структура ионных каналов и их функци­онирование . Каналы имеют устье и селектив­ный фильтр, а управляемые каналы - и во­ротный механизм; каналы заполнены жид­костью, их размеры 0,3-0,8 нм. Селектив­ность ионных каналов определяется их раз­мером и наличием в канале заряженных час­тиц. Эти частицы имеют заряд, противопо­ложный заряду иона, который они притяги­вают, что обеспечивает проход иона через данный канал (одноименные заряды, как из­вестно, отталкиваются). Через ионные кана­лы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны из­бавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диа­метр иона Nа + , например, с гидратной обо­лочкой равен 0,3 нм, а без гидратной оболоч­ки - 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеива­ния» не в состоянии объяснить, например, почему К + не проходит через открытые Nа-каналы в начале цикла возбуждения клет­ки, но тем не менее она дает удовлетвори­тельное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (се­лективной) проницаемости клеточных мем­бран для разных частиц и ионов.

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых ка­налов способствует активации рядом распо­ложенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Час­тичная деполяризация клеточной мембраны за счет активации механочувствительных ка­налов может привести к активации потенциалчувствительных каналов Nа + , К + (или Cl -) и Са 2+ .

Ионные каналы блокируются специфи­ческими веществами и фармакологическими препаратами, что широко используется с ле­чебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd 3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхо­лином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые - двухвалентными ионами, на­пример ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм 2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успеш­ное изучение ионных каналов дает возмож­ность глубже понять механизм действия фар­макологических препаратов, а значит, более успешно применять их в клинической прак­тике. Новокаин, например, как местный анестетик снимает болевые ощущения пото­му, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волок­нам.

Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организ­ме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществля­ется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает пере­ход других, о чем свидетельствуют многие факты.

В процессе работы Nа/К-насоса энергия расходуется на перенос Na + из клетки в окружающую ее среду, тогда как перенос К + в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К + к активному ее участку.

Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и рас­пространение возбуждения.

Процесс перехода воды из одной облас­ти в другую, согласно закону осмоса, обеспе­чивает транспорт всех частиц, растворенных в ней и способных пройти через биологичес­кие фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на пере­нос частиц, растворенных в воде, которые следуют вместе с водой.

Натрийзависимый транспорт (транс­порт неэлектролитов) требует затрат энергии на перенос Nа + из клетки, но при этом часто диффузия Nа + в клетку обеспечивает переме­щение мембранных переносчиков, соединен­ных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа + (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-перенос­чиков, которые в свою очередь транспорти­руют ионы Са 2+ , Н + из клетки (противотранспорт, антипорт) согласно концентрацион­ному градиенту переносчиков.

Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энер­гии.

Диффузия газов в легких между возду­хом и кровью, а также в тканях между кро­вью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организ­ма и легких. Диффузия веществ из кишечни­ка, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту кон­центрации, на создание которого клетки ор­ганизма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц - в кишечнике) являются исключе­нием, когда транспорт в организме осущест­вляется вообще без затраты энергии. Однако энергия расходуется на доставку этих ве­ществ в организм - дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе.

Энергия, затрачиваемая сердцем на дви­жение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование.

Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа + , обеспечивает перенос подавляющего большинства веществ в организме.

Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирова­ние мембранных потенциалов клеток мы­шечной и нервной тканей, одной из функций последней является регуляция различных систем организма.

Конец работы -

Эта тема принадлежит разделу:

Физиология возбудимых тканей

Значение изучения раздела.. Раздел Физиология возбудимых тканей изучается первым в курсе нормальной физиологии Возбудимые ткани играют важную..


По определению Робертсона, клетку можно рассматривать как трифазную систему, которая состоит из нуклео-цитоплазматического матрикса, мембранной фазы и внешней фазы. На мембраны приходится около 2/3

Электрические явления в тканях
1.2.1.Открытие «животного электричества» В конце XVIII в. (1786 г.) профессор анато­мии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целена

Локальный потенциал (локальный ответ)
При раздражении возбудимой ткани не всегда возникает ПД. В частности, если сила раздражителя мала, деполяризация не достигнет критического уровня, естественно, не возникнет импульс­ное - распростра

Законы раздражения возбудимых тканей
Ответная реакция возбудимой ткани на действие раздражителя зависит от двух групп факторов: от возбудимости возбудимой ткани и от характеристик раздражителя. Возбудимость клетки изменяется

Тесты 1-2 уровня для самоконтроля знаний

  • 2 Принцип структурности. У каждого рефлекса есть свой морфологический субстрат, своя рефлекторная дуга.
  • 26. Рефлексы…
  • I. Безусловные рефлексы
  • II. Условные рефлексы
  • 29. Вегетативная нервная система…
  • Влияние отделов вегетативной нервной системы на органы
  • Вегетативные рефлексы
  • 32. Гуморальная регуляция функций…
  • Местная регуляция (1 уровень регуляции)
  • Региональная (органная) регуляция (2 уровень регуляции)
  • 1. Неспецифические метаболиты,
  • 2. Специфические метаболиты (тканевые гормоны). Система тканевых гормонов
  • 33. Гуморальная регуляция функций. Межсистемный уровень…
  • 1. Истинные гормоны.
  • 2. Парагормоны.
  • 1. Водорастворимые
  • Взаимодействие гормонов и парагормонов с клетками-мишенями
  • Различия нервной и гуморальной регуляции
  • 35. Гипоталамо-гипофизарная система…
  • 36. Передняя, задняя и промежуточная доли гипофиза…
  • 37. Щитовидная железа…
  • 38. Физиология надпочечников…
  • 1) Минералокортикоиды 2) глюкокортикоиды 3) половые гормоны
  • Гормоны мозгового вещества надпочечников
  • 39. Эндокринная функция поджелудочной железы…
  • Действие инсулина на белковый обмен
  • Влияние инсулина на жировой обмен
  • Регуляция инкреции инсулина
  • Эффекты глюкагона
  • Инсулиновый рецептор
  • 40. Женские половые железы…
  • 41. Мужские половые железы…
  • 42. Эндокринная функция эпифиза, тимуса, почек и сердца…
  • 43. Понятие о крови…
  • Состав плазмы крови
  • Электролитный состав плазмы/ммоль/л/
  • 44. Общая характеристика форменных элементов крови и их роль в организме. Гемопоэз, механизм и регуляция образования форменных элементов крови. Лейкоциты…
  • Клинико-физиологическая оценка содержания лейкоцитов
  • Анализ Лейкоцитарной формулы:
  • 45. Виды иммунитета…
  • Врожденный иммунитет Неспецифические механизмы защиты
  • 1. Вещества, обладающие антибактериальной и ан­тивирусной активностью (лизоцим, интерфероны).
  • 2. Система комплимента: система белков, разру­шающая целостность мембран клеток.
  • 3. Гранулоциты.
  • 1. Хемотаксис.
  • 2. Прикрепление чужеродного объекта к фагоциту.
  • 3. Поглощение.
  • 4. Лизис.
  • Главный комплекс гистосовместимости
  • 46. Эритроциты…
  • Эритрон
  • Эритрокинетика
  • Клинико-физиологическая оценка эритроцитов
  • Гемоглобин
  • Соединения гемоглобина:
  • Виды гемолиза
  • Осмотическая резистентность эритроцитов
  • Скорость оседания эритроцитов
  • 47. Понятие о системах групп крови…
  • 48. Понятие о гемостазе…
  • 1. Сосудистый компонент:
  • Тромбоциты
  • Функции тромбоцитов:
  • 49. Процесс свертывания крови… Гемокоагуляция (собственно свертывание крови)
  • 50. Противосвертывающие факторы…
  • Фибринолиз
  • 51. Физиологические свойства сердечной мышцы…
  • Особенности возбуждения сердечной мышцы
  • 52. Сердце, его гемодинамические функции...
  • Давление в полостях сердца в различные фазы сердечного цикла (мм рт. Ст.).
  • 53. Оценка нагнетательной (насосной) функции сердца… Сердечный цикл
  • 3. Фаза дополнительного наполнения желудочков - 0,1 сек.
  • 54. Механические проявления сердечной деятельности…
  • 55. Звуковые проявления сердечной деятельности…
  • 1. Тоны. 2. Шумы.
  • I тон соответствует зубцу r на экг.
  • 56. Электрические проявления сердечной деятельности…
  • Холтеровское /суточное/ мониторирование экг.
  • 57. Функциональная классификация кровеносных сосудов…
  • 2. Кровеносные сосуды
  • В системе кровообращения можно выделить три области
  • 2. Область транскапиллярного обмена
  • Общая характеристика движения крови по сосудам
  • 58. Сосудистый тонус…
  • 1. Сосудорасширяющие:
  • 1. Импульсы от рефлексогенных зон:
  • 2. Кортикальные влияния.
  • 59. Системная гемодинамика…
  • 60. Методы оценки основных показателей гемодинамики…
  • 1. Ультразвуковая допплерография (уздг) позво­ляет:
  • 2. Метод электромагнитной флоурометрии (расходометрия).
  • 3. Определение времени кругооборота крови.
  • 62. Регуляция системной гемодинамики…
  • 63. Микроциркуляция…
  • 64. Особенности гемодинамики в различных сосудистых ре­гионах. Легочное кровообращение…
  • 2. Важнейшие из гуморальных регуляторов
  • 65. Особенности гемодинамики в различных сосудистых ре­гионах. Почечный кровоток… Кровообращение в почках
  • Кровообращение скелетных мышц
  • Регуляция Гуморальная регуляция
  • Дистантная регуляция
  • Особенности кровообращения в нижних конечностях
  • 66. Лимфатическая система…
  • 67. Регуляция работы сердца…
  • 1.Основные рефлексогенные зоны сосудистого русла:
  • 2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечно­сосудистой системы:
  • 1. Ацетилхолин.
  • 2. Адреналин.
  • 68. Дыхание…
  • Взаимодействие грудной клетки и легких
  • При вдохе преодолевается ряд сил:
  • 69. Биомеханика спокойного вдоха и выдоха… Биомеханика спокойного вдоха
  • Биомеханика спокойного выдоха
  • Биомеханика форсированного вдоха
  • Биомеханика форсированного выдоха
  • 70. Клинико-физиологическая оценка внешнего дыхания. Ле­гочные объемы…
  • Легочные объёмы и ёмкости
  • Методы измерения легочных объемов
  • 3. Определение остаточного объема
  • 71. Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели...
  • 72. Газообмен в легких и тканях…
  • 73. Транспорт газов кровью…
  • 74. Регуляция дыхания…
  • 75. Механизмы перестройки внешнего дыхания…
  • 2.4. Раздражение рецепторов скелетных мышц.
  • 5.Участие коры головного мозга в регуляции дыхания.
  • 76. Пищеварение и его значение…
  • 77. Виды моторики пищеварительного тракта…
  • 1. Тонус гладкой мускулатуры пищеварительной трубки.
  • 2. Перистальтика гладкой мускулатуры пищеварительной трубки.
  • 3. Ритмическая сегментация гладкой мускулатуры пищева­рительной трубки.
  • 4. Маятникообразные движения гладкой мускулатуры пи­щеварительной трубки.
  • 5. Антиперистальтика гладкой мускулатуры пищевари­тельной трубки.
  • 6. Закрытие и открытие сфинктеров пищеварительной трубки.
  • 78. Пищеварение в полости рта…
  • Регуляция слюноотделения
  • 79. Пищеварении в желудке… Секреция в желудке
  • Моторная функция желудка
  • В моторике желудка выделяют в основном 4 вида:1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация. 4. Маятникообразные движения
  • Механизм перехода пищи из желудка в 12-перстную кишку
  • 80. Пищеварение в 12-перстной кишке…
  • Сок поджелудочной железы
  • Карбогидразы поджелудочного сока
  • Регуляция секреции поджелудочной железы
  • 81. Роль печени в пищеварении… Желчь
  • Моторная функция желчных путей
  • 82. Состав и свойства кишечного сока… Сок тонкой кишки
  • Сок толстой кишки
  • Регуляция секреции в тонком кишечнике
  • Моторная функция тонкой кишки
  • Пристеночное (мембранное) пищеварение
  • 83. Всасывание…
  • 84. Принципы регуляции деятельности пищеварительной сис­темы…
  • 85. Пластическая и энергетическая роль углеводов, жиров и белков…
  • 86. Энергообмен…
  • Основной обмен
  • Рабочий обмен
  • 1. Прямая калориметрия.
  • 87. Тепловой обмен…
  • Температура тела человека
  • Терморегуляция
  • 1) Центральные
  • 2) Эффекторные
  • 88. Гомеостатические функции почек…
  • 89. Выделительная функция почек. Механизмы образования первичной мочи…
  • 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
  • Клубочковая фильтрация.
  • 90. Выделительная функция почек. Образование конечной (вторичной) мочи…
  • 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
  • Клинико-физиологическая оценка деятельности почек
  • 2.Определение удельного веса мочи. Удельный вес (или плотность) мочи колеблется в пределах от 1,014 до 1, 025.
  • 4.Определение мочевины, мочевой кислоты, общего азота и креатинина.
  • 91. Регуляция функции почек…
  • 1. Нервная. 2. Гуморальная (наиболее выраженная).
  • 92. Водный баланс…
  • 2.За счет оптимального распределения воды между водными пространствами и секторами организма.
  • 94. Ретикулярная формация…
  • Гипоталямус
  • Передний мозг
  • 95. Кора больших полушарий…
  • 2. Раздражение отдельных зон коры больших полушарий.
  • 3. Регистрация биопотенциалов отдельных нейронов и суммарной их активности.
  • Таламолобная система представлена 9, 10, 11, 12, 13, 14 полями. Основная роль сводится к инициации базовых механизмов формирования функциональных систем целенаправленных поведенческих актов. Она:
  • Обеспечивает взаимоувязку доминирующей мотивации с возбуждениями, поступившими в кору от сенсорных систем;
  • Обеспечивает прогнозирование ожидаемого результата действия;
  • Обеспечивает сравнение достигнутых конечных результатов действия с ожидаемым результатом (прогнозом).
  • 96. Межполушарные взаимоотношения…
  • Функциональная асимметрия Выделяют следующие виды межполушарной функциональной асимметрии мозга: 1) психическую, 2) сенсорную, 3) моторную. Проявляться это будет в следующем:
  • Парность в деятельности коры больших полушарий
  • 97. Анализаторы…
  • Общие свойства анализаторов
  • 4. Дифференцировка анализатора по вертикали и горизонтали:
  • 2. Проводниковый отдел.
  • 98. Зрительный анализатор…
  • 1) Ядрах верхних бугров четверохолмья,
  • 100. Биологическое значение боли…
  • Нейрохимические механизмы ноцицепции
  • Антиноцицептивная (обезболивающая) система мозга
  • Нейрохимические механизмы антиноцицептивной системы
  • Взаимоотношения ноцицептивной и антиноцицептивной систем
  • 101. Условные рефлексы…
  • Биологический смысл условного рефлекса
  • Периоды образования условного рефлекса
  • 102. Корковое торможение…
  • Условный тормоз
  • Сон и бодрствование
  • 103. I и II сигнальные системы…
  • 1. Художественный тип - мыслит образами – преобладает чувственное /образное/ восприятие мира.
  • 2.Мыслительный тип - характерно абстрактное мышление
  • 104. Потребности и мотивации…
  • Потребность сохранения вида
  • 105. Эмоции…
  • Теории формирования эмоций
  • Положительные эмоции
  • 106. Память…
  • Процессы памяти включают 4 стадии
  • 1.Восприятие, запечатление и запоминание.
  • Теории памяти
  • 12. Ионные каналы…

    Ионный канал состоит из нескольких субъединиц, их ко­личество в отдельном ионном канале составляет от 3 до 12 субъединиц. По своей организации субъединицы, входящие в канал, могут быть гомологичными (однотипными), ряд кана­лов сформирован разнотипными субъединицами.

    Каждая из субъединиц состоит из нескольких (три и бо­лее) трансмембранных сегментов (неполярные части, закру­ченные в α-спирали), из вне- и внутриклеточных петель и концевых участков доменов (представлены полярными облас­тями молекул, формирующих домен и выступающих за преде­лы билипидного слоя мембраны).

    Каждый из трансмембранных сегментов, вне- и внутрик­леточных петель и концевых участков доменов выполняет свою функцию.

    Так, трансмембранный сегмент 2, организованный в виде α-спирали, определяет селективность канала.

    Концевые участки домена выступают в качестве сенсоров к вне- и внутриклеточным лигандам, а один из трансмембран­ных сегментов играет роль потенциалзависимого сенсора.

    Третьи трансмембранные сегменты в субъединице от­ветственны за работу воротной системы каналов и т.д.

    Ионные каналы работают по механизму облегченной диффузии. Движение по ним ионов при активации каналов идет по градиенту концентрации. Скорость перемещения через мембрану составляет 10 ионов в секунду.

    Специфичность ионных каналов.

    Большая часть из них относятся к селективным, т.е. кана­лам, пропускающим только один вид ионов (натриевые кана­лы, калиевые каналы, кальциевые каналы, анионные каналы).

    Селективность канала.

    Селективность канала определяется наличием избира­тельного фильтра.

    Его роль выполняет начальный участок канала, который имеет определенный заряд, конфигурацию и размер (диа­метр), что позволяет пройти в канал только определенному виду ионов.

    Некоторые из ионных каналов неселективные, например, каналы "утечки". Это такие каналы мембраны, по которым в состоянии покоя по градиенту концентрации из клетки выхо­дят ионы К + , однако по этим каналам в клетку в состоянии по­коя по градиенту концентрации входит и небольшое количество ионовNa + .

    Сенсор ионного канала.

    Сенсор ионного канала - чувствительная часть канала, ко­торая воспринимает сигналы, природа которых может быть различна.

    На этой основе выделяют:

      потенциалзависимые ионные каналы;

      рецепторуправляемые ионные каналы;

      лигандуправляемые (лигандзависимые);

      механоуправляемые (механозависимые).

    Каналы, имеющие сенсор, называются управляемыми. У некоторых каналов сенсор отсутствует. Такие каналы называ­ют неуправляемыми.

    Воротная система ионного канала.

    У канала есть ворота, которые закрыты в состоянии покоя и открываются при воздействии сигнала. У некоторых каналов выделяют два вида ворот: активационные (m-ворота) и инактивационные (h-ворота).

    Выделяют три состояния ионных каналов:

      состояние покоя, когда ворота закрыты и канал недо­ступен для ионов;

      состояние активации, когда воротная система открыта и ионы перемещается через мембрану по каналу;

      состояние инактивации, когда канал закрыт и не отве­чает на стимулы.

    Скорость проведения (проводимость).

    Бывают быстрые и медленные каналы. Каналы “ утечки ” - медленные, натриевые каналы в нейронах - быстрые.

    В мембране любой клетки имеется большой набор разно­образных (по скорости) ионных каналов, от активации кото­рых зависит функциональное состояние клеток.

    Потенциалуправляемые каналы.

    Потенциалуправляемый канал состоит из:

      поры, заполненной водой;

    • селективного фильтра;

      активационных и инактивационных ворот;

      сенсора напряжения.

    Диаметр канала значительно больше диаметра иона, в зоне селективного фильтра он сужается до атомарных размеров, это и обеспечивает выполнение данным участком канала функции селективного фильтра.

    Открытие и закрытие воротного механизма возникает при изменении мембранного потенциала, причем открываются во­рота при одном значении мембранного потенциала, а закрыва­ются при другом уровне потенциала мембраны.

    Считается, что изменение электрического поля мембраны воспринимается специальным участком стенки канала, кото­рый получил название сенсор напряжения.

    Изменение его состояния, обусловленное изменением уровня мембранного потенциала, вызывает конформацию бел­ковых молекул, формирующих канал, и, как следствие, ведет к открытию или закрытию ворот ионного канала.

    Каналы (натриевые, кальциевые, калиевые) имеет четыре гомологичных домена - субъединицы (I,II,III,IV). Домен (на примере натриевых каналов) состоит из шести трансмембран­ных сегментов, организованных в виде а-спиралей, каждый из которых играет свою роль.

    Так, трансмембранный сегмент 5 играет роль поры, транс­мембранный сегмент 4 сенсора, реагирующего на изменение потенциала мембраны, другие трансмембранные сегменты от­ветственны за активацию и инактивацию воротной системы канала. До конца роль отдельных трансмембранных сегментов и субъединиц не изучена.

    Натриевые каналы (внутренний диаметр 0,55 нм) имеют­ся в клетках возбудимых тканей. Плотность на 1 мкм 2 в раз­личных тканях не одинакова.

    Так, в немиелиновых нервных волокнах она составляет 50-200 каналов, а в миелиновых нервных волокнах (перехваты Ранвье) - 13000 на 1 мкм 2 площади мембраны. В состоянии по­коя они закрыты. Мембранный потенциал составляет 70-80 мВ.

    Воздействие раздражителя изменяет мембранный потен­циал и активирует потенциалзависимый натриевый канал.

    Он активируется при смещении потенциала мембраны от уровня потенциала покоя в направлении критического уровня деполяризации.

    Сильный натриевый ток обеспечивает смещение потенци­ала мембраны до критического уровня деполяризации (КУД).

    Изменение мембранного потенциала до -50-40 мВ, т.е. до уровня критического уровня деполяризации, вызывает откры­тие других потенциалзависимых № + -каналов, через которые осуществляется входящий натриевый ток, формирующий "пик" потенциала действия.

    Ионы натрия по градиенту концентрации и химическому градиенту по каналу перемещаются в клетку, формируя так называемый входящий натриевый ток, что приводит к даль­нейшему быстрому развитию процесса деполяризации.

    Мембранный потенциал изменяет знак на противополож­ный +10-20 мв. Положительный мембранный потенциал вы­зывает закрытие натриевых каналов, их инактивацию.

    Потенциалзависимые № + -каналы играют ведущую роль в формировании потенциала действия, т.е. процесса возбужде­ния в клетке.

    Ионы кальция затрудняют открытие потенциалзависимых натриевых каналов, изменяя параметры реагирования.

    К + -каналы

    Калиевые каналы (внутренний диаметр 0,30 нм) имеются в цитоплазматических мембранах, обнаружено значительное количество каналов "утечки" калия из клетки.

    В состоянии покоя они открыты. Через них в состоянии покоя происходит "утечка" калия из клетки по градиенту кон­центрации и электрохимическому градиенту.

    Этот процесс обозначается как выходящий калиевый ток, который приводит к формированию потенциала покоя мемб­раны (-70-80 мВ). Эти калиевые каналы можно лишь условно отнести к потенциалзависимым.

    При изменении мембранного потенциала в процессе депо­ляризации происходит инактивация калиевого тока.

    При реполяризации через потенциалзависимые каналы формируется входящий К + ток, который получил название К + ток задержанного выпрямления.

    Еще один тип потенциалзависимых К + -каналов. По ним возникает быстрый выходящий калиевый ток в подпороговой области мембранного потенциала (положительный следовой потенциал). Инактивация канала происходит за счет следовой гиперполяризации.

    Другой тип потенциалзависимых калиевых каналов акти­вируется только после предварительной гиперполяризации, он формирует быстрый транзиторный калиевый ток, который быстро инактивируется.

    Ионы кальция облегчают открытие потенциалзависимых калиевых каналов, изменяя параметры реагирования.

    Са + -каналы.

    Потенциалуправляемые каналы вносят существенный вклад как в регуляцию входа кальция в цитоплазму, так и в электрогенез.

    Белки, образующие кальциевые каналы, состоят из пяти субъединиц (al,a2,b,g,d).

    Главная субъединица alформирует собственно канал и содержит места связывания для различных модуляторов каль­циевых каналов.

    Было обнаружено несколько структурно различных alсубъединиц кальциевых каналов в нервных клетках млекопи­тающих (обозначенных как А, В, С,Dи Е).

    Функционально кальциевые каналы различных типов от­личаются друг от друга активацией, кинетикой, проводимос­тью одиночного канала и фармакологией.

    В клетках описано до шести типов потенциалуправляемых кальциевых каналов (Т - ,L - ,N - ,P - ,Q - ,R - каналы).

    Активность потенциалуправляемых каналов плазмалеммы регулируется различными внутриклеточными вторич­ными посредниками и мембранно-связанными G-белками.

    Кальциевые потенциалзависимые каналы обнаружены в большом количестве в цитоплазматических мембранах нейро­нов, миоцитах гладких, поперечно-полосатых и сердечных мышц и в мембранах эндоплазматического ретикулума.

    Са 2+ -каналы СПР являются олигомерными протеинами, встроенными в мембрану СПР.

    Са 2+ -управляемые Са 2+ -каналы СПР.

    Эти кальциевые каналы были впервые выделены из ске­летных и сердечных мышц.

    Оказалось, что Са 2+ -каналы СПР в этих мышечных тканях имеют молекулярные различия и кодируются различными ге­нами.

    Са 2+ -каналы СПР в сердечных мышцах непосредственно связаны с высокопороговыми Са 2+ -каналами плазмалеммы (L-тип) через кальцийсвязывающие белки, образуя, таким обра­зом, функционально активную структуру - "триаду".

    В скелетных мышцах деполяризация плазмалеммы прямо активирует освобождение Са 2+ из эндоплазматического ретикулума благодаря тому, что Са 2+ -каналы плазмалеммы служат потенциалчувствительными передатчиками активирующего сигнала непосредственно Са 2+ -каналам СПР через связываю­щие белки.

    Таким образом, Са 2+ -депо скелетных мышц обладают ме­ханизмом освобождения Са 2+ , вызываемым деполяризацией (RyRl-тип).

    В отличие от скелетных мышц, эндоплазматические Са 2+ -каналы кардиомиоцитов не связаны с плазмалеммой, и для стимуляции освобождения Са 2+ из депо требуется увели­чение концентрации цитозольного кальция (RyR2-тип).

    Кроме этих двух типов Са 2+ -активируемых Са 2ч -каналов, недавно был идентифицирован третий тип Са 2+ -каналов СПР (RyR3-тип), который еще изучен не достаточно.

    Для всех кальциевых каналов характерна медленная акти­вация и медленная инактивация по сравнению с натриевыми каналами.

    При деполяризации мышечной клетки (выпячивания цитоплазматических мембран - Т-трубочки подходят к мембра­нам эндоплазматического ретикулума) происходит потенциалзависимое открытие кальциевых каналов мембран саркоплазматического ретикулума.

    Так как, с одной стороны, концентрация кальция в СПР велика (депо кальция), а концентрация кальция в цитоплазме низка, а с другой - площадь мембраны СПР и плотность каль­циевых каналов в ней велики, то уровень кальция в цитоплаз­ме увеличивается в 100 раз.

    Такое увеличение концентрации кальция инициирует процесс сокращения миофибрилл.

    Кальциевые каналы в кардиомиоцитах находятся в цитоплазматической мембране и относятся к кальциевым каналам L-типа.

    Активируются при потенциале мембраны +20-40 мВ, фор­мируют входящий кальциевый ток. Длительно находятся в ак­тивированном состоянии, формируют "плато" потенциала действия кардиомиоцита.

    Анионные каналы.

    Наибольшее количество в мембране клетки каналов для хлора. В клетке меньше ионов хлора по сравнению с межкле­точным окружением. Поэтому при открытии каналов хлор входит в клетку по градиенту концентрации и электрохими­ческому градиенту.

    Количество каналов для НСО 3 не столь велико, объем транспорта этого аниона через каналы существенно меньше.

    Ионные обменники.

    В мембране имеются ионные обменники (белки-перенос­чики), которые осуществляют облегченную диффузию ионов, т.е. ускоренное сопряженное перемещение ионов через биомембрану по градиенту концентрации, такие процессы явля­ются АТФ-независимыми.

    Наиболее известны Na + -H + ,K + -H + ,Ca 2+ -H + обменники, а также обменники, обеспечивающие обмен катионов на ани­оныNa + -HCO- 3 , 2CI-Са 2+ и обменники, обеспечивающие обмен катиона на катион (Na + -Са 2+) или аниона на анион (Сl- НСOз).

    Рецепторуправляемые ионные каналы.

    Лигандуправляемые (лигандзависимые) ионные каналы.

    Лигандуправляемые ионные каналы являются подвидом рецепторуправляемых каналов и всегда совмещены с рецепто­ром к биологически активному веществу (БАВ).

    Рецепторы рассматриваемых каналов относятся к ионотропному типу мембранных рецепторов, при взаимодействии которых с БАВ (лиганды) возникают быстропротекающие ре­акции.

    Лигандуправляемый ионный канал состоит из:

      поры, заполненной водой;

      селективного фильтра;

      активационных ворот;

      центра связывания лиганда (рецептор). Высокоэнергетически активное БАВ обладает высоким

    сродством (аффинитетом) к определенному виду рецепторов. При активации ионных каналов происходит перемещение оп­ределенных ионов по градиенту концентрации и электрохими­ческому градиенту.

      В рецепторе мембраны центр связывания лиганда может быть доступен для лиганда с наружной поверхности мембраны.

    В этом случае в качестве лиганда выступают гормоны и парагормоны, ионы.

    Так, при активации N-холинорецепторов активируются натриевые каналы.

    Кальциевую проницаемость инициируют нейрональные ацетилхолинуправляемые, глютаматуправляемые (NMDAи АМРА / каинаттипы) рецепторы и пурино-рецепторы.

    ГАМК А -рецепторы сопряжены с ионными хлорными каналами, с хлорными каналами сопряжены и глицино­вые рецепторы.

      В рецепторе мембраны центр связывания лиганда может быть доступен для лигандов с внутренней поверхности мембраны.

    В этом случае в качестве лиганда выступают протеинкиназы, активированные вторыми посредниками, или сами вторые посредники.

    Так, протеинкиназы А, С, G, фосфорилируя белки катионных каналов, изменяют их проницаемость.

    Механоуправляемые ионные каналы.

    Механоуправляемые ионные каналы изменяют свою про­водимость для ионов либо за счет изменения натяжения билипидного слоя, либо через цитоскелет клетки. Множество механоуправляемых каналов сопряжено с механорецепторами, они существуют в слуховых клетках, мышечных верете­нах, сосудистом эндотелии.

    Все механоуправляемые каналы делятся на две группы:

      активирующиеся при растяжении клеток (SAC);

      инактивирующиеся при растяжении клеток (SIC).

    У механоуправляемых каналов имеются все основные ка­нальные признаки:

      пора, заполненная водой;

      воротный механизм;

      сенсор, реагирующий на растяжение.

    При активации канала по нему происходит перемещение ионов по градиенту концентрации.

    Натрий, калиевая АТФаза.

    Натрий, калиевая АТФаза (натрий-калиевый насос, на­трий-калиевая помпа).

    Состоит из четырех трансмембранных доменов: из двух α-субъединиц и двух β-субъединиц. α-субъединица является большим доменом, а β-субъединица - малым. В ходе транс­порта ионов фосфорилируются большие субъединицы и через них перемещаются ионы.

    Натрий, калиевая АТФаза играет важнейшую роль в под­держании гомеостаза натрия и калия во внутри- и внеклеточ­ной среде:

      поддерживает высокий уровень К + и низкий уровеньNa + в клетке;

      участвует в формировании мембранного потенциала покоя, в генерации потенциала действия;

      обеспечивает Na + сопряженный транспорт большинства органических веществ через мембрану (вторично-активный транспорт);

      существенно влияет на гомеостаз Н 2 О.

    Натрий, каливая АТФаза вносит наиболее важный вклад в формирование ионной асимметрии во вне- и внутриклеточных пространствах.

    Поэтапная работа натрий, калиевого насоса обеспечивает неэквивалентный обмен калия и натрия через мембрану.

    Са + -АТФаза (насос).

    Существуют два семейства Са 2+ -насосов, ответственных за устранение ионов Са 2+ из цитоплазмы: Са 2+ -насосы плазмалеммы и Са 2+ -насосы эндоплазматического ретикулума.

    Хотя они относятся к одному семейству белков (так назы­ваемому Р-классу АТФаз), эти насосы обнаруживают некото­рые различия в строении, функциональной активности и фармакологии.

    Находится в большом количестве в цитоплазматической мембраны. В цитоплазме клетки в покое концентрация каль­ция составляет 10-7 моль/л, а вне клетки значительно больше -10-3 моль/л.

    Такая значительная разница концентраций поддерживает­ся за счет работы цитоплазматической Са ++ -АТФазы.

    Активность Са 2+ -насоса плазмалеммы контролируется не­посредственно Са 2+ : увеличение концентрации свободного кальция в цитозоле активирует Са 2+ -насос.

    В покое диффузия через кальциевые ионные каналы поч­ти не происходит.

    Са-АТФаза транспортирует Са из клетки во внеклеточную среду против его концентрационного градиента. По градиенту Са + поступает в клетку благодаря диффузии через ионные каналы.

    В мембране эндоплазматического ретикулума также со­держится большое количество Са ++ -АТФазы.

    Кальциевый насос эндоплазматического ретикулума (SERCA) обеспечивает удаление кальция из цитозоля в эндоплазматический ретикулум - "депо" кальция за счет первично активного транспорта.

    В депо кальций связывается с кальцийсвязывающими белками (кальсеквестрином, кальретикулином и др.).

    В настоящее время описано по крайней мере три различ­ных изоформы SERCA-насосов.

    SERCA1-подтип сосредоточен исключительно в быстрых скелетных мышцах,SERCA2-насосы широко распространены в других тканях. ЗначимостьSERCA3 -насосов менее ясна.

    Белки SERCA2-нacocoв разделяются на две различные изоформы:SERCA2a, характерные для кардиомиоцитов и гладких мышц, иSERCA2b, характерные для тканей мозга.

    Увеличение Са 2+ в цитозоле активирует захват ионов кальция в эндоплазматический ретикулум, в то время как уве­личение свободного кальция внутри эндоплазматического ретикулума ингибирует насосыSERCA.

    Н+ К+ -АТФаза (насос).

    При помощи этого насоса (в результате гидролиза одной молекулы АТФ) в обкладочных (париетальных) клетках слизистой желудка происходит транспорт двух ионов калия из внеклеточного пространства в клетку и двух ионов Н+ из цитозоля во внеклеточное пространство при гидролизе одной молекулы. Этот механизм лежит в основе образования соляной кислоты в желудке.

    Ионный насос класс F .

    Митохондриальная АТФаза. Катализирует конечный этап синтеза АТФ. Крипты митохондрий содержат АТФ-синтазу, сопрягающую окисление в цикле Кребса и фосфорилирование АДФ до АТФ.

    Ионный насос класса V .

    Лизосомальные Н + -АТФазы (лизосомальные протонные насосы) - протонные насосы, обеспечивающие транспорт Н + из цитозоля в ряд органелл-лизосомы, аппарат Гольджи, сек­реторные везикулы. В результате понижается значение рН, на­пример, в лизосомах до 5,0 что оптимизирует деятельность этих структур.

    Особенности ионного транспорта

    1. Значительный и асимметричный трансмембранный! градиент для Na + и К + в покое.

    Натрия вне клетки (145 ммоль/л) в 10 раз больше, чем в клетке (14 ммоль/л).

    Калия в клетке (140 ммоль/л) примерно в 30 раз больше, чем вне клетки (4 ммоль/л).

    Эта особенность распределения ионов натрия и калия:

      гомеостатируется работой Na + /K + -нacoca;

      формирует в покое выходящий калиевый ток (канал утечки);

      формирует потенциал покоя;

      работа любых калиевых каналов (потенциалзависимых, кальцийзависимых, лигандзависимых) направлена на формирование выходящего калиевого тока.

    Это либо возвращает состояние мембраны к исходному уровню (активация потенциалзависимых каналов в фазу реполяризации), либо гиперполяризует мембрану (кальцийзависимые, лигандзависимые каналы, в том числе и активируемые системами вторых посредников).

    Следует иметь в виду, что:

      перемещение калия через мембрану осуществляется путем пассивного транспорта;

      формирование возбуждения (потенциала действия) всегда обусловлено входящим натриевым током;

      активация любых натриевых каналов всегда вызывает входящий натриевый ток;

      перемещение натрия через мембрану осуществляется почти всегда путем пассивного транспорта;

      в эпителиальных клетках, образующих в тканях стенку разных трубок, полостей (тонкий кишечник, канальца нефрона и др.), во внешней мембране всегда имеется большое количество натриевых каналов, обеспечиваю­щих при активации входящий натриевый ток, а в базальной мембране - большое число натрий, калиевых насосов, выкачивающих натрий из клетки. Такое асим­метричное распределение этих транспортных систем для натрия обеспечивает его трансклеточный перенос, т.е. из просвета кишечника, почечных канальцев во внутреннюю среду организма;

      пассивный транспорт натрия в клетку по электрохими­ческому градиенту ведет к накоплению энергии, кото­рая используется для вторично активного транспорта многих веществ.

    2. Низкий уровень кальция в цитозоле клетки.

    В клетке в покое содержание кальция (50 нмоль/л) в 5000 раз ниже, чем вне клетки (2,5 ммоль/л).

    Такой низкий уровень кальция в цитозоле не случаен, так как кальций в концентрациях в 10-100 раз больше исходной выступает в качестве второго внутриклеточного посредника в реализации сигнала.

    В таких условиях возможно быстрое увеличение кальция в цитозоле за счет активации кальциевых каналов (облегчен­ная диффузия), которые в большом количестве имеются в цитоплазматической мембране и в мембране эндоплазматического ретикулума (эндоплазматический ретикулум - "депо" кальция в клетке).

    Формирование потоков кальция, происходящее за счет открытия каналов, обеспечивает физиологически значимое повышение концентрации кальция в цитозоле.

    Низкий уровень кальция в цитозоле клетки поддержива­ется Са 2+ -АТФазой,Nа + /Са 2+ -обменниками, кальцийсвязывающими белками цитозоля.

    Кроме быстрого связывания цитозольного Са 2+ внутрик­леточными Са 2+ -связывающими белками, ионы кальция, по­падающие в цитозоль, могут аккумулироваться аппаратом Гольджи или клеточным ядром, захватываться митохондриальными Са 2+ -депо.

    3. Низкий уровень хлора в клетке.

    В клетке в покое содержание хлора (8 ммоль/л) более чем в 10 раз ниже, чем вне клетки (110 ммоль/л).

    Такое состояние поддерживается работой К + /Сl- -транспортер.

    Изменение функционального состояния клетки связано (или обусловлено) с изменением проницаемости мембраны для хлора. При активации протенциал- и лигандуправляемых хлорных каналов ион через канал путем пассивного транспор­та входит в цитозоль.

    Кроме того, вход хлора в цитозоль формируется за счет № + /К + /2СГ-котранспортера и СГ-НСО 3 -обменник.

    Вход хлора в клетку увеличивает полярность мембраны вплоть до гиперполяризации.

    Особенности ионного транспорта играют основополагаю­щую роль в формировании биоэлектрических явлений в орга­нах и тканях, которые кодируют информацию, определяют функциональное состояние этих структур, их переход из одно­го функционального состояния в другое.

    Модель возбудимой мембраны по теории Ходжкина-Хаксли предполагает регулируемый перенос ионов через мембрану. Однако непосредственный переход иона через липидный бислой весьма затруднен, а следовательно, был бы мал и поток ионов.

    Это и ряд других соображений дали основание считать, что в мембране должны быть некоторые специальные структуры - проводящие ионы. Такие структуры были найдены и названы ионными каналами. Подобные каналы выделены из различных объектов: плазматической мембраны клеток, постсинаптической мембраны мышечных клеток и других объектов. Известны также ионные каналы, образованные антибиотиками.

    Основные свойства ионных каналов:

    1) селективность;

    2) независимость работы отдельных каналов;

    3) дискретный характер проводимости;

    4) зависимость параметров каналов от мембранного потенциала.

    Рассмотрим их по порядку.

    1. Селективностью называют способность ионных каналов избирательно пропускать ионы какого-либо одного типа.

    Еще в первых опытах на аксоне кальмара было обнаружено, что ионы Na+ и Кт по-разному влияют на мембранный потенциал. Ионы К+ меняют потенциал покоя, а ионы Na+ - потенциал действия. В модели Ходжкина-Хаксли это описывается путем введения независимых калиевых и натриевых ионных каналов. Предполагалось, что первые пропускают только ионы К+, а вторые - только ионы Na+.

    Измерения показали, что ионные каналы обладают абсолютной селективностью по отношению к катионам (катион-селективные каналы) либо к анионам (анион-селективные каналы). В то же время через катион-селективные каналы способны проходить различные катионы различных химических элементов, но проводимость мембраны для неосновного иона, а значит, и ток через нее, будет существенно ниже, например, для Na + -кaнала калиевый ток через него будет в 20 раз меньше. Способность ионного канала пропускать различные ионы называется относительной селективностью и характеризуется рядом селективности - соотношением проводимостей канала для разных ионов, взятых при одной концентрации. При этом для основного иона селективность принимают за 1. Например, для Na+-канала этот ряд имеет вид:

    Na + : К + = 1: 0,05.

    2. Независимость работы отдельных каналов. Прохождение тока через отдельный ионный канал не зависит от того, идет ли ток через другие каналы. Например, К + -каналы могут быть включены или выключены, но ток через Nа + -каналы не меняется. Влияние каналов друг на друга происходит опосредованно: изменение проницаемостей каких-либо каналов (например, натриевых) меняет мембранный потенциал, а уже он влияет на проводимости прочих ионных каналов.

    3. Дискретный характер проводимости ионных каналов. Ионные каналы представляют собой субъединичный комплекс белков, пронизывающий мембрану. В центре его существует трубка, сквозь которую могут проходить ионы. Количество ионных каналов на 1 мкм 2 поверхности мембраны определяли с помощью радиоактивно меченного блокатора натриевых каналов - тетродотоксина. Известно, что одна молекула ТТХ связывается только с одним каналом. Тогда измерение радиоактивности образца с известной площадью позволило показать, что на 1 мкм 2 аксона кальмара находится около 500 натриевых каналов.

    Те трансмембранные токи, которые измеряют в обычных экспериментах, например, на аксоне кальмара длиной 1 см и диаметром 1 мм, то есть площадью 3*10 7 мкм 2 , обусловлены суммарным ответом (изменением проводимости) 500 3 10 7 -10 10 ионных каналов. Для такого ответа характерно плавное во времени изменение проводимости. Ответ одиночного ионного канала меняется во времени принципиально иным образом: дискретно и для Nа+-каналов, и для К+- , и для Са 2+ -каналов.

    Впервые это было обнаружено в 1962 г. в исследованиях проводимости бислойных липидных мембран (БЛМ) при добавлении в раствор, омывающий мембрану, микроколичеств некоторого вещества, индуцировавшего возбуждение. На БЛМ подавали постоянное напряжение и регистрировали ток I(t). Запись тока во времени имела вид скачков между двумя проводящими состояниями.

    Одним из эффективных методов экспериментального исследования ионных каналов стал разработанный в 80-е годы метод локальной фиксации потенциала мембраны ("Patch Clamp"), (рис. 10).

    Рис. 10. Метод локальной фиксации потенциала мембраны. МЭ - микроэлектрод, ИК - ионный канал, М - мембрана клетки, СФП - схема фиксации потенциала, I - ток одиночного канала

    Суть метода заключается в том, что микроэлектрод МЭ (рис. 10) тонким концом, имеющим диаметр 0,5-1 мкм, присасывается к мембране таким образом, чтобы в его внутренний диаметр попал ионный канал. Тогда, используя схему фиксации потенциала, можно измерять токи, которые проходят только через одиночный канал мембраны, а не через все каналы одновременно, как это происходит при использовании стандартного метода фиксации потенциала.

    Результаты экспериментов, выполненных на различных ионных каналах, показали, что проводимость ионного канала дискретна и он может находиться в двух состояниях: открытом или закрытом. Переходы между состояниями происходят в случайные моменты времени и подчиняются статистическим закономерностям. Нельзя сказать, что данный ионный канал откроется именно в этот момент времени. Можно лишь сделать утверждение о вероятности открывания канала в определенном интервале времени.

    4. Зависимость параметров канала от мембранного потенциала. Ионные каналы нервных волокон чувствительны к мембранному потенциалу, например натриевый и калиевый каналы аксона кальмара. Это проявляется в том, что после начала деполяризации мембраны соответствующие токи начинают изменяться с той или иной кинетикой. Этот процесс происходит следующим образом: Ион-селективный канал имеет сенсор - некоторый элемент своей конструкции, чувствительный к действию электрического поля (рис. 11). При изменении мембранного потенциала меняется величина действующей на него силы, в результате эта часть ионного канала перемещается и меняет вероятность открывания или закрывания ворот - своеобразных заслонок, действующих по закону "все или ничего". Экспериментально показано, что под действием деполяризации мембраны увеличивается вероятность перехода натриевого канала в проводящее состояние. Скачок напряжения на мембране, создаваемый при измерениях методом фиксации потенциала, приводит к тому, что большое число каналов открывается. Через них проходит больше зарядов, а значит, в среднем, протекает больший ток. Существенно, что процесс роста проводимости канала определяется увеличением вероятности перехода канала в открытое состояние, а не увеличением диаметра открытого канала. Таково современное представление о механизме прохождения тока через одиночный канал.

    Плавные кинетические кривые токов, регистрируемых при электрических измерениях на больших мембранах, получаются вследствие суммации многих скачкообразных токов, протекающих через отдельные каналы. Их суммирование, как показано выше, резко уменьшает флуктуации и дает достаточно гладкие зависимости трансмембранного тока от времени.

    Ионные каналы могут быть чувствительны и к другим физическим воздействиям: механическим деформациям, связыванию химических веществ и т.д. В этом случае они являются структурной основой, соответственно, механорецепторов, хемо-рецепторов и т.д.

    Изучение ионных каналов в мембранах есть одна из важных задач современной биофизики.

    Структура ионного канала.

    Ион-селективный канал состоит из следующих частей (рис. 11): погруженной в бислой белковой части, имеющей субъединичное строение; селективного фильтра, образованного отрицательно заряженными атомами кислорода, которые жестко расположены на определенном расстоянии друг от друга и пропускают ионы только определенного диаметра; воротной части.

    Ворота ионного канала управляются мембранным потенциалом и могут находиться как в закрытом состоянии (штриховая линия), так и в открытом состоянии (сплошная линия). Нормальное положение ворот натриевого канала - закрытое. Под действием электрического поля увеличивается вероятность открытого состояния, ворота открываются и поток гидратированных ионов получает возможность проходить сквозь селективный фильтр.

    Если ион подходит по диаметру, то он сбрасывает гидратную оболочку и проскакивает на другую сторону ионного канала. Если же ион слишком велик по диаметру, как, например, тетраэтиламмоний, он не в состоянии пролезть сквозь фильтр и не может пересечь мембрану. Если же, напротив, ион слишком мал, то у него возникают сложности в селективном фильтре, на сей раз связанные с трудностью сброса гидратной оболочки иона.

    Блокаторы ионных каналов либо не могут пройти сквозь него, застревая в фильтре, либо, если это большие молекулы, как ТТХ, они стерически соответствуют какому-либо входу в канал. Так как блокаторы несут положительный заряд, их заряженная часть втягивается в канал к селективному фильтру как обычный катион, а макромолекула закупоривает его.

    Таким образом, изменения электрических свойств возбудимых биомембран осуществляется с помощью ионных каналов. Это белковые макромолекулы, пронизывающие липидный бислой, которые могут находиться в нескольких дискретных состояниях. Свойства каналов, селективных для ионов К + , Na + и Са 2+ , могут по-разному зависеть от мембранного потенциала, что и определяет динамику потенциала действия в мембране, а также отличия таких потенциалов в мембранах разных клеток.

    Рис. 11. Схема строения натриевого ионного канала мембраны в разрезе


    Обратная связь.


    Все каналы, имеющиеся в живых тканях, а сейчас мы знаем несколько сотен разновидностей каналов, можно разделить на два основных типа. Первый тип – это каналы покоя, которые спонтанно открываются и закрываются без всяких внешних воздействий. Они важны для генерации мембранного потенциала покоя. Второй тип - это так называемые gate-каналы, или воротные каналы (от слова «ворота»). В покое эти каналы закрыты и могут открываться под действием тех или иных раздражителей. Некоторые разновидности таких каналов принимают участие в генерации потенциалов действия.

    Большинство ионных каналов характеризуются избирательностью (селективностью), то есть через определенный вид каналов проходят только определенные ионы. По этому признаку различают натриевые, калиевые, кальциевые, хлорные каналы. Селективность каналов определяется размерами поры, размерами иона и его гидратной оболочки, зарядом иона, а также зарядом внутренней поверхности канала. Однако встречаются и неселективные каналы, которые могут пропускать сразу два вида ионов: например, калий и натрий. Есть каналы, через которые могут проходить все ионы и даже более крупные молекулы.

    Существует классификация ионных каналов по способу активации (рис. 9). Некоторые каналы специфически отвечают на физические изменения в клеточной мембране нейрона. Наиболее яркими представителями этой группы являются потенциал-активируемые каналы . Примерами могут служить чувствительные к потенциалу на мембране натриевые, калиевые, кальциевые ионные каналы, которые отвечают за формирование потенциала действия. Эти каналы открываются при определенном потенциале на мембране. Так, натриевые и калиевые каналы открываются при потенциале около -60 мВ (внутренняя поверхность мембраны заряжена отрицательно по сравнению с наружной поверхностью). Кальциевые каналы открываются при потенциале -30 мВ. К группе каналов, активирующихся физическими изменениями, относятся

    Рис 9. Способы активации ионных каналов

    (А) Ионные каналы, активируемые изменением мембранного потенциала или растяжением мембраны. (Б) Ионные каналы, активируемые химическими агентами (лигандами) с внеклеточной, либо с внутриклеточной стороны.

    также механо-чувствительные каналы , которые отвечают на механические воздействия (растяжение или деформация клеточной мембраны). Ионные каналы другой группы открываются тогда, когда химические вещества активируют специальные рецепторные связывающие центры на молекуле канала. Такие лиганд-активируемые каналы подразделяются на две подгруппы, в зависимости от того, являются ли их рецепторные центры внутриклеточными или внеклеточными. Лиганд-активируемые каналы, отвечающие на внеклеточные стимулы, также называют ионотропными рецепторами. Такие каналы чувствительны к медиаторам и принимают самое непосредственное участие в передаче информации в синаптических структурах. К лиганд-активируемым каналам, активирующимся с цитоплазматической стороны, относятся каналы, чувствительные к изменениям концентрации специфических ионов. Например, кальций-активируемые калиевые каналы активируются локальным повышением концентрации внутриклеточного кальция. Такие каналы играют важную роль в реполяризации клеточной мембраны во время завершения потенциала действия. Помимо ионов кальция, типичными представителями внутриклеточных лигандов являются циклические нуклеотиды. Циклический ГМФ, например, отвечает за активацию натриевых каналов в палочках сетчатки. Такой тип канала играет принципиальную роль в работе зрительного анализатора. Отдельным видом модуляции работы канала путем связывания внутриклеточного лиганда является фосфорилирование/дефосфорилирование определенных участков его белковой молекулы под действием внутриклеточных ферментов – протеинкиназ и протеинфосфатаз.


    Представленная классификация каналов по способу активации в значительной степени условна. Некоторые ионные каналы могут активироваться только при нескольких воздействиях. Например, кальций-активируемые калиевые каналы чувствительны также к изменению потенциала, а некоторые потенциал-активируемые ионные каналы чувствительны к внутриклеточным лигандам.

    1 совершенно несогласен 2 несогласен 3 не знаю 4 согласен 5 совершенно согласен
    Это занятие развило мои навыки по решению проблем.
    Для успешного прохождения этого занятия от меня требовалась только хорошая память.
    Это занятие развило моё умение работать в команде.
    Данное занятие улучшило мои аналитические способности.
    Данное занятие улучшило мои навыки изложения письменного материала.
    На занятии требовалось глубокое понимание материала.