Генератор случайных чисел на определенную сумму. Генерация случайных чисел

Представленный онлайн генератор случайных чисел работает на основе встроенной в JavaScript програмного генератора псевдослучайных чисел с равномерным распределением. Генерируются целые числа. По умолчанию выводится 10 случайных чисел в диапазоне 100...999, числа разделены пробелами.

Основные настройки генератора случайных чисел:

  • Количество чисел
  • Диапазон чисел
  • Тип разделителя
  • Вкл/выкл функцию удаления повторов (дублей чисел)

Общее количество формально ограничено 1000, максимальное число - 1 миллиардом. Варианты разделителей: пробел, запятая, точка с запятой.

Теперь вы точно знаете, где и как в интернете получить бесплатно последовательность случайных чисел в заданном диапазоне.

Варианты применения генератора случайных чисел

Генератор случайных чисел (ГСЧ на JS с равномерным распределением) пригодится SMM-специалистам и владельцам групп и сообществ в социальных сетях Истаграм, Facebook, Вконтакте, Одноклассники для определения победителей лотерей, конкурсов и розыгрышей призов.

Генератор случайных чисел позволяет производить розыгрыш призов среди произвольного количества участников с заданным количеством победителей. Конкурсы можно проводить без репостов и комментариев - вы сами задаёте число участников и интервал генерации случайных чисел. Получить набор случайных чисел онлайн и бесплатно можно на данном сайте, при этом вам не надо ставить какое-либо приложение на смартфон или программу на компьютер.

Также генератор случайных чисел онлайн может быть использован для имитации подкидывания монеты или игральных костей. Но впрочем, у нас для этих случаев есть отдельные специализированные сервисы.

Очень часто при разработке программ возникает необходимость в последовательности случайных чисел. В играх, последовательность случайных чисел может использоваться в разнообразнейших ситуациях: создание монстров, генерация территории, поведение искусственного интеллекта.

Многие вещи можно сделать и без генератора случайных чисел. Вот например, такая последовательность чисел не может считаться случайной: {0, 1, 2, 3, 4, 5, 6, 7}. Здесь, зная предыдущее число, очень легко угадать следующее. Существуют другие последовательности. Например: {0, 1, 3, 2, 6, 7, 5, 4}. Здесь, угадать следующее число значительно сложнее. Подобные последовательности иногда удобно использовать в программах. Данная последовательность определяется кодом Грея. При первом осмотре кажется что тут представлены случайные числа.

Вместо использования в программах последовательности чисел, подчиняющихся какому-либо закону, во многих случаях лучше использовать случайно сгенерированные.

Генерация псевдослучайных чисел

Обычно используется генерация псевдослучайных чисел. Т.е. числа не совсем случайные. Мы уже рассматривали функцию rand(). Если Вы напишите программу использующую данную функцию, то при каждом запуске программы, rand() будет генерировать одну и ту же последовательность чисел. Последовательность сгенерированная rand() определяется начальным числом (seed). Сначала задаётся начальное число, затем, по определённой формуле вичисляются все остальные числа последовательности. Зная начальное число и формулу по которой рассчитываются числа, можно вычислить следующее число.

Такие алгоритмы называются детерминистическими (предопределёнными). Т.е. в них последовательность чисел создаётся на основе начальных данных. При этом последовательность чисел - псевдослучайная: т.е. зная начальное число, можно узнать и все следующие. Но пользователь навряд ли их узнает, числа будут казаться случайными.

Одним из предопределённых (детерминистических) алгоритмов создания случайных чисел является линейно-конгруэнтный.

Установка начального значения (для функции rand(), которую мы использовали до сих пор) выглядит примерно так:

код на языке c++ int i; cin >> i; srnd(i); // установка начального значения rand();

Функция srnd устанавливает начальное значение i.

Линейный конгруэнтный (linear congruential) метод генерации случайных чисел

Существует много методов генерации случайных чисел. Линейно-конгруэнтный лишь один из них. Метод довольно старый - 1950х годов. Разработал его Деррик Лемер.

Для реализации алгоритма необходиом задать четыре параметра:

Диапазон значений m, при этом m > 0.
Множитель a (0 <= a <= m).
Инкрементирующее значение c (0 <= c <= m).
Начальное значение X0 (0 <= X0 < m).

Определив эти параметры, можно воспользоваться формулой:

Xi+1 = (aXi + c) % m (где i больше или равно 0)

i - номер элемента в последовательности.
m - количество значений из которых формируется последовательность.
Напоминаю что % - остаток от деления

Давайте рассмотрим пример небольшой последовательности. Возьмите листок бумаги, карандаш и просчитайте все значения:

imax = 5; // формируем последовательность из 5 элементов
m = 10; // значения в последовательность варьируются от нуля до 9
a = 2;
c = 3;
X0 = 6; // начальное значение (seed)

Xi+1 = (2*Xi + 3) % 10 (где i больше или равно 0)

X1 = 15 % 10 = 5
X2 = 13 % 10 = 3
X3 = 9 % 10 = 9
X4 = 21 % 10 = 1
X5 = 5 % 10 = 5

Если мы увеличим последовательность, то значения начнут повторяться. Таким образом несколько неповторяющихся значений в последовательности формируют период. Период в данном примере: { 5, 3, 9, 1 }.

Итак, с помощью линейного конгруэнтного метода мы получили последовательность случайных чисел из пяти элементов.

Чтобы предугадать значения элементов в последовательности можно воспользоваться формулой:

Xi+k = (a*k*Xi + (a*k-1)*c/b) % m (где k и i больше или равны 0)

Здесь b = a - 1. При этом a >= 2, b >= 1.

Вичислим шестой элемент с помощью этой формулы (мы ведь уже знаем пятый):

X5+1 = (a*1*X5 + (a*1-1)*c/b) % m = (2*1*5 + (2*1-1)*3/1) % 10 = 13 % 10 = 3

Всё росто, правда?

У последовательности созданной с помощью линейного конгруэнтного метода и определённой целыми параметрами m, a, c и X0, период равен числу m когда выполняются следующие условия:
1.Наибольший общий делитель c и m равен 1.
2.b - кратно любому простому числу, являющемуся делителем m.
3.Если m кратно 4, тогда b также кратно 4.

Выбор m

Период не может быть больше числа m. Следовательно m должно быть довольно большим.

Лучше всего если бы m был равен максимальному элементу в последовательности imax+1 (единицу добавляем, так как отсчёт i идёт от нуля). Ещё одним популярным выбором является степень двойки 2n. При условии, что n - длина машинного слова в битах, от операции взятия остатка можно избавиться. Если m является степенью двойки, То операцию взятия остатка можно заменить на более быструю операцию поразрядного И (хотя для современных компьютеров это не актуально):

x % 2n == x & (2n - 1)
Примеры (x - целое число):

x % 2 == x & 1;
x % 4 == x & 3;
x % 8 == x & 7;
Очень часто для m выбирают одно из простых чисел Мерсенна. Часто число 231 - 1 используется, когда вычисления ведутся с 32-ух битными данными.

Множитель a

Множитель нужно выбирать так, чтобы период был как можно длиннее. Существует серьёзная проблема с данным коэффициентом: при малых значениях a, если текущий элемент последовательности достаточно мал, вполне вероятно, что следующий элемент тоже будет маленьким.

Инкремент c

Данный параметр можно выбирать довольно произвольно. Очень часто его задают в виде нуля, но при этом уменьшается длина периода и X0 != 0.

Начальное значение (seed)

Итак, мы выяснили, что в последовательности есть период. В нашем примере период равен всего четырём элементам. В других случаях период может быть очень большим, но он всегда есть! То есть при генерации случайных чисел линейным конгруэнтным методом если нам нужна очень большая последовательность, то в ней значения будут повторяться с определённой периодичностью.

Вот так вот! Генерация последовательных чисел - это самая настоящая мистификация!

Т.е. у нас допустим есть генератор случайных чисел. Мы его используем для разных программ. Всегда, всегда этот генератор создаёт одинаковую последовательность чисел (при одинаковых начальных значениях). Мы можем только установить начальное значение.

Вообще говоря, с помощью арифметических методов нельзя построить по настоящему случайную последовательность чисел. Как невесело шутил наш друг - Джон Фон Нейман:

"Anyone who uses arithmetic methods to produce random numbers is in a state of sin." (C) Джон Фон Нейман.

Грустно всё это. Вот так живёшь-живёшь. Находясь в состоянии неведения, думаешь: "А вот круто бы было создать генератор случайных чисел на основе линейного когнруэнтного метода!". А оказывается что по настоящему случайную последовательность таким образом создать нельзя. Крах надежд! Депрессия и вот ты уже на пороге первой стадии алкоголизма. Этот груз невозможности реализовать свои желания будет давить на тебя всю оставшуюся жизнь... Что-то я отвлёкся. Продолжим.

Реализация генерации случайных чисел

Теперь, когда мы рассмотрели теоретические вопросы, касающиеся генераторов случайных чисел, давайте посмотрим на реализацию, тем более она довольно проста.

Для последовательности рассмотренной выше, генератор будет выглядеть так:

код на языке с++ int rnd() { int m = 10, a = 2, c = 3; static int x = x0; // x объявляется статической переменной x = ((a * x) + c) % m; // формула x0 = x; return x; }

X0 объявляется как глобальная переменная:

int x0 = 6;

Это самый примитивный вариант генератора. В реальности такое чудовище использовать нельзя! Но мы будем это делать!

В данной реализации мы никак не отслеживаем возможность переполнения переменных. Вместо типа int используйте тип _int64 - это целый восьмибайтный тип.

Простые числа

Простые числа - числа которые можно разделить без остатка только на единицу и на само число. Например: 11, 3, 7.

Код Грея

Код Грея представляет собой последовательность чисел, где следующее число отличается от предыдущей одним битом. Т.е. чтобы угадать последовательность, нужно смотреть не на десятичные числа, а на их двоичные эквиваленты.

Вот возрастающая последовательность чисел от 0 до 7 в двоичном коде:

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7
Используя код Грея, получим такую последовательность:

000 0
001 1
011 3
010 2
110 6
111 7
101 5
100 4
Простые числа Мерсенна

На данный момент известно 44 числа Мерсенна. Из названия понятно, что данные числа - простые, т.е. делятся только на единицу и на самих себя. Кроме того данные числа должны подчиняться следующей формуле:

Где n также простое число. Для первых девяти простых чисел Мерсенна n следующие: {2, 3, 5, 7, 13, 17, 19, 31, 61}.

Поразрядные логические операции

Мы уже рассматривали логические операции && (И) и || (ИЛИ). Существуют также поразрядные логические операции & (поразрядное И) и | (поразрядное ИЛИ). Работате операция следующим образом:

5 && 3; // && всегда возвращает ноль или единицу (здесь 1)
5 & 3; // & возвращает число

101
011
=
001 // в результате единица
То есть в данной операции сравниваются соответствующие позиции двух чисел и если они равны, то в результируюем числе в данной позиции пишется 1, в противном случае - ноль.
5 | 3; // | возвращает число

101
011
=
111 // в результате 7

Степень числа

Чтобы возвести число в какую-либо степень можно воспользоваться функцией pow(x,y). При этом Вы получите xy. Функция перегруженная, поэтому её можно использовать с разными типами. Для использования функции pow() необходимо включить заголовочный файл math.h.
Другие генераторы случайных чисел

Кроме линейного конгруэнтного генератора существует множество других. Например Вихрь Мерсенна, изобретённый двумя японскими учёными (непомню как из зовут) в 1997. У него очень большой (очень большой это мягко сказано) период. Кстати, вихрь Мерсенна использует линейный конгруэнтный генератор для установления начального значения (seed).

Генераторы случайных чисел применяются при шифровании. Но здесь используются специальные генераторы - криптографически защищённые генераторы псевдослучайных чисел. Например блочный шифр (block cipher), потоковый шифр (stream cipher), который был разработан на основе шифра Вернама.

Упражнения:

Реализуйте генераторы случайных чисел на основе линейного когруэнтного метода. В качестве параметров воспользуйтесь следующими:

m = 232; a = 1664525; c = 1013904223. Данные параметры использовались в примере реализации генератора в одной старой книжке по Фортрану.
m = 232; a= 214013; c = 2531011; Данные параметры используется в реализации метода в Visual C++. При этом берутся старшие биты 30..16. Берутся именно верхние биты, т.к. в линейном конгруэнтном методе нижние биты гораздо менее случайны. Так как мы пока не умеем брать конкретные биты, можете использовать всё число.
В качестве m выберите одно из чисел Мерсенна. Начните с малых (23-1,25-1). Попробуйте подставить 231-1 и 261-1.


Заметим, что в идеале кривая плотности распределения случайных чисел выглядела бы так, как показано на рис. 22.3 . То есть в идеальном случае в каждый интервал попадает одинаковое число точек: N i = N /k , где N — общее число точек, k — количество интервалов, i = 1, …, k .

Рис. 22.3. Частотная диаграмма выпадения случайных чисел,
порождаемых идеальным генератором теоретически

Следует помнить, что генерация произвольного случайного числа состоит из двух этапов:

  • генерация нормализованного случайного числа (то есть равномерно распределенного от 0 до 1);
  • преобразование нормализованных случайных чисел r i в случайные числа x i , которые распределены по необходимому пользователю (произвольному) закону распределения или в необходимом интервале.

Генераторы случайных чисел по способу получения чисел делятся на:

  • физические;
  • табличные;
  • алгоритмические.

Физические ГСЧ

Примером физических ГСЧ могут служить: монета («орел» — 1, «решка» — 0); игральные кости; поделенный на секторы с цифрами барабан со стрелкой; аппаратурный генератор шума (ГШ), в качестве которого используют шумящее тепловое устройство, например, транзистор (рис. 22.4–22.5 ).

Рис. 22.4. Схема аппаратного метода генерации случайных чисел
Рис. 22.5. Диаграмма получения случайных чисел аппаратным методом
Задача «Генерация случайных чисел при помощи монеты»

Сгенерируйте случайное трехразрядное число, распределенное по равномерному закону в интервале от 0 до 1, с помощью монеты. Точность — три знака после запятой.

Первый способ решения задачи
Подбросьте монету 9 раз, и если монета упала решкой, то запишите «0», если орлом, то «1». Итак, допустим, что в результате эксперимента получили случайную последовательность 100110100.

Начертите интервал от 0 до 1. Считывая числа в последовательности слева направо, разбивайте интервал пополам и выбирайте каждый раз одну из частей очередного интервала (если выпал 0, то левую, если выпала 1, то правую). Таким образом, можно добраться до любой точки интервала, сколь угодно точно.

Итак, 1 : интервал делится пополам — и , — выбирается правая половина, интервал сужается: . Следующее число, 0 : интервал делится пополам — и , — выбирается левая половина , интервал сужается: . Следующее число, 0 : интервал делится пополам — и , — выбирается левая половина , интервал сужается: . Следующее число, 1 : интервал делится пополам — и , — выбирается правая половина , интервал сужается: .

По условию точности задачи решение найдено: им является любое число из интервала , например, 0.625.

В принципе, если подходить строго, то деление интервалов нужно продолжить до тех пор, пока левая и правая границы найденного интервала не СОВПАДУТ между собой с точностью до третьего знака после запятой. То есть с позиций точности сгенерированное число уже не будет отличимо от любого числа из интервала, в котором оно находится.

Второй способ решения задачи
Разобьем полученную двоичную последовательность 100110100 на триады: 100, 110, 100. После перевода этих двоичных чисел в десятичные получаем: 4, 6, 4. Подставив спереди «0.», получим: 0.464. Таким методом могут получаться только числа от 0.000 до 0.777 (так как максимум, что можно «выжать» из трех двоичных разрядов — это 111 2 = 7 8) — то есть, по сути, эти числа представлены в восьмеричной системе счисления. Для перевода восьмеричного числа в десятичное представление выполним:
0.464 8 = 4 · 8 –1 + 6 · 8 –2 + 4 · 8 –3 = 0.6015625 10 = 0.602 10 .
Итак, искомое число равно: 0.602.

Табличные ГСЧ

Табличные ГСЧ в качестве источника случайных чисел используют специальным образом составленные таблицы, содержащие проверенные некоррелированные, то есть никак не зависящие друг от друга, цифры. В табл. 22.1 приведен небольшой фрагмент такой таблицы. Обходя таблицу слева направо сверху вниз, можно получать равномерно распределенные от 0 до 1 случайные числа с нужным числом знаков после запятой (в нашем примере мы используем для каждого числа по три знака). Так как цифры в таблице не зависят друг от друга, то таблицу можно обходить разными способами, например, сверху вниз, или справа налево, или, скажем, можно выбирать цифры, находящиеся на четных позициях.

Таблица 22.1.
Случайные цифры. Равномерно
распределенные от 0 до 1 случайные числа
Случайные цифры Равномерно распределенные
от 0 до 1 случайные числа
9 2 9 2 0 4 2 6 0.929
9 5 7 3 4 9 0 3 0.204
5 9 1 6 6 5 7 6 0.269
… …

Достоинство данного метода в том, что он дает действительно случайные числа, так как таблица содержит проверенные некоррелированные цифры. Недостатки метода: для хранения большого количества цифр требуется много памяти; большие трудности порождения и проверки такого рода таблиц, повторы при использовании таблицы уже не гарантируют случайности числовой последовательности, а значит, и надежности результата.

Находится таблица, содержащая 500 абсолютно случайных проверенных чисел (взято из книги И. Г. Венецкого, В. И. Венецкой «Основные математико-статистические понятия и формулы в экономическом анализе»).

Алгоритмические ГСЧ

Числа, генерируемые с помощью этих ГСЧ, всегда являются псевдослучайными (или квазислучайными), то есть каждое последующее сгенерированное число зависит от предыдущего:

r i + 1 = f (r i ) .

Последовательности, составленные из таких чисел, образуют петли, то есть обязательно существует цикл, повторяющийся бесконечное число раз. Повторяющиеся циклы называются периодами .

Достоинством данных ГСЧ является быстродействие; генераторы практически не требуют ресурсов памяти, компактны. Недостатки: числа нельзя в полной мере назвать случайными, поскольку между ними имеется зависимость, а также наличие периодов в последовательности квазислучайных чисел.

Рассмотрим несколько алгоритмических методов получения ГСЧ:

  • метод серединных квадратов;
  • метод серединных произведений;
  • метод перемешивания;
  • линейный конгруэнтный метод.

Метод серединных квадратов

Имеется некоторое четырехзначное число R 0 . Это число возводится в квадрат и заносится в R 1 . Далее из R 1 берется середина (четыре средних цифры) — новое случайное число — и записывается в R 0 . Затем процедура повторяется (см. рис. 22.6 ). Отметим, что на самом деле в качестве случайного числа необходимо брать не ghij , а 0.ghij — с приписанным слева нулем и десятичной точкой. Этот факт отражен как на рис. 22.6 , так и на последующих подобных рисунках.

Рис. 22.6. Схема метода серединных квадратов

Недостатки метода: 1) если на некоторой итерации число R 0 станет равным нулю, то генератор вырождается, поэтому важен правильный выбор начального значения R 0 ; 2) генератор будет повторять последовательность через M n шагов (в лучшем случае), где n — разрядность числа R 0 , M — основание системы счисления.

Для примера на рис. 22.6 : если число R 0 будет представлено в двоичной системе счисления, то последовательность псевдослучайных чисел повторится через 2 4 = 16 шагов. Заметим, что повторение последовательности может произойти и раньше, если начальное число будет выбрано неудачно.

Описанный выше способ был предложен Джоном фон Нейманом и относится к 1946 году. Поскольку этот способ оказался ненадежным, от него очень быстро отказались.

Метод серединных произведений

Число R 0 умножается на R 1 , из полученного результата R 2 извлекается середина R 2 * (это очередное случайное число) и умножается на R 1 . По этой схеме вычисляются все последующие случайные числа (см. рис. 22.7 ).

Рис. 22.7. Схема метода серединных произведений

Метод перемешивания

В методе перемешивания используются операции циклического сдвига содержимого ячейки влево и вправо. Идея метода состоит в следующем. Пусть в ячейке хранится начальное число R 0 . Циклически сдвигая содержимое ячейки влево на 1/4 длины ячейки, получаем новое число R 0 * . Точно так же, циклически сдвигая содержимое ячейки R 0 вправо на 1/4 длины ячейки, получаем второе число R 0 ** . Сумма чисел R 0 * и R 0 ** дает новое случайное число R 1 . Далее R 1 заносится в R 0 , и вся последовательность операций повторяется (см. рис. 22.8 ).


Рис. 22.8. Схема метода перемешивания

Обратите внимание, что число, полученное в результате суммирования R 0 * и R 0 ** , может не уместиться полностью в ячейке R 1 . В этом случае от полученного числа должны быть отброшены лишние разряды. Поясним это для рис. 22.8 , где все ячейки представлены восемью двоичными разрядами. Пусть R 0 * = 10010001 2 = 145 10 , R 0 ** = 10100001 2 = 161 10 , тогда R 0 * + R 0 ** = 100110010 2 = 306 10 . Как видим, число 306 занимает 9 разрядов (в двоичной системе счисления), а ячейка R 1 (как и R 0 ) может вместить в себя максимум 8 разрядов. Поэтому перед занесением значения в R 1 необходимо убрать один «лишний», крайний левый бит из числа 306, в результате чего в R 1 пойдет уже не 306, а 00110010 2 = 50 10 . Также заметим, что в таких языках, как Паскаль, «урезание» лишних битов при переполнении ячейки производится автоматически в соответствии с заданным типом переменной.

Линейный конгруэнтный метод

Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x , y ) , возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по следующей формуле:

r i + 1 = mod(k · r i + b , M ) .

Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью . Многие авторы называют линейную конгруэнтную последовательность при b = 0 мультипликативным конгруэнтным методом , а при b ≠ 0 — смешанным конгруэнтным методом .

Для качественного генератора требуется подобрать подходящие коэффициенты. Необходимо, чтобы число M было довольно большим, так как период не может иметь больше M элементов. С другой стороны, деление, использующееся в этом методе, является довольно медленной операцией, поэтому для двоичной вычислительной машины логичным будет выбор M = 2 N , поскольку в этом случае нахождение остатка от деления сводится внутри ЭВМ к двоичной логической операции «AND». Также широко распространен выбор наибольшего простого числа M , меньшего, чем 2 N : в специальной литературе доказывается, что в этом случае младшие разряды получаемого случайного числа r i + 1 ведут себя так же случайно, как и старшие, что положительно сказывается на всей последовательности случайных чисел в целом. В качестве примера можно привести одно из чисел Мерсенна , равное 2 31 – 1 , и таким образом, M = 2 31 – 1 .

Одним из требований к линейным конгруэнтным последовательностям является как можно большая длина периода. Длина периода зависит от значений M , k и b . Теорема, которую мы приведем ниже, позволяет определить, возможно ли достижение периода максимальной длины для конкретных значений M , k и b .

Теорема . Линейная конгруэнтная последовательность, определенная числами M , k , b и r 0 , имеет период длиной M тогда и только тогда, когда:

  • числа b и M взаимно простые;
  • k – 1 кратно p для каждого простого p , являющегося делителем M ;
  • k – 1 кратно 4, если M кратно 4.

Наконец, в заключение рассмотрим пару примеров использования линейного конгруэнтного метода для генерации случайных чисел.

Было установлено, что ряд псевдослучайных чисел, генерируемых на основе данных из примера 1, будет повторяться через каждые M /4 чисел. Число q задается произвольно перед началом вычислений, однако при этом следует иметь в виду, что ряд производит впечатление случайного при больших k (а значит, и q ). Результат можно несколько улучшить, если b нечетно и k = 1 + 4 · q — в этом случае ряд будет повторяться через каждые M чисел. После долгих поисков k исследователи остановились на значениях 69069 и 71365 .

Генератор случайных чисел, использующий данные из примера 2, будет выдавать случайные неповторяющиеся числа с периодом, равным 7 миллионам.

Мультипликативный метод генерации псевдослучайных чисел был предложен Д. Г. Лехмером (D. H. Lehmer) в 1949 году.

Проверка качества работы генератора

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

  • проверки на равномерность распределения;
  • проверки на статистическую независимость.

Проверки на равномерность распределения

1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона:

2) Частотный тест

Частотный тест позволяет выяснить, сколько чисел попало в интервал (m r – σ r ; m r + σ r ) , то есть (0.5 – 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887) . Так как 0.7887 – 0.2113 = 0.5774 , заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. рис. 22.9 ).

Рис. 22.9. Частотная диаграмма идеального ГСЧ
в случае проверки его на частотный тест

Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5) , должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1) .

3) Проверка по критерию «хи-квадрат»

Критерий «хи-квадрат» (χ 2 -критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900 году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.

Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами реальный ГСЧ близок к эталону ГСЧ , то есть удовлетворяет ли он требованию равномерного распределения или нет.

Частотная диаграмма эталонного ГСЧ представлена на рис. 22.10 . Так как закон распределения эталонного ГСЧ равномерный, то (теоретическая) вероятность p i попадания чисел в i -ый интервал (всего этих интервалов k ) равна p i = 1/k . И, таким образом, в каждый из k интервалов попадет ровно по p i · N чисел (N — общее количество сгенерированных чисел).

Рис. 22.10. Частотная диаграмма эталонного ГСЧ

Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по n i чисел (в сумме n 1 + n 2 + … + n k = N ). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел n i и «эталонным» p i · N . Сложим их, и в результате получим:

χ 2 эксп. = (n 1 – p 1 · N ) 2 + (n 2 – p 2 · N ) 2 + … + (n k – p k · N ) 2 .

Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение χ 2 эксп. ), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.

В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i -го слагаемого, поделив его на p i · N :

Наконец, запишем полученное выражение более компактно и упростим его:

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

В табл. 22.2 приведены теоретические значения «хи-квадрат» (χ 2 теор. ), где ν = N – 1 — это число степеней свободы, p — это доверительная вероятность, задаваемая пользователем, который указывает, насколько ГСЧ должен удовлетворять требованиям равномерного распределения, или p — это вероятность того, что экспериментальное значение χ 2 эксп. будет меньше табулированного (теоретического) χ 2 теор. или равно ему .

Таблица 22.2.
Некоторые процентные точки χ 2 -распределения
p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
ν = 2 0.02010 0.1026 0.5754 1.386 2.773 5.991 9.210
ν = 3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34
ν = 4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28
ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
ν = 6 0.8721 1.635 3.455 5.348 7.841 12.59 16.81
ν = 7 1.239 2.167 4.255 6.346 9.037 14.07 18.48
ν = 8 1.646 2.733 5.071 7.344 10.22 15.51 20.09
ν = 9 2.088 3.325 5.899 8.343 11.39 16.92 21.67
ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
ν = 11 3.053 4.575 7.584 10.34 13.70 19.68 24.72
ν = 12 3.571 5.226 8.438 11.34 14.85 21.03 26.22
ν = 15 5.229 7.261 11.04 14.34 18.25 25.00 30.58
ν = 20 8.260 10.85 15.45 19.34 23.83 31.41 37.57
ν = 30 14.95 18.49 24.48 29.34 34.80 43.77 50.89
ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15
ν > 30 ν + sqrt(2ν ) · x p + 2/3 · x 2 p – 2/3 + O (1/sqrt(ν ))
x p = –2.33 –1.64 –0.674 0.00 0.674 1.64 2.33

Приемлемым считают p от 10% до 90% .

Если χ 2 эксп. много больше χ 2 теор. (то есть p — велико), то генератор не удовлетворяет требованию равномерного распределения, так как наблюдаемые значения n i слишком далеко уходят от теоретических p i · N и не могут рассматриваться как случайные. Другими словами, устанавливается такой большой доверительный интервал, что ограничения на числа становятся очень нежесткими, требования к числам — слабыми. При этом будет наблюдаться очень большая абсолютная погрешность.

Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь χ 2 эксп. маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, … — они идеальны с точки зрения равномерности, и χ 2 эксп. будет практически нулевым, но вряд ли вы их признаете случайными.

Если χ 2 эксп. много меньше χ 2 теор. (то есть p — мало), то генератор не удовлетворяет требованию случайного равномерного распределения, так как наблюдаемые значения n i слишком близки к теоретическим p i · N и не могут рассматриваться как случайные.

А вот если χ 2 эксп. лежит в некотором диапазоне, между двумя значениями χ 2 теор. , которые соответствуют, например, p = 25% и p = 50%, то можно считать, что значения случайных чисел, порождаемые датчиком, вполне являются случайными.

При этом дополнительно надо иметь в виду, что все значения p i · N должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.

Итак, процедура проверки имеет следующий вид.

Проверки на статистическую независимость

1) Проверка на частоту появления цифры в последовательности

Рассмотрим пример. Случайное число 0.2463389991 состоит из цифр 2463389991, а число 0.5467766618 состоит из цифр 5467766618. Соединяя последовательности цифр, имеем: 24633899915467766618.

Понятно, что теоретическая вероятность p i выпадения i -ой цифры (от 0 до 9) равна 0.1.

2) Проверка появления серий из одинаковых цифр

Обозначим через n L число серий одинаковых подряд цифр длины L . Проверять надо все L от 1 до m , где m — это заданное пользователем число: максимально встречающееся число одинаковых цифр в серии.

В примере «24633899915467766618» обнаружены 2 серии длиной в 2 (33 и 77), то есть n 2 = 2 и 2 серии длиной в 3 (999 и 666), то есть n 3 = 2 .

Вероятность появления серии длиной в L равна: p L = 9 · 10 –L (теоретическая). То есть вероятность появления серии длиной в один символ равна: p 1 = 0.9 (теоретическая). Вероятность появления серии длиной в два символа равна: p 2 = 0.09 (теоретическая). Вероятность появления серии длиной в три символа равна: p 3 = 0.009 (теоретическая).

Например, вероятность появления серии длиной в один символ равна p L = 0.9 , так как всего может встретиться один символ из 10, а всего символов 9 (ноль не считается). А вероятность того, что подряд встретится два одинаковых символа «XX» равна 0.1 · 0.1 · 9, то есть вероятность 0.1 того, что в первой позиции появится символ «X», умножается на вероятность 0.1 того, что во второй позиции появится такой же символ «X» и умножается на количество таких комбинаций 9.

Частость появления серий подсчитывается по ранее разобранной нами формуле «хи-квадрат» с использованием значений p L .

Примечание: генератор может быть проверен многократно, однако проверки не обладают свойством полноты и не гарантируют, что генератор выдает случайные числа. Например, генератор, выдающий последовательность 12345678912345…, при проверках будет считаться идеальным, что, очевидно, не совсем так.

В заключение отметим, что третья глава книги Дональда Э. Кнута «Искусство программирования» (том 2) полностью посвящена изучению случайных чисел. В ней изучаются различные методы генерирования случайных чисел, статистические критерии случайности, а также преобразование равномерно распределенных случайных чисел в другие типы случайных величин. Изложению этого материала уделено более двухсот страниц.

Пожалуйста, помогите сервису одним кликом: Расскажите друзьям про генератор!

Генератор чисел онлайн в 1 клик

Генератор случайных чисел, который представлен на нашем сайте, очень удобен. К примеру, его можно использовать в розыгрышах и лотереях для определения победителя. Призеры определяются таким образом: программой выдается одно или несколько чисел в любом диапазоне, заданном Вами. Подтасовку результатов можно сразу исключить. А благодаря этому победитель определяется в честном выборе.

Иногда требуется получение некоторого количества случайных чисел сразу. К примеру, хочется заполнить лотерейный билет «4 из 35», доверившись случаю. Можно сделать проверку: если подбросить монетку 32 раза, какая будет вероятность того, что выпадет 10 реверсов подряд (орел/решка вполне могут назначаться цифрами 0 и 1)?

Случайное число онлайн видеоинструкция - рандомайзер

Наш генератор чисел очень простой в применении. Он не требует загрузки программы на компьютер – им можно пользоваться онлайн. Для получения нужного Вам числа необходимо установить диапазон случайных чисел, количество и, по желанию, разделитель чисел и исключить повторы.

Чтобы сгенерировать случайные числа в определенном диапазоне частот:

  • Выберете диапазон;
  • Укажите количество случайных чисел;
  • Функция «Разделитель чисел» служит для красоты и удобства их отображения;
  • При необходимости включите/отключите повторы при помощи галочки;
  • Нажмите кнопку «Сгенерировать».

По итогу Вы получите случайные числа в заданном диапазоне. Результат генератора чисел может быть скопирован или отправлен на e-mail. Лучше всего будет сделать скриншот либо видео данного процесса генерации. Наш рандомайзер решит любые Ваши задачи!