Чем отличается постоянное напряжение от переменного. Переменный ток и постоянный ток: отличие. Взаимосвязь магнетизма и электричества

Инструкция

Для начала разберемся, что же электрический ток. Направленное движение () заряженных частиц и называется электрическим током. В переменном токе проводника за равнозначные промежутки времени проходит различное количество заряженных частиц. В постоянном же количество данных частиц за одинаковые времени всегда равнозначно.

Переменный ток постоянно изменяет свою силу, величину или направление. И эти изменения всегда периодически, то есть повторяются через одинаковые промежутки времени. Например, с помощью переменного тока невозможно зарядить аккумулятор или нельзя использовать его для подобных технических целей.

В отличие от постоянного тока , переменный имеет несколько дополнительных значений:- период - временное значение совершения полного цикла показателей переменного тока ; полупериод и частота (количество циклов за конкретный отрезок времени);- амплитуда – наивысшее значение переменного тока ;- мгновенное значение – значение тока в данный момент времени.

Переменный ток более распространен и широко применяем. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в сетях в зависимости от необходимых потребностей. Это можно сделать с помощью трансформатора. Трансформатор – аппарат, преобразующий переменный ток одного напряжения в такой же ток, но другого напряжения при одинаковой частоте тока .

Крупозная пневмония начинается остро, чаще всего, после сильного переохлаждения. Температура до 39-40 градусов, больного бьет сильный озноб. Сразу появляется боль при дыхании и со стороны пораженного легкого. Кашель сопровождается выделением гнойной вязкой мокроты с крови. Состояние больного тяжелое. Дыхание поверхностное, учащенное, с раздуванием крыльев носа. Пораженная сторона грудной клетки заметно отстает при дыхании от здоровой.

На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. При этом ток и напряжение могут неоднократно повышаться и понижаться – трансформироваться. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах.


Многие пользователи считают, что в используется только переменный ток с напряжением 220В и частотой 50Гц. Это только справедливо для ламп накаливания, электродвигателей в пылесосах, холодильниках.

В любом сложном бытовом устройстве, питающемся от сети переменного тока, имеются узлы, которые работают при постоянном напряжении с различными значениями. Предугадать, какими могут быть эти значения, фактически невозможно. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.

Постоянный ток

Несмотря на то, что доля выработки постоянного тока составляет только 2%, его значение достаточно велико. Постоянный ток вырабатывается гальваническими элементами, аккумуляторами, термопарами, солнечными батареями.


Солнечные батареи становятся весьма перспективным направлением энергетики в сегодняшние дни, когда остро ставится вопрос об использовании возобновляемых источников энергии.

Постоянный ток питает двигатели локомотивов на железнодорожном транспорте, используется в бортовой сети самолетов и автомобилей.

На дорогах современных городов становится все больше электромобилей и гибридных автомобилей. Для подзарядки их аккумуляторов строятся станции, которые обеспечивают их потребности в постоянном токе.

Какими должны быть розетки

Размеры розеток, их тип, материал, из которого они изготовлены, зависят в первую очередь от назначения розеток, токов и напряжений, на которые они рассчитаны. Устройства, работающие при постоянном напряжении, имеют полярные вилки. Поэтому и розетки для них должны быть полярными. Тогда даже неопытный пользователь не сможет перепутать, где «+» и «–».

Переменный ток в цепи представляет собой электрический поток заряженных частиц, направление и скорость которых периодически изменяется во времени по определенному закону.

Инструкция

Обратитесь к общему в электрической цепи, описанному в школьном учебнике. Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Это означает, что величина силы тока в сети переменного тока изменяется по закону синуса или косинуса. Собственно говоря, это отвечает тому току, что течет в бытовой электрической сети. Однако синусоидальность тока не является общим определением переменного тока и не до конца объясняет природу его протекания.

Нарисуйте на листе бумаги график синусоиды. По данному графику видно, что значение самой функции, выражаемой силой тока в данном контексте, изменяется от положительного значения к отрицательному. Причем время, через которое происходит смена знака, всегда одно и то же. Это время называется периодом колебаний тока, а обратная ко времени величина – частотой переменного тока. Например, частота переменного тока бытовой сети составляет 50 Гц.

Обратите внимание на то, смена знака функции физически. На самом деле, это означает лишь то, что в какой-то момент времени ток начинает течь в противоположную сторону. Причем, если закон изменения синусоидальный, то смена направления движения происходит не скачком, а с постепенным торможением. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Как известно, направление тока задается направлением положительно заряженных частиц в цепи. Таким образом, в цепи переменного тока заряженные частицы через определенное время изменяют направление своего движения на противоположное.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки - нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя , можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, - значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки - противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.


Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока - самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота - параметры переменного тока

Переменный ток характеризуется двумя параметрами - периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.



Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um - общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u - общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени - T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока - период, амплитуду и частоту , - которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.

Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на посто янное число 6,28.

Движение электронов в проводнике

Чтобы понимать что такое ток и откуда он берётся, нужно иметь немного знаний о строении атомов и законах их поведения. Атомы состоят из нейтронов (с нейтральным зарядом), протонов (положительный заряд) и электронов (отрицательный заряд).

Электрический ток возникает в результате направленного перемещения протонов и электронов, а также ионов. Как можно направить движение этих частиц? Во время любой химической операции электроны «отрываются» и переходят от одного атома к другому.

Те атомы, от которых «оторвался» электрон становятся положительно заряженным (анионы), а те к которым присоединился – отрицательно заряженными и называются катионами. В результате этих «перебеганий» электронов возникает электрический ток.

Естественно, этот процесс не может продолжаться вечно, электрический ток исчезнет когда все атомы системы стабилизируются и будут иметь нейтральных заряд (отличный бытовой пример – обычная батарейка, которая «садится» в результате окончания химической реакции).

История изучения

Древние греки первыми заметили интересное явление: если потереть камень янтаря об шерстяную ткань, то он начинает притягивать мелкие предметы. Следующие шаги начали делать ученые и изобретатели эпохи ренессанса, которые построили несколько интересных устройств, демонстрировавших это явление.

Новым этапом изучения электричества стали работы американца Бенджамина Франклина, в частности его опыты с Лейденовской банкой – первым в мире электроконденсатором.

Именно Франклин ввёл понятия положительных и отрицательных зарядов, а также он придумал громоотвод. И наконец, изучение электротока стало точной наукой после описания закона Кулона.

Основные закономерности и силы в электрическом токе

Закон Ома – его формула описывает взаимосвязь силы, напряжения и сопротивления. Открыт в 19м веке немецким ученым Георгом Симоном Омом. Единица измерения электросопротивления названа в его честь. Его открытия были очень полезны непосредственно для практического использования.

Закон Джоуля – Ленца говорит, что на любом участке электрической цепи совершается работа. В результате этой работы нагревается проводник. Такой тепловой эффект часто используется на практике в инженерии и технике (отличный пример – лампа накаливания).

Движение зарядов при этом совершается работа

Эта закономерность получила такое название потому что сразу 2 ученых примерно одновременно и независимо, вывели её с помощью опытов
.

В начале 19го века британский ученый Фарадей догадался, что изменяя количество линий индукции, которые пронизывают поверхность ограниченную замкнутым контуром, можно сделать индукционный ток. Посторонние силы, действующие на свободные частицы, называют электродвижущей силой (ЭДС индукции).

Разновидности, характеристики и единицы измерения

Электрический ток может быть или переменным , или постоянным .

Постоянный электроток — это ток, который не меняет своё направление и знак во времени, однако он может менять свою величину. Постоянный электроток в качестве источника чаще всего использует гальванические элементы.

Переменным называется тот, который меняет направление и знак по закону косинуса. Его характеристикой является частота. Единицы измерения в системе СИ – Герцы (Гц).

В последние десятилетия очень большое распространение получил . Это вид переменного тока, который включает в себя 3 цепи. В этих цепях действует переменные ЭДС одинаковой частоты, но развернутые по фазе одна относительно другой на треть периода. Фазой называют каждую отдельную электроцепь.


Почти все современные генераторы производят трёхфазный электроток.

  • Сила и количество тока

Сила тока зависит от величины заряда, протекающего в электроцепи за единицу времени. Сила тока это отношение электрозаряда, проходящего сквозь сечение проводника, ко времени его прохождения.

В системе СИ единица измерения силы заряда – кулон (Кл), времени – секунда (с). В итоге получаем Кл/с, данную единицу называют Ампер (A). Измеряется сила электротока с помощью прибора – амперметра.

  • Напряжение

Напряжение — это соотношение работы к величине заряда. Работа измеряется в джоулях (Дж), заряд в кулонах. Данная единица называется Вольт (В).

  • Электрическое сопротивление

Показания амперметра на различных проводниках дают разные значения. А для того чтобы замерять мощность электроцепи пришлось бы использовать 3 прибора. Явление объясняется тем, что у каждого проводника различная проводимость. Единица измерения называется Ом и обозначается латинской буквой R. Сопротивление также зависит и от длины проводника.

  • Электрическая емкость

Два проводника, которые изолированы один от второго, могут накапливать электрические заряды. Данное явление характеризуется физ. величиной, которую называют электрической емкостью. Её единицей измерения – фарад (Ф).

  • Мощность и работа электрического тока

Работа электротока на конкретном участке цепи равняется перемножению напряжения тока на силу и время. Напряжение меряют вольтами, силу амперами, время секундами. Единицей измерения работы приняли джоуль (Дж).

Мощность электротока – это отношение работы ко времени её совершения. Мощность обозначают буквой P и измеряют ваттами (Вт). Формула мощности очень простая: Сила тока умноженная на напряжение тока.

Существует также единица именуемая ватт-час. Её не следует путать с ваттами, это 2 разные физические величины. В ваттах измеряют мощность (скорость потребления или передачи энергии), а в ватт-часах выражается энергия произведённая за конкретное время. Это измерение часто применяют в отношении бытовых электроприборов.

Например, лампа мощность которой равняется 100 Вт работала в течении одного часа, то она потребила 100 Вт*ч, а лампочка мощность которой 40 ватт потребит столько же электроэнергии за 2.5 часа.

Для того, чтобы замерять мощность электроцепи используют ваттметр

Какой вид тока эффективнее и какая между ними разница?

Постоянный электроток легко использовать в случае параллельного подключения генераторов, для переменного необходима синхронизация генератора и энергосистемы.

В истории произошло событие под названием «Война токов». Эта «война» произошла между двумя гениальными изобретателями – Томасом Эдисоном и Николой Теслой. Первый поддерживал и активно продвигал постоянный электроток, а второй переменный. «Война» закончилась победой Теслы в 2007 году, когда Нью-Йорк окончательно перешел на переменный.

Разница в эффективности передачи энергии на расстоянии оказалось огромной в пользу переменного тока. Постоянный электроток невозможно использовать, если станция находятся далеко от потребителя.

Но постоянный всё равно нашел сферу применения: он широко используется в электротехнике, гальванизации, некоторых видах сварки. Также постоянный электроток получил очень большое распространение в сфере городского транспорта (троллейбусы, трамваи, метро).

Естественно, не бывает плохих или хороших токов, у каждого вида есть свои преимущества и недостатки, самое главное – правильно их использовать.

Несмотря на то, что электрический ток является незаменимой частью современной жизни, многие пользователи не знают о нем даже основополагающих сведений. В данной статье, опустив курс базовой физики, рассмотрим, чем отличается постоянный ток от переменного, а также какое он находит применение в современных бытовых и промышленных условиях.

Вконтакте

Различие типов тока

Что такое ток, рассматривать здесь не будем, а сразу перейдем к основной теме статьи. Переменный ток отличается от постоянного тем, что он непрерывно изменяется по направлению движения и своей величине .

Изменения эти осуществляются периодами через равные временные отрезки. Для создания подобного тока применяют специальные источники или генераторы, выдающие переменную ЭДС (электродвижущую силу), которая регулярно изменяется.

Основополагающая схема упомянутого устройства для генерации переменного тока довольно проста. Это рамка в виде прямоугольника, изготавливаемая из медных проволок, которая закрепляется на ось, а затем при помощи ременной передачи вращается в поле магнита. Кончики этой рамки припаиваются к медным контактным колечкам, скользящим по непосредственно контактным пластинкам, вращаясь синхронно с рамкой.

При условии равномерного ритма вращения начинает индуцироваться ЭДС, которая периодически изменяется. Измерить ЭДС, возникшую в рамке, возможно специальным прибором. Благодаря появлению реально определить переменную ЭДС и вместе с ней переменный ток.

В графическом исполнении эти величины характерно изображаются в виде волнообразной синусоиды . Понятие синусоидального тока зачастую относится к переменному току, поскольку подобный характер изменения тока является наиболее распространенным.

Переменный ток – алгебраическая величина, а его значение в конкретный временной момент именуется мгновенным значением. Знак непосредственно самого переменного тока определяется по направлению, в котором в данный временной момент проходит ток. Следовательно, знак бывает положительным и отрицательным.

Характеристики тока

Для сравнительной оценки всевозможных переменных токов применяют критерии, именуемые параметрами переменного тока , среди которых:

  • период;
  • амплитуда;
  • частота;
  • круговая частота.

Период – отрезок времен, когда производится законченный цикл изменения тока. Амплитудой называют максимальное значение. Частотой переменного тока назвали количество законченных периодов за 1 сек.

Перечисленные выше параметры дают возможность отличать различные виды переменных токов, напряжений и ЭДС.

При расчете сопротивления разных цепей воздействию переменного тока допустимо подключить еще один характерный параметр, именуемый угловой либо круговой частотой . Этот параметр определяется скоростью вращения вышеупомянутой рамки под определенным углом в одну секунду.

Важно! Следует понимать, чем отличается ток от напряжения. Принципиальная разница известна: ток является количеством энергии, а напряжением называется мера .

Переменный ток получил свое название, потому что направление движения у электронов безостановочно изменяется, как и заряд. У него встречается различная частота и электрическое напряжение.

Это и является отличительной чертой от постоянного тока, где направление движения электронов неизменно . Если сопротивление, напряжение и сила тока неизменны, а ток течет только в одну сторону, то такой ток является постоянным.

Для прохождения постоянного тока в металлах потребуется, чтобы источник постоянного напряжения оказался замкнут на себя при помощи проводника, которым и является металл. В отдельных ситуациях для выработки постоянного тока применяют химический источник энергии, который называется гальваническим элементом.

Передача тока

Источники переменного тока – обычные розетки. Они располагаются на объектах разнообразного назначения и в жилых помещениях. К ним подключаются различные электрические приборы, которые получают необходимое для их работы напряжение.

Использование переменного тока в электрических сетях является экономически обоснованным, поскольку величина его напряжения может преобразовываться к уровню необходимых значений. Совершается это при помощи трансформаторного оборудования с допускаемыми незначительными потерями. Транспортировка от источников электроснабжения к конечным потребителям является более дешевой и простой.

Передача тока к потребителям начинается непосредственно с электростанции, где используется разновидность чрезвычайно мощных электрических генераторов. Из них получают электрический ток, который по кабелям направляется к трансформаторным подстанциям. Зачастую подстанции располагают неподалеку от промышленных либо жилых объектов электрического потребления. Полученный подстанциями ток преобразуется в трехфазное переменное напряжение.

В батарейках и аккумуляторах содержится постоянный ток , который отличается устойчивостью свойств, т.е. они не изменяются со течением времени. Он используется в любых современных электрических изделиях, а еще в автомобилях.

Преобразование тока

Рассмотрим отдельно процесс преобразования переменного тока в постоянный. Данный процесс производится при помощи специализированных выпрямителей и включает три шага:

  1. Первым шагом подключается четырехдиодный мост заданной мощности. Это в свою очередь позволяет задать движение однонаправленного типа у заряженных частиц. Кроме того, он понижает верхние значения у синусоид, свойственных переменному току.
  2. Далее подключается фильтр для сглаживания либо специализированный конденсатор. Это осуществляется с диодного моста на выход. Сам же фильтр способствует исправлению впадин между пиковыми значениями синусоид. А подключение конденсатора значительно снижает пульсации и приводит их к минимальным значениям.
  3. Затем производится подключение устройств, стабилизирующих напряжение, с целью снижения пульсаций.

Данный процесс, в случае необходимости, способен производиться в двух направлениях, конвертируя постоянный и переменный ток.

Еще одной отличительной чертой является распространение электромагнитных волн по отношению к пространству. Доказано, что постоянный тип тока не позволяет электромагнитным волнам распространяться в пространстве, а переменный ток может вызывать их распространение. Кроме того, при транспортировке переменного тока по проводам индукционные потери значительно меньше, нежели при передаче постоянного тока.

Обоснование выбора тока

Разнообразие токов и отсутствие единого стандарта обуславливается не только потребностью в различных характеристиках в каждой индивидуальной ситуации. В решении большинства вопросов перевес оказывается в пользу переменного тока. Подобная разница между видами токов обуславливается следующими аспектами:

  • Возможность передачи переменного тока на значительные расстояния. Возможность преобразования в разнородных электрических цепях с неоднозначным уровнем потребления.
  • Поддержание постоянного напряжения для переменного тока оказывается в два раза дешевле, нежели для постоянного.
  • Процесс преобразования электрической энергии непосредственно в механическую силу осуществляется со значительно меньшими затратами в механизмах и двигателях переменного тока.

Сам по себе электрический ток представляет собой ничто иное, как происходящее в упорядоченном виде движение всех заряженных частиц в газах, электролитах и металлических объектах. К данным элементам, несущим определенный заряд, относятся ионы и электроны. Сегодня мы постараемся прояснить, чем отличается переменный ток от постоянного , ведь на практике приходится часто сталкиваться с обоими видами.

Характеристики постоянного тока

Direct Current или DC так по-английски обозначают подобную разновидность, для которой присуще свойство на протяжении любого отрезка времени не менять свои параметры. Маленькая горизонтальная черточка или две параллельные со штриховым исполнением одной из них – графическое изображение постоянного тока.

Область применения – большинство и электронных устройств, включая компьютерную технику, телевизоры и гаджеты, использование в домашних сетях и автомобилях. Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания.

В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов.

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка . Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Двигатели асинхронной конструкции, работающие с переменным током, значительно надежнее и отличаются более простой конструкцией, чем аналоги постоянного тока.

Преобразование переменного тока в постоянный

Для варианта подобной трансформации оптимальный способ – использование выпрямителей:

  • Подключение диодного моста – первый шаг в этой процедуре. Конструкция из 4 диодов с необходимой мощностью способствует процессу своеобразного срезания верхних границ уже знакомых нам синусоид переменного вида. Таким образом достигается получение однонаправленного тока.


Изменения в результате снижения пульсации отображены в синем цвете.

  • устанавливаются для уменьшения рабочего уровня пульсации в случае возникшей необходимости.

Преобразователь постоянного тока в переменный

В данном случае процесс выглядит достаточно сложным. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

Высокие цены на подобное устройство обусловлены сложностью конструкции. Стоимость в значительной степени обусловлена максимальной мощностью тока на выходе.

Применяется в довольно редких ситуациях. Например, в случае необходимости подсоединить к электросети автомобиля какой-то инструмент или приборы.