Двоичные числа, цифры и двоичная система счисления. Перевод числа в двоичную систему счисления из десятичной. Применение правил в математике: двоичная система счисления – перевод чисел

Запишите число в двоичной системе счисления, а степени двойки справа налево. Например, мы хотим преобразовать двоичное число 10011011 2 в десятичное. Сначала запишем его. Затем запишем степени двойки справа налево. Начнем с 2 0 , что равно "1". Увеличиваем степень на единицу для каждого следующего числа. Останавливаемся, когда число элементов в списке равно числу цифр в двоичном числе. Наше число для примера, 10011011, включает в себя восемь цифр, поэтому список из восьми элементов будет выглядеть так: 128, 64, 32, 16, 8, 4, 2, 1

Запишите цифры двоичного числа под соответствующими степенями двойки. Теперь просто запишите 10011011 под числами 128, 64, 32, 16, 8, 4, 2, и 1, с тем чтобы каждая двоичная цифра соответствовала своей степени двойки. Самая правая "1" двоичного числа должна соответствовать самой правой "1" из степеней двоек, и так далее. Если вам удобнее, вы можете записать двоичное число над степенями двойки. Самое важное – чтобы они соответствовали друг другу.

Соедините цифры в двоичном числе с соответствующими степенями двойки. Нарисуйте линии (справа налево), которые соединяют каждую последующую цифру двоичного числа со степенью двойки, находящейся над ней. Начните построение линий с соединения первой цифры двоичного числа с первой степенью двойки над ней. Затем нарисуйте линию от второй цифры двоичного числа ко второй степени двойки. Продолжайте соединять каждую цифру с соответствующей степенью двойки. Это поможет вам визуально увидеть связь между двумя различными наборами чисел.

Запишите конечное значение каждой степени двойки. Пройдитесь по каждой цифре двоичного числа. Если эта цифра 1, запишите соответствующую степень двойки под цифрой. Если эта цифра 0, запишите под цифрой 0.

  • Так как "1" соответствует "1", она остается "1". Так как "2" соответствует "1", она остается "2". Так как "4" соответствует "0", она становится "0". Так как "8" соответствует "1", она становится "8", и так как "16" соответствует "1" она становится "16". "32" соответствует "0" и становится "0", "64" соответствует "0" и поэтому становится "0", в то время как "128" соответствует "1" и становится 128.
  • Сложите получившиеся значения. Теперь сложите получившиеся под линией цифры. Вот что вы должны сделать: 128 + 0 + 0 + 16 + 8 + 0 + 2 + 1 = 155. Это десятичный эквивалент двоичного числа 10011011.

    Запишите ответ вместе с нижним индексом, равным системе счисления. Теперь все, что вам осталось сделать – это записать 155 10 , чтобы показать, что вы работаете с десятичным ответом, который оперирует степенями десятки. Чем больше вы будете преобразовывать двоичные числа в десятичные, тем проще вам будет запомнить степени двойки, и тем быстрее вы сможете выполнять данную задачу.

  • Используйте данный метод, чтобы преобразовать двоичное число с десятичной точкой в десятичную форму. Вы можете использовать данный метод даже если вы хотите преобразовать двоичное число, такое как 1.1 2 в десятичное. Все, что вам необходимо знать – это то, что число в левой части десятичного числа – это обычное число, а число в правой части десятичного числа – это число "делений надвое", или 1 x (1/2).

    • "1" слева от десятичного числа соответствует 2 0 , или 1. 1 справа от десятичного числа соответствует 2 -1 , или.5. Сложите 1 и.5 и вы получите 1.5, которое является эквивалентом 1.1 2 в десятичном виде.
  • Фраза о том, что все новое - это не что иное, как хорошо забытое старое, в полной мере относится к Оказывается, что еще в древнем Китае уже применяли нечто, напоминающее наши «единичка-нолик», правда не для арифметики, а для написания текстов книги Перемен. Ближе всех к пониманию разных систем счисления были инки: они использовали и десятичную, и двоичную системы, правда, последнюю только для текстовых и кодированных сообщений. Можно предположить, что уже тогда, 4 тыс. лет назад, инки знали, как делается перевод из двоичной в десятичную систему.

    Современный вариант был предложен Лейбницем всего-то около 300 лет назад, а спустя еще полтора века оставил свое имя в памяти потомков работой по алгебре логики. Двоичная арифметика совместно с алгеброй логики стала фундаментом нынешней цифровой техники. А началось все в 1937 году, когда был предложен метод символического анализа релейных и переключательных схем. Эта работа Клода Шенона стала «мамой» для релейного компьютера, выполнявшего двоичное сложение уже в 1937 году. И, конечно же, одной из задач этого «прадедушки» современных компьютеров был перевод из двоичной в десятичную систему.

    Прошло всего три года и очередная модель релейного «компьютера» посылала команды калькулятору используя телефонную линию и телетайп - ну прямо древний интернет в действии.

    Что же представляют собой двоичная, десятичная, шестнадцатеричная и, вообще говоря, любая N-ичная система? Да ничего сложного. Возьмем трехзначное число в нашей любимой десятичной системе, оно изображается при помощи 10 знаков - от 0 до 9 с учетом их расположения. Определимся, что цифры этого числа находятся на позициях 0, 1, 2 (порядок идет от последней цифры к первой). На каждой из позиций может находиться любое из чисел системы, однако величина этого числа определяется не только его начертанием, но и местом положения. Например, для числа 365 (соответственно, позиция 0 - цифра 5, позиция 1 - цифра 6, и позиция 2 - цифра 3) значение числа на нулевой позиции - просто 5, на первой позиции - 6*10, и на второй - 3*10*10. Здесь любопытно, что начиная с первой позиции, число содержит значащую цифру (от 0 до 9) и основание системы в степени равной номеру позиции, т.е. можно записать, что 345 = 3*10*10 + 6*10 +3 = 3*102 + 6*101 + 5*100.

    Еще пример:

    260974 = 2*105 + 6*104 + 0*103 + 9*102 + 7*101 + 4*100.

    Как видим, каждое позиционное место содержит значащее число из набора данной системы, и множитель из основания системы в степени равной позиции данного числа (разрядность числа это есть количество позиций, но на +1 больше).

    С точки зрения представления числа, его двоичная форма озадачивает своей простотой - только 2 числа в системе - 0 и 1. Но красота математики в том, что даже в усеченном виде, как может показаться, двоичные числа такие же полноценные и равноправные, как и их более «рослые товарищи». Но как же их сравнивать, например, с десятичным числом? Как вариант, нужно сделать, и не торопясь, перевод из двоичной в десятичную. Задачу не назовешь трудной, но эта кропотливая работа требует внимания. Итак, начнем.

    Исходя из сказанного выше о порядке представления чисел в любой системе, и имея в виду простейшую из них - двоичную, возьмем любую последовательность «единичек-ноликов». Назовем это число VO (по-русски ВО), и попробуем узнать, что это такое - перевод из двоичной в десятичную систему. Пусть это будет VO=11001010010. На первый взгляд, число как число. Посмотрим!

    В первой строке расположим само число в растянутом виде, а вторую распишем как сумму каждой позиции в виде сомножителей - значащей цифры (здесь выбор небольшой - 0 или 1) и числа 2 в степени, равной позиционному числу в десятичной системе, мы же делаем перевод из двоичной в десятичную. Теперь во второй строке нужно просто выполнить вычисления. Для наглядности можно дописать еще и третью строку с промежуточными вычислениями.

    VO = 1 1 0 0 1 0 1 0 0 1 0;

    VO = 1*210 + 1*29 + 0*28 + 0*27 + 1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 0*20;

    VO=1*1024 + 1*512+0*256+0*128+ 1*64 + 0*32 + 1*16 + 0*8 +0*4 + 1*2 + 0*1.

    Вычисляем «арифметику» в третьей строке и имеем то, что искали: VO = 1618. Ну и что же тут замечательного? А то, что это число - самое знаменитое из всех, которые известны людям: с ним связаны пропорции египетских пирамид, знаменитой Джоконды, музыкальных нот и человеческого тела, но… Но с небольшим уточнением - зная, что хорошего должно быть много, его величество случай дал нам это число в 1000 раз больше настоящего значения - 1,618. Наверное, чтобы всем досталось. А попутно перевод из двоичной системы в десятичную помог из бесконечного моря чисел «выловить» самое замечательное - его еще называют «золотая пропорция».

    Чтобы быстро переводить числа из десятичной системы счисления в двоичную, нужно хорошо знать числа "2 в степени". Например, 2 10 =1024 и т.д. Это позволит решать некоторые примеры на перевод буквально за секунды. Одной из таких задач является задача A1 из демо ЕГЭ 2012 года . Можно, конечно, долго и нудно делить число на "2". Но лучше решать по-другому, экономя драгоценное время на экзамене.

    Метод очень простой. Суть его такая: если число, которое нужно перевести из десятичной системы, равно числу "2 в степени", то это число в двоичной системе содержит количество нулей, равное степени. Впереди этих нулей добавляем "1".

    • Переведем число 2 из десятичной системы. 2=2 1 . Поэтому в двоичной системе число содержит 1 нуль . Впереди ставим "1" и получаем 10 2 .
    • Переведем 4 из десятичной системы. 4=2 2 . Поэтому в двоичной системе число содержит 2 нуля . Впереди ставим "1" и получаем 100 2.
    • Переведем 8 из десятичной системы. 8=2 3 . Поэтому в двоичной системе число содержит 3 нуля . Впереди ставим "1" и получаем 1000 2.


    Аналогично и для других чисел "2 в степени".

    Если число, которое нужно перевести, меньше числа "2 в степени" на 1, то в двоичной системе это число состоит только из единиц, количество которых равно степени.

    • Переведем 3 из десятичной системы. 3=2 2 -1. Поэтому в двоичной системе число содержит 2 единицы . Получаем 11 2.
    • Переведем 7 из десятичной системы. 7=2 3 -1. Поэтому в двоичной системе число содержит 3 единицы . Получаем 111 2.

    На рисунке квадратиками обозначено двоичное представление числа, а слева розовым цветом-десятичное.


    Аналогичен перевод и для других чисел "2 в степени-1".

    Понятно, что перевод чисел от 0 до 8 можно сделать быстро или делением, или просто знать наизусть их представление в двоичной системе. Я привела эти примеры, чтобы Вы поняли принцип данного метода и использовали его для перевода более "внушительных чисел", например, для перевода чисел 127,128, 255, 256, 511, 512 и т.д.

    Можно встретить такие задачи, когда нужно перевести число, не равное числу "2 в степени", но близкое к нему. Оно может быть больше или меньше числа "2 в степени". Разница между переводимым числом и числом "2 в степени" должна быть небольшая. Например, до 3. Представление чисел от 0 до 3 в двоичной системе надо просто знать без перевода.

    Если число больше , то решаем так:

    Переводим сначала число "2 в степени" в двоичную систему. А потом прибавляем к нему разницу между числом "2 в степени" и переводимым числом.

    Например, переведем 19 из десятичной системы. Оно больше числа "2 в степени" на 3.

    16=2 4 . 16 10 =10000 2 .

    3 10 =11 2 .

    19 10 =10000 2 +11 2 =10011 2 .

    Если число меньше числа "2 в степени", то удобнее пользоваться числом "2 в степени-1". Решаем так:

    Переводим сначала число "2 в степени-1" в двоичную систему. А потом вычитаем из него разницу между числом "2 в степени-1" и переводимым числом.

    Например, переведем 29 из десятичной системы. Оно больше числа "2 в степени-1" на 2. 29=31-2.

    31 10 =11111 2 .

    2 10 =10 2 .

    29 10 =11111 2 -10 2 =11101 2

    Если разница между переводимым числом и числом "2 в степени" больше трех , то можно разбить число на составляющие, перевести каждую часть в двоичную систему и сложить.

    Например, перевести число 528 из десятичной системы. 528=512+16. Переводим отдельно 512 и 16.
    512=2 9 . 512 10 =1000000000 2 .
    16=2 4 . 16 10 =10000 2 .
    Теперь сложим столбиком:

    Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

    епозиционные системы счисления.

    Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

    К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

    I 1 (один)
    V 5 (пять)
    X 10 (десять)
    L 50 (пятьдесят)
    C 100 (сто)
    D 500 (пятьсот)
    M 1000 (тысяча)

    Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

    IL 49 (50-1=49)
    VI 6 (5+1=6)
    XXI 21 (10+10+1=21)
    MI 1001 (1000+1=1001)

    озиционные системы счисления.

    Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

    Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

    Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

      Например:
    • Двоичная - позиционная система счисления с основанием 2.
    • Четверичная - позиционная система счисления с основанием 4.
    • Пятиричная - позиционная система счисления с основанием 5.
    • Восьмеричная - позиционная система счисления с основанием 8.
    • Шестнадцатиричная - позиционная система счисления с основанием 16.

    Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

    10 с/с 2 с/с 8 с/с 16 с/с
    0 0 0 0
    1 1 1 1
    2 10 2 2
    3 11 3 3
    4 100 4 4
    5 101 5 5
    6 110 6 6
    7 111 7 7
    8 1000 10 8
    9 1001 11 9
    10 1010 12 A
    11 1011 13 B
    12 1100 14 C
    13 1101 15 D
    14 1110 16 E
    15 1111 17 F
    16 10000 20 10

    Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

    К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

    Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

    Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

    Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

    равила перевода из одной системы счисления в другую.

    1 Перевод целых десятичных чисел в любую другую систему счисления.

    Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

    Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


    Таким образом, 173 10 =255 8

    2 Перевод правильных десятичных дробей в любую другую систему счисления.

    Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

    Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

    Результат уже получен!

    Системы счисления

    Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

    Тогда число 6372 можно представить в следующем виде:

    6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

    Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

    Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

    Тогда число 1287.923 можно представить в виде:

    1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

    В общем случае формулу можно представить в следующем виде:

    Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

    где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

    Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

    Таблица 1
    Система счисления
    10 2 8 16
    0 0 0 0
    1 1 1 1
    2 10 2 2
    3 11 3 3
    4 100 4 4
    5 101 5 5
    6 110 6 6
    7 111 7 7
    8 1000 10 8
    9 1001 11 9
    10 1010 12 A
    11 1011 13 B
    12 1100 14 C
    13 1101 15 D
    14 1110 16 E
    15 1111 17 F

    Перевод чисел из одной системы счисления в другую

    Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

    Перевод чисел из любой системы счисления в десятичную систему счисления

    С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

    Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

    1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

    Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

    Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

    Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

    Перевод чисел из десятичной системы счисления в другую систему счисления

    Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

    Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

    Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

    159 2
    158 79 2
    1 78 39 2
    1 38 19 2
    1 18 9 2
    1 8 4 2
    1 4 2 2
    0 2 1
    0

    Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

    159 10 =10011111 2 .

    Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

    615 8
    608 76 8
    7 72 9 8
    4 8 1
    1

    При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

    615 10 =1147 8 .

    Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

    19673 16
    19664 1229 16
    9 1216 76 16
    13 64 4
    12

    Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

    Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

    Рассмотрим вышеизложенное на примерах.

    Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

    0.214
    x 2
    0 0.428
    x 2
    0 0.856
    x 2
    1 0.712
    x 2
    1 0.424
    x 2
    0 0.848
    x 2
    1 0.696
    x 2
    1 0.392

    Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

    Следовательно можно записать:

    0.214 10 =0.0011011 2 .

    Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

    0.125
    x 2
    0 0.25
    x 2
    0 0.5
    x 2
    1 0.0

    Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

    0.125 10 =0.001 2 .

    Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

    0.214
    x 16
    3 0.424
    x 16
    6 0.784
    x 16
    12 0.544
    x 16
    8 0.704
    x 16
    11 0.264
    x 16
    4 0.224

    Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

    0.214 10 =0.36C8B4 16 .

    Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

    0.512
    x 8
    4 0.096
    x 8
    0 0.768
    x 8
    6 0.144
    x 8
    1 0.152
    x 8
    1 0.216
    x 8
    1 0.728

    Получили:

    0.512 10 =0.406111 8 .

    Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

    159.125 10 =10011111.001 2 .

    Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.