Архитектура информационных систем. Локальная, клиент-сервер, двух и трехуровневая архитектура

Как правило компьютеры и программы, входящие в состав информационной системы, не являются равноправными. Некоторые из них владеют ресурсами (файловая система, процессор, принтер, база данных и т.д.), другие имеют возможность обращаться к этим ресурсам. Компьютер (или программу), управляющий ресурсом, называют сервером этого ресурса (файл-сервер, сервер базы данных, вычислительный сервер...). Клиент и сервер какого-либо ресурса могут находится как на одном компьютере, так и на различных компьютерах, связанных сетью.

В рамках многоуровневого представления вычислительных систем можно выделить три группы функций, ориентированных на решение различных подзадач:

  1. функции ввода и отображения данных (обеспечивают взаимодействие с пользователем);
  2. прикладные функции, характерные для данной предметной области;
  3. функции управления ресурсами (файловой системой, базой даных и т.д.)

Рис.1. Компоненты сетевого приложения

Выполнение этих функций в основном обеспечивается программными средствами, которые можно представить в виде взаимосвязанных компонентов (), где:

  • компонент представления отвечает за пользовательский интерфейс;
  • прикладной компонент реализует алгоритм решения конкретной задачи;
  • компонент управления ресурсом обеспечивает доступ к необходимым ресурсам.

Автономная система (компьютер, не подключенный к сети) представляет все эти компоненты как на различных уровнях (ОС, служебное ПО и утилиты, прикладное ПО), так и на уровне приложений (не характерно для современных программ). Так же и сеть — она представляет все эти компоненты, но, в общем случае, распределенные между узлами. Задача сводится к обеспечению сетевого взаимодействия между этими компонентами.

Архитектура «клиент-сервер» определяет общие принципы организации взаимодействия в сети, где имеются серверы , узлы-поставщики некоторых специфичных функций (сервисов) и клиенты , потребители этих функций.

Практические реализации такой архитектуры называются клиент-серверными технологиями . Каждая технология определяет собственные или использует имеющиеся правила взаимодейстия между клиентом и сервером, которые называются протоколом обмена (протоколом взаимодействия) .

В любой сети (даже одноранговой), построенной на современных сетевых технологиях, присутствуют элементы клиент-серверного взаимодействия, чаще всего на основе двухзвенной архитектуры . Двухзвенной (two-tier, 2-tier) она называется из-за необходимости распределения трех базовых компонентов между двумя узлами (клиентом и сервером).

Рис.2. Двухзвенная клиент-серверная архитектура

Двухзвенная архитектура используется в клиент-серверных системах, где сервер отвечает на клиентские запросы напрямую и в полном объеме, при этом используя только собственные ресурсы. Т.е. сервер не вызывает сторонние сетевые приложения и не обращается к сторонним ресурсам для выполнения какой-либо части запроса ()

Расположение компонентов на стороне клиента или сервера определяет следующие основные модели их взаимодействия в рамках двухзвенной архитектуры:

  • сервер терминалов — распределенное представление данных;
  • файл-сервер — доступ к удаленной базе данных и файловым ресурсам;
  • сервер БД — удаленное представление данных;
  • сервер приложений — удаленное приложение.

Перечисленные модели с вариациями представлены на .

Рис.3. Модели клиент-серверного взаимодействия

Исторически первой появилась модель распределенного представления данных (модель сервер терминалов). Она реализовывалась на универсальной ЭВМ (мэйнфрейме), выступавшей в роли сервера, с подключенными к ней алфавитно-цифровыми терминалами. Пользователи выполняли ввод данных с клавиатуры терминала, которые затем передавались на мэйнфрейм и там выполнялась их обработка, включая формирование «картинки» с результатами. Эта «картинка» и возвращалась пользователю на экран терминала.

С появлением персональных компьютеров и локальных сетей, была реализована модель файлового сервера, представлявшего доступ файловым ресурсам, в т.ч и к удаленной базе данных. В этом случае выделенный узел сети является файловым сервером, на котором размещены файлы базы данных. На клиентах выполняются приложения, в которых совмещены компонент представления и прикладной компонент (СУБД и прикладная программма), использующие подключенную удаленную базу как локальный файл. Протоколы обмена при этом представляют набор низкоуровневых вызовов операций файловой системы.

Такая модель показала свою неэффективность ввиду того, что при активной работе с таблицами БД возникает большая нагрузка на сеть. Частичным решением является поддержка тиражирования (репликации) таблиц и запросов. В этом случае, например при изменении данных, обновляется не вся таблица, а только модифицированная ее часть.

С появлением специализированных СУБД появилась возможность реализации другой модели доступа к удаленной базе данных — модели сервера баз данных. В этом случае ядро СУБД функционирует на сервере, прикладная программа на клиенте, а протокол обмена обеспечивается с помощью языка SQL. Такой подход по сравнению с файловым сервером ведет к уменьшению загрузки сети и унификации интерфейса «клиент-сервер». Однако, сетевой трафик остается достаточно высоким, кроме того, по прежнему невозможно удовлетворительное администрирование приложений, поскольку в одной программе совмещаются различные функции.

С разработкой и внедрением на уровне серверов баз данных механизма хранимых процедур появилась концепция активного сервера БД . В этом случае часть функций прикладного компонента реализованы в виде хранимых процедур, выполняемых на стороне сервера. Остальная прикладная логика выполняется на клиентской стороне. Протокол взаимодействия — соответствующий диалект языка SQL.

Преимущества такого подхода очевидны:

  • возможно централизованное администрирование прикладных функций;
  • снижение стоимости владения системой (TOC, total cost of ownership) за счет аренды сервера , а не его покупки;
  • значительное снижение сетевого трафика (т.к. передаются не SQL-запросы, а вызовы хранимых процедур).

Основной недостаток — ограниченность средств разработки хранимых процедур по сравнению с языками высокого уровня.

Реализация прикладного компонента на стороне сервера представляет следующую модель — сервер приложений. Перенос функций прикладного компонента на сервер снижает требования к конфигурации клиентов и упрощает администрирование, но представляет повышенные требования к производительности, безопасности и надежности сервера.

В настоящее время намечается тенденция возврата к тому, с чего начиналась клиент-серверная архитектура — к централизации вычислений на основе модели терминал-сервера. В современной реинкарнации терминалы отличаются от своих алфавитно-цифровых предков тем, что имея минимум программных и аппаратных средств, представляют мультимедийные возможности (в т.ч. графический пользовательский интерфейс ). Работу терминалов обеспечивает высокопроизводительный сервер, куда вынесено все, вплоть до виртуальных драйверов устройств, включая драйверы видеоподсистемы.

Рис.4. Трехзвенная клиент-серверная архитектура

Еще одна тенденция в клиент-серверных технологиях связана со все большим использованием распределенных вычислений. Они реализуются на основе модели сервера приложений, где сетевое приложение разделено на две и более частей, каждая из которых может выполняться на отдельном компьютере. Выделенные части приложения взаимодействуют друг с другом, обмениваясь сообщениями в заранее согласованном формате. В этом случае двухзвенная клиент-серверная архитектура становится трехзвенной (three-tier, 3-tier) .

Как правило, третьим звеном в трехзвенной архитектуре становится сервер приложений, т.е. компоненты распределяются следующим образом ():

  1. Представление данных — на стороне клиента.
  2. Прикладной компонент — на выделенном сервере приложений (как вариант, выполняющем функции промежуточного ПО).
  3. Управление ресурсами — на сервере БД, который и представляет запрашиваемые данные.

Рис.5. Многозвенная (N-tier) клиент-серверная архитектура

Трехзвенная архитектура может быть расширена до многозвенной (N-tier, Multi-tier) путем выделения дополнительных серверов, каждый из которых будет представлять собственные сервисы и пользоваться услугами прочих серверов разного уровня. Абстрактный пример многозвенной модели приведен на .

Сравнение архитектур

Двухзвенная архитектура проще, так как все запросы обслуживаются одним сервером, но именно из-за этого она менее надежна и предъявляет повышенные требования к производительности сервера.

Трехзвенная архитектура сложнее, но благодаря тому, что функции распределены между серверами второго и третьего уровня, эта архитектура представляет:

  1. Высокую степень гибкости и масштабируемости.
  2. Высокую безопасность (т.к. защиту можно определить для каждого сервиса или уровня).
  3. Высокую производительность (т.к. задачи распределены между серверами).

Клиент-серверные технологии

Архитектура клиент-сервер применяется в большом числе сетевых технологий, используемых для доступа к различным сетевым сервисам. Кратко рассмотрим некоторые типы таких сервисов (и серверов).

Web-серверы Изначально представляли доступ к гипертекстовым документам по протоколу HTTP (Huper Text Transfer Protocol). Сейчас поддерживают расширенные возможности, в частности работу с бинарными файлами (изображения, мультимедиа и т.п.). Серверы приложений Предназначены для централизованного решения прикладных задач в некоторой предметной области. Для этого пользователи имеют право запускать серверные программы на исполнение. Использование серверов приложений позволяет снизить требования к конфигурации клиентов и упрощает общее управление сетью. Серверы баз данных Серверы баз данных используются для обработки пользовательских запросов на языке SQL. При этом СУБД находится на сервере, к которому и подключаются клиентские приложения. Файл-серверы Файл-сервер хранит информацию в виде файлов и представляет пользователям доступ к ней. Как правило файл-сервер обеспечивает и определенный уровень защиты от несакционированного доступа. Прокси-сервер Во-первых, действует как посредник, помогая пользователям получить информацию из Интернета и при этом обеспечивая защиту сети. Во-вторых, сохраняет часто запрашиваемую информацию в кэш-памяти на локальном диске, быстро доставляя ее пользователям без повторного обращения к Интернету. Файрволы (брандмауэры) Межсетевые экраны, анализирующие и фильтрующие проходящий сетевой трафик, с целью обеспечения безопасности сети. Почтовые серверы Представляют услуги по отправке и получению электронных почтовых сообщений. Серверы удаленного доступа (RAS) Эти системы обеспечивают связь с сетью по коммутируемым линиям. Удаленный сотрудник может использовать ресурсы корпоративной ЛВС, подключившись к ней с помощью обычного модема.

Это лишь несколько типов из всего многообразия клиент-серверных технологий, используемых как в локальных, так и в глобальных сетях.

Для доступа к тем или иным сетевам сервисам используются клиенты, возможности которых характеризуются понятием «толщины». Оно определяет конфигурацию оборудования и программное обеспечение, имеющиеся у клиента. Рассмотрим возможные граничные значения:

«Тонкий» клиент Этот термин определяет клиента, вычислительных ресурсов которого достаточно лишь для запуска необходимого сетевого приложения через web-интерфейс. Пользовательский интерфейс такого приложения формируется средствами статического HTML (выполнение JavaScript не предусматривается), вся прикладная логика выполняется на сервере.
Для работы тонкого клиента достаточно лишь обеспечить возможность запуска web-браузера, в окне которого и осуществляются все действия. По этой причине web-браузер часто называют "универсальным клиентом". «Толстый» клиент Таковым является рабочая станция или персональный компьютер, работающие под управлением собственной дисковой операционной системы и имеющие необходимый набор программного обеспечения. К сетевым серверам «толстые» клиенты обращаются в основном за дополнительными услугами (например, доступ к web-серверу или корпоративной базе данных).
Так же под «толстым» клиентом подразумевается и клиентское сетевое приложение, запущенное под управлением локальной ОС. Такое приложение совмещает компонент представления данных (графический пользовательский интерфейс ОС) и прикладной компонент (вычислительные мощности клиентского компьютера).

В последнее время все чаще используется еще один термин: «rich»-client . «Rich«-клиент своего рода компромисс между «толстым» и «тонким» клиентом. Как и «тонкий» клиент, «rich»-клиент также представляет графический интерфейс, описываемый уже средствами XML и включающий некоторую функциональность толстых клиентов (например интерфейс drag-and-drop, вкладки, множественные окна, выпадающие меню и т.п.)

Прикладная логика «rich»-клиента также реализована на сервере. Данные отправляются в стандартном формате обмена, на основе того же XML (протоколы SOAP, XML-RPC) и интерпретируются клиентом.

Некоторые основные протоколы «rich»-клиентов на базе XML приведены ниже:

  • XAML (eXtensible Application Markup Language) — разработан Microsoft, используется в приложениях на платформе.NET;
  • XUL (XML User Interface Language) — стандарт, разработанный в рамках проекта Mozilla, используется, например, в почтовом клиенте Mozilla Thunderbird или браузере Mozilla Firefox;
  • Flex — мультимедийная технология на основе XML, разработанная Macromedia/Adobe.

Заключение

Итак, основная идея архитектуры «клиент-сервер» состоит в разделении сетевого приложения на несколько компонентов , каждый из которых реализует специфический набор сервисов. Компоненты такого приложения могут выполняться на разных компьютерах, выполняя серверные и/или клиентские функции. Это позволяет повысить надежность, безопасность и производительность сетевых приложений и сети в целом.

Контрольные вопросы

  1. В чем заключается основная идея К-С взаимодействия?
  2. В чем отличия между понятиями «клиент-серверная архитектура» и «клиент-серверная технология»?
  3. Перечислите компоненты К-С взаимодействия.
  4. Какие задачи выполняет компонент представления в К-С архитектуре?
  5. С какой целью средства доступа к БД представлены в виде отдельного компонента в К-С архитектуре?
  6. Для чего бизнес-логика выделена как отдельный компонент в К-С архитектуре?
  7. Перечислите модели клиент-серверного взаимодействия.
  8. Опишите модель «файл-сервер».
  9. Опишите модель «сервер БД».
  10. Опишите модель «сервер приложений»
  11. Опишите модель «сервер терминалов»
  12. Перечислите основные типы серверов.

Постоянный адрес этой страницы:

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

· Трёхуровневая архитектура

· Сеть с выделенным сервером

· Сеть с выделенным сервером (англ. Client/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Сетевая операционная система - операционная система со встроенными возможностями для работы в компьютерных сетях. К таким возможностям можно отнести:

· поддержку сетевого оборудования

· поддержку сетевых протоколов

· поддержку протоколов маршрутизации

· поддержку фильтрации сетевого трафика

· поддержку доступа к удалённым ресурсам, таким как принтеры, диски и т. п. по сети

· наличие в системе сетевых служб позволяющей удалённым пользователям использовать ресурсы компьютера

Примеры сетевых операционных систем:

· Novell NetWare

· Microsoft Windows (95, NT, XP, Vista, Seven)

· Различные UNIX системы, такие как Solaris, FreeBSD

· Различные GNU/Linux системы

· ZyNOS компании ZyXEL

Современные сетевые ОС (UNIX,WIN2000,NOWELL NW) реализуют полный стек протоколов модели OSI.Так в UNIX поддерживается стек протоколов (TCP/IP,NW LINK,NET BIOS). В Nowell NW поддерживается стек протоколов IPX/SPX.В Aplle Mac используется свой набор протоколов.

Независимо от производителя все сетевые ОС осуществляют следующие функции:

1. Распределение функций между узлами сети(клиенты и серверы);

2. Поддержка коммуникационных протоколов;

3. Поддержка сетевой файловой системы;

4. Защита данных.

Все сетевые ОС можно разделить на 2 вида:

1. Одноранговые или равноправные сети (каждый из каждых). Пример Windows 9x;

2. Сеть на основе выделенного сервера.

К1. В одноранговой сети все ПК равноправны, однако в сети есть и клиенты и серверы. Обычно каждый ПК может переводиться в режим сервера, если пользователь сам этого захочет (выделяется общий ресурс).

Сетевая ОС для одноранговой сети не отличается надежной производительностью и уровнем защиты. Использывается в сети когда 10-15 пк. Примером одноранговой сети есть Win94/98/ OS/2 /LANtastic

K2. В этой сети всегда существует главный ПК – сервер, который специально оптимизирован для быстрой обработки запросов от многих клиентов (порядка -100) и для управления защитой файлов и каталогов. В больших сетях выделяются отдельные серверы для отдельных приложений (WEB – сервер, Файл – сервер, Принт – сервер, сервер БД и почтовый сервер)

Серверное программное обеспечение отличается высокой сложностью, надежностью и производительностью. Оно может функционировать на разных платформах.

Преимущества

· Делает возможным, в большинстве случаев, распределение функций вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера не затрагивают клиентов.

· Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

· Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т. п.

Недостатки

· Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

· Поддержка работы данной системы требует отдельного специалиста - системного администратора.

· Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

В компьютерных технологиях трёхуровневая архитектура, синоним трёхзвенная архитектура (англ. three-tier или Multitier architecture) предполагает наличие следующих компонентов приложения: клиентское приложение (обычно говорят «тонкий клиент» или терминал), подключенное к серверу приложений, который в свою очередь подключен к серверу базы данных.

Обзор архитектуры

Клиент - это интерфейсный (обычно графический) компонент, который представляет первый уровень, собственно приложение для конечного пользователя. Первый уровень не должен иметь прямых связей с базой данных (по требованиям безопасности), быть нагруженным основной бизнес-логикой (по требованиям масштабируемости) и хранить состояние приложения (по требованиям надежности). На первый уровень может быть вынесена и обычно выносится простейшая бизнес-логика: интерфейс авторизации, алгоритмы шифрования, проверка вводимых значений на допустимость и соответствие формату, несложные операции (сортировка, группировка, подсчет значений) с данными, уже загруженными на терминал.

Сервер приложений располагается на втором уровне. На втором уровне сосредоточена бо́льшая часть бизнес-логики. Вне его остаются фрагменты, экспортируемые на терминалы (см.выше), а также погруженные в третий уровень хранимые процедуры и триггеры.

Сервер базы данных обеспечивает хранение данных и выносится на третий уровень. Обычно это стандартная реляционная или объектно-ориентированная СУБД. Если третий уровень представляет собой базу данных вместе с хранимыми процедурами, триггерами и схемой, описывающей приложение в терминах реляционной модели, то второй уровень строится как программный интерфейс, связывающий клиентские компоненты с прикладной логикой базы данных.

В простейшей конфигурации физически сервер приложений может быть совмещён с сервером базы данных на одном компьютере, к которому по сети подключается один или несколько терминалов.

В «правильной» (с точки зрения безопасности, надёжности, масштабирования) конфигурации сервер базы данных находится на выделенном компьютере (или кластере), к которому по сети подключены один или несколько серверов приложений, к которым, в свою очередь, по сети подключаются терминалы.

Достоинства

По сравнению с клиент-серверной или файл-серверной архитектурой можно выделить следующие достоинства трёхуровневой архитектуры:

· масштабируемость

· конфигурируемость - изолированность уровней друг от друга позволяет (при правильном развертывании архитектуры) быстро и простыми средствами переконфигурировать систему при возникновении сбоев или при плановом обслуживании на одном из уровней

· высокая безопасность

· высокая надёжность

· низкие требования к скорости канала (сети) между терминалами и сервером приложений

· низкие требования к производительности и техническим характеристикам терминалов, как следствие снижение их стоимости. Терминалом может выступать не только компьютер, но и, например, мобильный телефон.

Недостатки

Недостатки вытекают из достоинств. По сравнению c клиент-серверной или файл-серверной архитектурой можно выделить следующие недостатки трёхуровневой архитектуры:

· более высокая сложность создания приложений;

· сложнее в разворачивании и администрировании;

· высокие требования к производительности серверов приложений и сервера базы данных, а, значит, и высокая стоимость серверного оборудования;

· высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений.

Технология клиент-сервер по праву считается одним из "китов", на которых держится современный мир компьютерных сетей. Но те задачи, для решения которых она была разработана, постепенно уходят в прошлое, и на сцену выходят новые задачи и технологии, требующие переосмысления принципов клиент-серверных систем. Одна из таких технологий - World Wide Web.

Использование технологии гипертекстовых документов для построения внутренней информационной инфраструктуры компании стимулировало бурное развитие всевозможных систем типа клиент-сервер. Некоторые пытаются противопоставить Web-технологию архитектуре клиент-сервер, однако это заблуждение, поскольку на самом деле Web является развитием данной архитектуры. Можно сказать, что система Web имеет архитектуру клиент-серверы, т. е. с помощью одного клиента можно подключиться ко многим серверам. Web-браузер, который обеспечивает удобный интерфейс с пользователем для доступа к информации, - это лишь вершина айсберга, самый верхний уровень системы Web. Кроме интерфейса любая информационная система должна иметь уровни обработки данных и их хранения. У разработчиков интрасетей часто возникает проблема правильного согласования работы Web с другими элементами системы, например базами данных. Одним из перспективных способов решения этой проблемы являются многоуровневые архитектуры клиент-сервер. Чтобы понять их преимущества, рассмотрим подробнее обычную клиент-серверную систему.

Классическая архитектура клиент-сервер

Термин "клиент-сервер" означает такую архитектуру программного комплекса, в которой его функциональные части взаимодействуют по схеме "запрос-ответ". Если рассмотреть две взаимодействующие части этого комплекса, то одна из них (клиент) выполняет активную функцию, т. е. инициирует запросы, а другая (сервер) пассивно на них отвечает. По мере развития системы роли могут меняться, например некоторый программный блок будет одновременно выполнять функции сервера по отношению к одному блоку и клиента по отношению к другому.

Заметим, что любая информационная система должна иметь минимум три основные функциональные части - модули хранения данных, их обработки и интерфейса с пользователем. Каждая из этих частей может быть реализована независимо от двух других. Например, не изменяя программ, используемых для хранения и обработки данных, можно изменить интерфейс с пользователем таким образом, что одни и те же данные будут отображаться в виде таблиц, графиков или гистограмм. Не меняя программ представления данных и их хранения, можно изменить программы обработки, например изменив алгоритм полнотекстового поиска. И наконец, не меняя программ представления и обработки данных, можно изменить программное обеспечение для хранения данных, перейдя, например, на другую файловую систему.

В классической архитектуре клиент-сервер приходится распределять три основные части приложения по двум физическим модулям. Обычно ПО хранения данных располагается на сервере (например, сервере базы данных), интерфейс с пользователем - на стороне клиента, а вот обработку данных приходится распределять между клиентской и серверной частями. В этом-то и заключается основной недостаток двухуровневой архитектуры, из которого следуют несколько неприятных особенностей, сильно усложняющих разработку клиент-серверных систем.

При разбиении алгоритмов обработки данных необходимо синхронизировать поведение обеих частей системы. Все разработчики должны иметь полную информацию о последних изменениях, внесенных в систему, и понимать эти изменения. Это создает большие сложности при разработке клиент-серверных систем, их установке и сопровождении, поскольку необходимо тратить значительные усилия на координацию действий разных групп специалистов. В действиях разработчиков часто возникают противоречия, а это тормозит развитие системы и вынуждает изменять уже готовые и проверенные элементы.

Чтобы избежать несогласованности различных элементов архитектуры, пытаются выполнять обработку данных на одной из двух физических частей - либо на стороне клиента ("толстый" клиент), либо на сервере ("тонкий" клиент, или архитектура, называемая "2,5- уровневый клиент-сервер"). Каждый подход имеет свои недостатки. В первом случае неоправданно перегружается сеть, поскольку по ней передаются необработанные, а значит, избыточные данные. Кроме того, усложняется поддержка системы и ее изменение, так как замена алгоритма вычислений или исправление ошибки требует одновременной полной замены всех интерфейсных программ, а иначе могут возникнуть ошибки или несогласованность данных. Если же вся обработка информации выполняется на сервере (когда такое вообще возможно), то возникает проблема описания встроенных процедур и их отладки. Дело в том, что язык описания встроенных процедур обычно является декларативным и, следовательно, в принципе не допускает пошаговой отладки. Кроме того, систему с обработкой информации на сервере абсолютно невозможно перенести на другую платформу, что является серьезным недостатком.

Большинство современных средств быстрой разработки приложений (RAD), которые работают с различными базами данных, реализует первую стратегию, т. е. "толстый" клиент обеспечивает интерфейс с сервером базы данных через встроенный SQL. Такой вариант реализации системы с "толстым" клиентом, кроме перечисленных выше недостатков, обычно обеспечивает недопустимо низкий уровень безопасности. Например, в банковских системах приходится всем операционистам давать права на запись в основную таблицу учетной системы. Кроме того, данную систему почти невозможно перевести на Web-технологию, так как для доступа к серверу базы данных используется специализированное клиентское ПО.

Итак, рассмотренные выше модели имеют следующие недостатки.

1. "Толстый" клиент:

  • сложность администрирования;
  • усложняется обновление ПО, поскольку его замену нужно производить одновременно по всей системе;
  • усложняется распределение полномочий, так как разграничение доступа происходит не по действиям, а по таблицам;
  • перегружается сеть вследствие передачи по ней необработанных данных;
  • слабая защита данных, поскольку сложно правильно распределить полномочия.
  • 2. "Толстый" сервер:

  • усложняется реализация, так как языки типа PL/SQL не приспособлены для разработки подобного ПО и нет хороших средств отладки;
  • производительность программ, написанных на языках типа PL/SQL, значительно ниже, чем созданных на других языках, что имеет важное значение для сложных систем;
  • программы, написанные на СУБД-языках, обычно работают недостаточно надежно; ошибка в них может привести к выходу из строя всего сервера баз данных;
  • получившиеся таким образом программы полностью непереносимы на другие системы и платформы.
  • Для решения перечисленных проблем используются многоуровневые (три и более уровней) архитектуры клиент-сервер.

    Многоуровневые архитектуры клиент-сервер

    Такие архитектуры более разумно распределяют модули обработки данных, которые в этом случае выполняются на одном или нескольких отдельных серверах. Эти программные модули выполняют функции сервера для интерфейсов с пользователями и клиента - для серверов баз данных. Кроме того, различные серверы приложений могут взаимодействовать между собой для более точного разделения системы на функциональные блоки, выполняющие определенные роли. Например, можно выделить сервер управления персоналом, который будет выполнять все необходимые для управления персоналом функции. Связав с ним отдельную базу данных, можно скрыть от пользователей все детали реализации этого сервера, разрешив им обращаться только к его общедоступным функциям. Кроме того, такую систему очень просто адаптировать к Web, поскольку проще разработать html-формы для доступа пользователей к определенным функциям базы данных, чем ко всем данным.

    В трехуровневой архитектуре "тонкий" клиент не перегружен функциями обработки данных, а выполняет свою основную роль системы представления информации, поступающей с сервера приложений. Такой интерфейс можно реализовать с помощью стандартных средств Web-технологии - браузера, CGI и Java. Это уменьшает объем данных, передаваемых между клиентом и сервером приложений, что позволяет подключать клиентские компьютеры даже по медленным линиям типа телефонных каналов. Кроме того, клиентская часть может быть настолько простой, что в большинстве случаев ее реализуют с помощью универсального браузера. Но если менять ее все-таки придется, то эту процедуру можно осуществить быстро и безболезненно. Трехуровневая архитектура клиент-сервер позволяет более точно назначать полномочия пользователей, так как они получают права доступа не к самой базе данных, а к определенным функциям сервера приложений. Это повышает защищенность системы (по сравнению с обычно архитектурой) не только от умышленного нападения, но и от ошибочных действий персонала.

    Для примера рассмотрим систему, различные части которой работают на нескольких удаленных друг от друга серверах. Допустим, что от разработчика поступила новая версия системы, для установки которой в двухуровневой архитектуре необходимо одновременно поменять все системные модули. Если же этого не сделать, то взаимодействие старых клиентов с новыми серверами может привести к непредсказуемым последствиям, так как разработчики обычно не рассчитывают на такое использование системы. В трехуровневой архитектуре ситуация упрощается. Дело в том, что поменяв сервер приложений и сервер хранения данных (это легко сделать одновременно, так как оба они обычно находятся рядом), мы сразу меняем набор доступных сервисов. Таким образом, вероятность ошибки из-за несоответствия версий серверной и клиентской частей резко сокращается. Если в новой версии какой-либо сервис исчез, то элементы интерфейса, обслуживавшие его в старой системе, просто не будут работать. Если же изменился алгоритм работы сервиса, то он будет корректно работать даже со старым интерфейсом.

    Многоуровневые клиент-серверные системы достаточно легко можно перевести на Web-технологию - для этого достаточно заменить клиентскую часть универсальным или специализированным браузером, а сервер приложений дополнить Web-сервером и небольшими программами вызова процедур сервера. Для разработки этих программ можно использовать как Common Gateway Interface (CGI), так и более современную технологию Java.

    Следует отметить и тот факт, что в трехуровневой системе по каналу связи между сервером приложений и базой данных передается достаточно много информации. Однако это не замедляет вычислений, так как для связи указанных элементов можно использовать более скоростные линии. Это потребует минимальных затрат, поскольку оба сервера обычно находятся в одном помещении. Таким образом, увеличивается суммарная производительность системы - над одной задачей теперь работают два различных сервера, а связь между ними можно осуществлять по наиболее скоростным линиям с минимальными затратами средств. Правда, возникает проблема согласованности совместных вычислений, которую призваны решать менеджеры транзакций - новые элементы многоуровневых систем.

    Менеджеры транзакций

    Особенностью многоуровневых архитектур является использование менеджеров транзакций (МТ), которые позволяют одному серверу приложений одновременно обмениваться данными с несколькими серверами баз данных. Хотя серверы Oracle имеют механизм выполнения распределенных транзакций, но если пользователь хранит часть информации в БД Oracle, часть в БД Informix, а часть в текстовых файлах, то без менеджера транзакций не обойтись. МТ используется для управления распределенными разнородными операциями и согласования действий различных компонентов информационной системы. Следует отметить, что практически любое сложное ПО требует использования менеджера транзакций. Например, банковские системы должны осуществлять различные преобразования представлений документов, т. е. работать одновременно с данными, хранящимися как в базах данных, так и в обычных файлах, - именно эти функции и помогает выполнять МТ.

    Менеджер транзакций - это программа или комплекс программ, с помощью которых можно согласовать работу различных компонентов информационной системы. Логически MT делится на несколько частей:

  • коммуникационный менеджер (Communication Manager) контролирует обмен сообщениями между компонентами информационной системы;
  • менеджер авторизации (Authorisation Manager) обеспечивает аутентификацию пользователей и проверку их прав доступа;
  • менеджер транзакций (Transaction Manager) управляет распределенными операциями;
  • менеджер ведения журнальных записей (Log Manager) следит за восстановлением и откатом распределенных операций;
  • менеджер блокировок (Lock Manager) обеспечивает правильный доступ к совместно используемым данным.
  • Обычно коммуникационный менеджер объединен с авторизационным, а менеджер транзакций работает совместно с менеджерами блокировок и системных записей. Причем такой менеджер редко входит в комплект поставки, поскольку его функции (ведение записей, распределение ресурсов и контроль операций), как правило, выполняет сама база данных (например, Oracle).

    Первые менеджеры транзакций появились в начале 70-х гг. (например, CICS); с тех пор они незначительно изменились идеологически, но весьма существенно - технологически. Наибольшие идеологические изменения произошли в коммуникационном менеджере, так как в этой области появились новые объектно-ориентированные технологии (CORBA, DCOM и т.д.). Из-за бурного развития коммуникационных средств в будущем следует ожидать широкого использования различных типов менеджеров транзакций.

    Таким образом, многоуровневая архитектура клиент-сервер позволяет существенно упростить распределенные вычисления, делая их не только более надежными, но и более доступными. Появление таких средств, как Java, упрощает связь сервера приложений с клиентами, а объектно-ориентированные менеджеры транзакций обеспечивают согласованную работу сервера приложений с базами данных. В результате создаются все предпосылки для создания сложных распределенных информационных систем, которые эффективно используют все преимущества современных технологий.

    Материал для статьи предоставлен компанией ASoft; тел. 261-5724. С Валерием Коржовым можно связаться по адресу .

    Лекция 2

    Современные программные приложения и информационные системы достигли такого уровня развития, что термин "архитектура" в применении к ним уже давно не удивляет. Грамотно построить информационную систему, эффективно и надежно функционирующую не проще, чем сконструировать и возвести современное многофункциональное здание.

    Когда речь заходит об "архитектуре информационной системы", обычно не возникает недостатка в определениях. Есть даже Web-сайты, которые собирают такие определения.

    Рассмотрим определение "архитектуры информационной системы", которое дают различные источники:

    · Архитектура – это организационная структура системы.

    · Архитектура информационной системы – концепция, определяющая модель, структуру, выполняемые функции и взаимосвязь компонентов информационной системы.

    · Архитектура – это базовая организация системы, воплощенная в ее компонентах, их отношениях между собой и с окружением, а также принципы, определяющие проектирование и развитие системы.

    · Архитектура – это набор значимых решений по поводу организации системы программного обеспечения, набор структурных элементов и их интерфейсов, при помощи которых компонуется система, вместе с их поведением, определяемым во взаимодействии между этими элементами, компоновка элементов в постепенно укрупняющиеся подсистемы, а также стиль архитектуры, который направляет эту организацию – элементы и их интерфейсы, взаимодействия и компоновку.

    · Архитектура программы или компьютерной системы – это структура системы, которые включают элементы программы, видимые извне свойства этих элементов и связи между ними.

    · Архитектура – это структура организации и связанное с ней поведение системы. Архитектуру можно рекурсивно разобрать на части, взаимодействующие посредством интерфейсов, связи, которые соединяют части, и условия сборки частей. Части, которые взаимодействуют через интерфейсы, включают классы, компоненты и подсистемы.

    · Архитектура программного обеспечения системы или набора систем состоит из всех важных проектных решений по поводу структур программы и взаимодействий между этими структурами, которые составляют системы. Проектные решения обеспечивают желаемый набор свойств, которые должна поддерживать система, чтобы быть успешной. Проектные решения предоставляют концептуальную основу для разработки системы, ее поддержки и обслуживания.

    Хотя определения несколько отличаются, можно заметить немалую степень сходства. Например, большинство определений указывают на то, что архитектура связана со структурой и поведением, а также только со значимыми решениями, может соответствовать некоторому архитектурному стилю, на нее влияют заинтересованные в ней лица и ее окружение, она воплощает решения на основе логического обоснования.



    Под архитектурой программных систем будем понимать совокупность решений относительно:

    · организации программной системы;

    · выбора структурных элементов, составляющих систему и их интерфейсов;

    · поведения этих элементов во взаимодействии с другими элементами;

    · объединение этих элементов в подсистемы;

    · архитектурного стиля, определяющего логическую и физическую организацию системы: статические и динамические элементы, их интерфейсы и способы их объединения.

    Архитектура программной системы охватывает не только ее структурные и поведенческие аспекты, но и правила ее использования и интеграции с другими системами, функциональность, производительность, гибкость, надежность, возможность повторного применения, полноту, экономические и технологические ограничения, а также вопрос пользовательского интерфейса.

    По мере развития программных систем все большее значение приобретает их интеграция друг с другом с целью построения единого информационного пространства предприятия. Как можно видеть из вышеприведенных определений интеграция является важнейшим элементом архитектуры.

    Для того чтобы построить правильную и надежную архитектуру и грамотно спроектировать интеграцию программных систем необходимо четко следовать современным стандартам в этих областях. Без этого велика вероятность создать архитектуру, которая неспособна развиваться и удовлетворять растущим потребностям пользователей ИТ. В качестве законодателей стандартов в этой области выступают такие международные организации как SEI (Software Engineering Institute), WWW (консорциум World Wide Web), OMG (Object Management Group), организация разработчиков Java – JCP (Java Community Process), IEEE (Institute of Electrical and Electronics Engineers) и другие.

    Рассмотрим классификацию программных систем по их архитектуре:

    · Централизованная архитектура;

    · Архитектура "файл-сервер";

    · Двухзвенная архитектура "клиент-сервер";

    · Многозвенная архитектура "клиент-сервер";

    · Архитектура распределенных систем;

    · Архитектура Веб-приложений;

    · Сервис-ориентированная архитектура.

    Следует заметить, что, как и любая классификация, данная классификация архитектур информационных систем не является абсолютно жесткой. В архитектуре любой конкретной информационной системы часто можно найти влияния нескольких общих архитектурных решений.

    Местоположение БД определяет так называемую архитектуру базы данных , и базы данных разделяются на:

    · локальные;

    · удаленные.

    Для выполнения операций с локальными БД разрабатываются и используются так называемые локальные приложения, а для операций с удаленными БД – клиент-серверные приложения.

    Расположение БД в значительной степени влияет на разработку приложения, обрабатывающего содержащиеся в этой базе данные.

    Локальные БД располагаются на том же компьютере, что и работающие с ними приложения. В этом случае информационная система имеет локальную архитектуру (рис.1). Работа с БД происходит, как правило, в однопользовательском режиме. При необходимости можно запустить на компьютере другое приложение, одновременно осуществляющее доступ к этим же данным. Для управления совместным доступом к БД необходимы специальные средства контроля и защиты. Эти средства могут понадобиться, например, в случае, когда приложение пытается изменить запись, которую редактирует другое приложение. Каждая разновидность БД осуществляет подобный контроль своими способами и обычно имеет встроенные средства разграничения доступа.

    При использовании локальной БД в сети возможна организация многопользовательского доступа к ней. В этом случае файлы БД и предназначенное для работы с ней приложение располагаются на сервере сети. Каждый пользователь запускает со своего компьютера это расположенное на сервере приложение, при этом у него запускается копия приложения. Такой сетевой вариант использования локальной БД соответствует архитектуре «файл-сервер» . Приложение при архитектуре «файл-сервер» также может быть записано и на каждый компьютер сети, в этом случае приложению отдельного компьютера должно быть известно местонахождение общей БД (рис.2).

    При работе с данными на каждом пользовательском компьютере сети используется локальная копия БД. Эта копия периодически обновляется данными, содержащимися в БД на сервере.

    Архитектура «файл-сервер» обычно применяется в сетях с небольшим количеством пользователей, для ее реализации подходят персональные СУБД, например, Рагаdох или dBasе. Достоинствами этой архитектуры являются простота реализации, а также то, что приложение фактически разрабатывается в расчете на одного пользователя и не зависит от того, на каком компьютере в сети оно устанавливается.

    Достоинства такой архитектуры:

    · многопользовательский режим работы с данными;

    · удобство централизованного управления доступом;

    · низкая стоимость разработки;

    · высокая скорость разработки;

    · невысокая стоимость обновления и изменения ПО.

    Однако архитектура «файл-сервер» имеет и существенные недостатки.

    1. Пользователь работает со своей локальной копией БД, данные в которой обновляются при каждом запросе к какой-либо из таблиц. При этом с сервера пересылается новая копия всей таблицы, данные которой затребованы. Таким образом, если пользователю необходимо всего несколько записей таблицы, с сервера по сети пересылается вся таблица. В результате циркуляции в сети больших объемов избыточной информации резко возрастает нагрузка на сеть, что приводит к соответствующему снижению ее быстродействия и производительности информационной системы в целом.

    2. В связи с тем, что на каждом компьютере имеется своя копия БД, изменения, сделанные в ней одним пользователем, в течение некоторого времени являются неизвестными другим пользователям. Поэтому необходимо постоянное обновление БД. Кроме того, возникает необходимость синхронизации работы отдельных пользователей, связанная с блокировкой в таблицах записей, которые редактирует другой пользователь.

    3. Управление БД осуществляется с разных компьютеров, поэтому в значительной степени затруднена организация контроля доступа, соблюдения конфиденциальности и поддержания целостности БД.

    Как правило, компьютеры и программы, входящие в состав информационной системы, не являются равноправными. Некоторые из них владеют ресурсами (файловая система, процессор, принтер, база данных и т.д.), другие имеют возможность обращаться к этим ресурсам.

    В том случае, если удаленная БД размещается на компьютере-сервере сети, а приложение, осуществляющее работу с этой БД, находится на компьютере пользователя, то такую архитектуру называют «клиент-сервер» (рис.3, рис.4). В этой архитектуре информационная система делится на неоднородные части – сервер и клиент БД. В связи с тем, что компьютер-сервер находится отдельно от клиента, его называют удаленным сервером.

    Сервер – это сама СУБД. Он поддерживает все основные функции СУБД: определение данных, обработку данных, защиту данных, поддержание целостности данных и т.д.

    Клиент – это приложение пользователя. Для получения данных клиент формирует и отсылает запрос удаленному серверу, на котором размещена БД. Запрос формируется на языке SQL, который является стандартным средством доступа к серверу при использовании реляционных моделей данных. После получения запроса удаленный сервер направляет его SQL-серверу (серверу баз данных) – специальной программе, управляющей удаленной БД и обеспечивающей выполнение запроса и выдачу его результатов клиенту.

    Таким образом, в архитектуре «клиент-сервер» клиент посылает запрос на предоставление данных и получает только те данные, которые действительно были затребованы. Вся обработка запроса выполняется на удаленном сервере. Такая архитектура обладает следующими достоинствами:

    1. Снижение нагрузки на сеть, поскольку теперь в ней циркулирует только нужная информация.

    2. Повышение безопасности информации, связанное с тем, что обработка запросов всех клиентов выполняется единой программой, расположенной на сервере. Сервер устанавливает общие для всех пользователей правила использования БД, управляет режимами доступа клиентов к данным, запрещая, в частности, одновременное изменение одной записи различными пользователями.

    3. Уменьшение сложности клиентских приложений за счет отсутствия в них кода, связанного с контролем БД и разграничением доступа к ней.

    Недостатками такой архитектуры являются:

    · неработоспособность сервера может сделать неработоспособной всю вычислительную сеть;

    · администрирование данной системы требует квалифицированного профессионала;

    · высокая стоимость оборудования;

    · бизнес логика приложений осталась в клиентском ПО.

    Для реализации архитектуры «клиент-сервер» обычно используются многопользовательские СУБД, например, Oracle или Мicrosoft SQL Server. Подобные СУБД также называют промышленными, так как они позволяют создать информационную систему организации или предприятия с большим числом пользователей.

    Трёхуровневая архитектура – архитектурная модель программного комплекса, предполагающая наличие в нём трёх компонентов: клиента, сервера приложений (к которому подключено клиентское приложение) и сервера баз данных (с которым работает сервер приложений).

    Трехуровневая клиент-серверная архитектура, которая начала развиваться с середины 90-х годов, предусматривает отделение прикладного уровня от управления данными. Отделяется отдельный программный уровень, на котором сосредотачивается прикладная логика приложения. Программы промежуточного уровня могут функционировать под управлением специальных серверов приложений, но запуск таких программ может осуществляться и под управлением обычного веб-сервера. Наконец, управления данными осуществляется сервером данных.

    Клиент (слой клиента) - это интерфейсный (обычно графический) компонент комплекса, предоставляемый конечному пользователю. Этот уровень не должен иметь прямых связей с базой данных (по требованиям безопасности и масштабируемости), быть нагруженным основной бизнес-логикой (по требованиям масштабируемости) и хранить состояние приложения (по требованиям надёжности). На этот уровень обычно выносится только простейшая бизнес-логика: интерфейс авторизации, алгоритмы шифрования, проверка вводимых значений на допустимость и соответствие формату, несложные операции с данными (сортировка, группировка, подсчёт значений), уже загруженными на терминал.

    Сервер приложений (средний слой, связующий слой) располагается на втором уровне, на нём сосредоточена большая часть бизнес-логики. Вне его остаются только фрагменты, экспортируемые на клиента (терминалы), а также элементы логики, погруженные в базу данных (хранимые процедуры и триггеры). Реализация данного компонента обеспечивается связующим программным обеспечением. Серверы приложений проектируются таким образом, чтобы добавление к ним дополнительных экземпляров обеспечивало горизонтальное масштабирование производительности программного комплекса и не требовало внесения изменений в программный код приложения.

    Сервер баз данных (слой данных) обеспечивает хранение данных и выносится на отдельный уровень, реализуется, как правило, средствами систем управления базами данных, подключение к этому компоненту обеспечивается только с уровня сервера приложений.

    В простейших конфигурациях все компоненты или часть из них могут быть совмещены на одном вычислительном узле. В продуктивных конфигурациях как правило используется выделенный вычислительный узел для сервера баз данных или кластер серверов баз данных, для серверов приложений - выделенная группа вычислительных узлов, к которым непосредственно подключаются клиенты (терминалы).

    По сравнению с клиент-серверной или файл-серверной архитектурой трёхуровневая архитектура обеспечивает, как правило, большую масштабируемость (за счёт горизонтальной масштабируемости сервера приложений и мультиплексирования соединений, большую конфигурируемость (за счёт изолированности уровней друг от друга), более широкие возможности по обеспечению безопасности и отказоустойчивости. Кроме того, в сравнении с клиент-серверными приложениями, использующими прямые подключения к серверам баз данных, снижаются требования к скорости и стабильности каналов связи между клиентом и серверной частью. Реализация приложений, доступных из веб-браузера или из тонкого клиента, как правило, подразумевает развёртывание программного комплекса в трёхуровневой архитектуре. При этом обычно разработка приложений для трёхуровневых программных комплексов сложнее, чем для клиент-серверных приложений, также наличие дополнительного связующего программного обеспечения может налагать дополнительные издержки в администрировании таких комплексов.

    Для доступа к тем или иным сетевам сервисам используются клиенты, возможности которых характеризуются понятием «толщины». Оно определяет конфигурацию оборудования и программное обеспечение, имеющиеся у клиента. Рассмотрим возможные граничные значения:

    «Тонкий» клиент . Этот термин определяет клиента, вычислительных ресурсов которого достаточно лишь для запуска необходимого сетевого приложения через web-интерфейс. Пользовательский интерфейс такого приложения формируется средствами статического HTML (выполнение JavaScript не предусматривается), вся прикладная логика выполняется на сервере.

    Для работы тонкого клиента достаточно лишь обеспечить возможность запуска web-браузера, в окне которого и осуществляются все действия. По этой причине web-браузер часто называют "универсальным клиентом".

    «Толстый» клиент . Таковым является рабочая станция или персональный компьютер, работающие под управлением собственной дисковой операционной системы и имеющие необходимый набор программного обеспечения. К сетевым серверам «толстые» клиенты обращаются в основном за дополнительными услугами (например, доступ к web-серверу или корпоративной базе данных).

    Так же под «толстым» клиентом подразумевается и клиентское сетевое приложение, запущенное под управлением локальной ОС. Такое приложение совмещает компонент представления данных (графический пользовательский интерфейс ОС) и прикладной компонент (вычислительные мощности клиентского компьютера).