Как обратиться к статическим переменным java. Статические методы

То мы можем получить к ним доступ напрямую через имя класса и оператор разрешения области видимости. Но что, если статические переменные-члены являются закрытыми? Рассмотрим следующий код:

В этом случае мы не можем напрямую получить доступ к Anything::s_value из main(), так как этот член является private. Обычно доступ к закрытым членам класса осуществляется через методы public. Хотя мы могли бы создать обычный метод для получения доступа к s_value, но нам тогда бы пришлось создавать объект этого класса для использования метода! Есть вариант получше – мы можем сделать метод статическим.

Подобно статическим переменным-членам, статические методы не привязаны к какому-либо одному объекту класса. Вот пример выше, но уже со статическим методом:

class Anything { private: static int s_value; public: static int getValue() { return s_value; } // статический метод }; int Anything::s_value = 3; // определение статической переменной-члена класса int main() { std::cout << Anything::getValue() << "\n"; }

Поскольку статические методы не привязаны к определенному объекту, то их можно вызывать напрямую через имя класса и оператор разрешения области видимости, их также можно вызвать и через объекты класса (но это не рекомендуется).

Статические методы не имеют указателя this *

У статических методов есть две интересные особенности. Во-первых, поскольку статические методы не привязаны к объекту, то они не имеют ! Здесь есть смысл, так как указатель this всегда указывает на объект, с которым работает метод. Статические методы могут не работать через объект, поэтому и указатель this не нужен.

Во-вторых, статические методы могут напрямую обращаться к другим статическим членам (переменным или функциям), но не могут к нестатическим членам. Это связано с тем, что нестатические члены принадлежат объекту класса, а статические методы — нет!

Еще пример

Статические методы можно определять вне тела класса. Это работает так же, как и с обычными методами. Например:

class IDGenerator { private: static int s_nextID; // объявление статической переменной-члена public: static int getNextID(); // объявление статического метода }; // Определение статической переменной-члена находится вне тела класса. Обратите внимание, мы не используем здесь ключевое слово static // Начинаем генерировать ID с 1 int IDGenerator::s_nextID = 1; // Определение статического метода находится вне тела класса. Обратите внимание, мы не используем здесь ключевое слово static int IDGenerator::getNextID() { return s_nextID++; } int main() { for (int count=0; count < 4; ++count) std::cout << "The next ID is: " << IDGenerator::getNextID() << "\n"; return 0; }

class IDGenerator

private :

static int s_nextID ; // объявление статической переменной-члена

public :

static int getNextID () ; // объявление статического метода

// Начинаем генерировать ID с 1

int IDGenerator :: s_nextID = 1 ;

int IDGenerator :: getNextID () { return s_nextID ++ ; }

int main ()

for (int count = 0 ; count < 4 ; ++ count )

std :: cout << "The next ID is: " << IDGenerator :: getNextID () << "\n" ;

return 0 ;

Результат:

The next ID is: 1
The next ID is: 2
The next ID is: 3
The next ID is: 4

Обратите внимание, поскольку все переменные и функции этого класса являются статическими, то нам не нужно создавать объект этого класса для работы с ним! Статическая переменная-член используется для хранения значения следующего идентификатора, который должен быть ей присвоен, а статический метод — для возврата идентификатора и его увеличения.

Предупреждение о классах со всеми статическими членами

Будьте осторожны при написании классов со всеми статическими членами. Хотя такие «чисто статические классы» могут быть полезны, но они также имеют свои недостатки.

Во-первых, поскольку все статические члены создаются только один раз, то несколько копий «чисто статического класса» быть не может (без клонирования класса и его дальнейшего переименования). Например, если нам нужны два независимых объекта IDGenerator, то это будет невозможно через «чисто статический» класс.

Во-вторых, из урока о мы знаем, что глобальные переменные опасны, поскольку любая часть кода может изменить их значения и в конечном итоге изменит другие фрагменты, казалось бы, не связанного кода (детальнее ). То же самое справедливо и для «чисто статических» классов. Поскольку все члены принадлежат классу (а не его объектам), а классы имеют глобальную область видимости, то в «чисто статическом классе» мы объявляем глобальные функции и переменные со всеми минусами, которые они имеют.

C++ не поддерживает статические конструкторы

Если вы можете инициализировать обычную переменную-член через , то по логике вещей вы должны иметь возможность инициализировать статические переменные-члены через статический конструктор. И хотя некоторые современные языки действительно поддерживают статические конструкторы именно для этой цели, C++, к сожалению, не является одним из них.

Если ваша статическая переменная может быть инициализирована напрямую, то конструктор не нужен: вы можете определить статическую переменную-член, даже если она является private. Мы делаем это в примере выше с s_nextID. Вот еще один пример:

class Something { public: static std::vector s_mychars; }; std::vector Something::s_mychars = { "o", "a", "u", "i", "e" }; // определяем статическую переменную-член

class Something

public :

static std :: vector < char > s_mychars ;

std :: vector < char > Something :: s_mychars = { "o" , "a" , "u" , "i" , "e" } ; // определяем статическую переменную-член

Если для инициализации вашей статической переменной-члена требуется выполнить код (например, цикл), то есть несколько разных способов это сделать. Следующий способ является лучшим из них. Хотя это может быть немного сложно (сейчас), и, вероятно, вам это никогда не понадобится, то вы можете спокойно пропустить оставшуюся часть этого урока, если хотите.

#include #include class Something { private: static std::vector s_mychars; public: class _nested // определяем вложенный класс с именем _nested { public: _nested() // конструктор _nested инициализирует нашу статическую переменную-член { s_mychars.push_back("o"); s_mychars.push_back("a"); s_mychars.push_back("u"); s_mychars.push_back("i"); s_mychars.push_back("e"); } }; // статический метод для вывода s_mychars static void getSomething() { for (auto const &element: s_mychars) std::cout << element << " "; } private: static _nested s_initializer; // используем статический объект класса _nested для гарантии того, что конструктор _nested выполнится }; std::vector Something::s_mychars; // определяем нашу статическую переменную-член Something::_nested Something::s_initializer; // определяем наш статический s_initializer, который вызовет конструктор _nested для инициализации s_mychars int main() { Something::getSomething(); return 0; }

#include

#include

class Something

private :

static std :: vector < char > s_mychars ;

public :

class _nested // определяем вложенный класс с именем _nested

public :

Nested () // конструктор _nested инициализирует нашу статическую переменную-член

s_mychars . push_back ("o" ) ;

s_mychars . push_back ("a" ) ;

s_mychars . push_back ("u" ) ;

s_mychars . push_back ("i" ) ;

s_mychars . push_back ("e" ) ;

Объявление методов.

Тема 9. Методы

Какбыло отмечено ранее С# поддерживает большой набор функций-членов, которые имеют различные имена и предназначены для разных целей. Тем неменее, все они содержат блоки операторов, которые исполняются при вызове точно также, как это происходит для стандартного метода.

Методы можно разделить на две основные группы - методы экземпляра (определенные без ключевого слова static ) , которые принадлежат группе функций экземпляра и статические методы с ключевым словом static , которые принадлежат к группе статических функций.

Метод экземпляра исполняется для конкретного объекта, а статический метод - для класса, поэтому при вызове последнего применяется имя класса, а не объекта.Все объекты одного класса исполь­зуют одну копию метода экземпляра.

Определение метода состоит из заголовка и тела метода. В заголовке указываются важные атрибуты, определяющие, как другие части про­граммы осуществляют доступ к методу. Тело метода состоит из операторов, выполняю­щихся при его вызове.

Уровень доступа к методу определяется необязательным спецификатором в его за­головке.

На данный момент применялись два из возможных спецификаторов: public иprivate, public указывает, что к методу имеет доступ любая часть программы, a private ограничивает его применение за пределами класса.

Приведем синтаксический блок применения метода.

Метод::=

<3аголовок_метода>

<Тело_метода>

<3аголовок_метода>::=[<Спецификаторы_метода>] <Тип_возвращаемого_значения> <Идентификатор метода> ([<Список_формальных_параметров>])

< Тело_метода>: :=

<Операторы>

<Спецификаторы_метода>

::=<Спецификатор_доступности>

<Спецификатор_доступности>

::= public

::= private

<Тип_возвращаемого_значения>

::= <Тип>

Вызов метода состоит из его имени, за которым следует пара круглых скобок со спис­ком аргументов, последний должен соответствовать списку формальных параметров, определенных в заголовке метода.

Привести пример.

Известно, что исполнение программы в среде.NET начинается с вызова метода Main(). Среда исполнения не создает никаких объектов, поэтому Main() должен вызы­ваться независимо от них. Объявление метода Main() статическим указывает, что он принадлежит классу. Тем самым, среда исполнения вызывает Main () непосредственно через имя класса.

Статический метод можно вызвать тремя способами:

1. Из объекта класса, которому он принадлежит. В этом случае префикс (имя класса или объекта) не нужен.

public static void Average(…)



2. Извне данного класса.

При этом существуют две возможности:

1. Если существует объект класса, где метод определен, вызов последнего состоит из имени объекта, операции уточнения и имени метода:

myClass A = new myClass();

2. Независимо от существования объектов класса, а котором метод определен, он вызывается для класса посредством операции уточнения:

MyClass.Average(. ..)...

В вызоае метода предпочтительнее использовать имя класса (myClass.Average(...)), а не объекта A.Average(...) поскольку первый вариант четко указывает, что вызывается статический метод.

Статика - это глобальное состояние. Статический метод или статическая переменная абсолютно ничем не отличаются от глобальной переменной, потому что, ни статика ни глобальная переменная не были переданны в качестве аргументов нигде и никак, а значит поступают из глобального пространства.

Чем статика может быть опасна?
Представь, что ты пишешь утилиту для загрузки изображений. И вот наступил момент, когда нужно указывать параметры обрезки для превьюшек. Со статикой это может выглядеть так:

Public function upload() { $width = Config::read("width"); $height = Config::read("height"); // .. Do upload.. }
(На заметку CakePHP кишит такими подходами)
Проблемы такого подхода?

1. Нужно знать и быть точно уверенным, что статичный класс Config, был где-то там далеко инициализирован. А вдруг он не был инициализированным?

2. А что если ты решишь сменить источник конфига? Например читать, это все не из класса `Config` а откуда-нибудь из REST? Придется все переписывать, затем опять тестировать. Эта проблема известна как сильная связка .

3. Попробуй написать юнит тест для такого, без хаков и изращенных костылей. Ведь для того чтобы протестировать этот метод, нам нужно где-то там в глобальном пространстве инициализировать `Config`, затем убедится что он работает.

4. Скрытые зависимости.

Например инициализуруя класс, в случае статики:

$uploader = new Uploader(); $uploader->upload(...);

Ты и твои пользователи не видят какие у класса зависимости и от работы чего вообще он зависит. Проблема заметна особо, когда ты пишешь библиотеку или компонет.

Но тогда почему такие популярные фреймворки как Yii или Laravel полностью покрыты статикой?

Для того чтобы понять какие последствия несет статика, попробуй воспользоватся хоть одним компонентом Yii фреймворка отдельно. Например, если тебе нужна только CAPTCHA ты не сможешь её вытащить оттуда не переписав почти весь компонент, потому что везде внутри присутвует глобальное состояние, в виде `Yii::$app->`. То есть чтобы воспользоватся только капчей, придется подключать весь фреймворк и все его внутренние механизмы, когда это абсолютно не нужно.

Что касается Laravel, то статики там меньше, поскольку некоторые компоненты, вроде Eloquent могут использоватся по отдельности. Статика в ларе, она существует как обёртка, но не как реализация, во многих местах в отличии от Yii.

Вообще посмотри, как задачи решаются в Zend / Symfony
Там почти везде все зависимости передаются в качестве аргументов, что есть хорошо, слабо связано, и тестируемо.

Модификатор static в Java напрямую связан с классом, если поле статично, значит оно принадлежит классу, если метод статичный, аналогично - он принадлежит классу. Исходя из этого, можно обращаться к статическому методу или полю используя имя класса. Например, если поле count статично в классе Counter , значит, вы можете обратиться к переменной запросом вида: Counter.count . Конечно, следует учитывать модификаторы доступа. Например, поля private доступны только внутри класса, в котором они объявлены. Поля protected доступны всем классам внутри пакета (package ), а также всем классам-наследникам вне пакета. Для более подробной информации ознакомьтесь со статьей “private vs protected vs public ”. Предположим, существует статический метод increment() в классе Counter , задачей которого является инкрементирование счётчика count . Для вызова данного метода можно использовать обращение вида Counter.increment() . Нет необходимости создавать экземпляр класса Counter для доступа к статическому полю или методу. Это фундаментальное отличие между статическими и НЕ статическими объектами (членами класса). Важное замечание. Не забывайте, что статические члены класса напрямую принадлежат классу, а не его экземпляру. То есть, значение статической переменной count будет одинаковое для всех объектов типа Counter . В этой статье мы рассмотрим основополагающие аспекты применения модификатора static в Java, а также некоторые особенности, которые помогут понять ключевые концепции программирования.

Что должен знать каждый программист о модификаторе Static в Java.

В этом разделе мы рассмотрим основные моменты использования статических методов, полей и классов. Начнём с переменных.

    Вы НЕ можете получить доступ к НЕ статическим членам класса, внутри статического контекста, как вариант, метода или блока. Результатом компиляции приведенного ниже кода будет ошибка:

    public class Counter { private int count; public static void main (String args ) { System. out. println (count) ; //compile time error } }

    Это одна из наиболее распространённых ошибок допускаемых программистами Java, особенно новичками. Так как метод main статичный, а переменная count нет, в этом случае метод println , внутри метода main выбросит “Compile time error”.

    В отличие от локальных переменных, статические поля и методы НЕ потокобезопасны (Thread-safe) в Java. На практике это одна из наиболее частых причин возникновения проблем связанных с безопасностью мультипоточного программирования. Учитывая что каждый экземпляр класса имеет одну и ту же копию статической переменной, то такая переменная нуждается в защите - «залочивании» классом. Поэтому при использовании статических переменных, убедитесь, что они должным образом синхронизированы (synchronized), во избежание проблем, например таких как «состояние гонки» (race condition).

    Статические методы имеют преимущество в применении, т.к. отсутствует необходимость каждый раз создавать новый объект для доступа к таким методам. Статический метод можно вызвать, используя тип класса, в котором эти методы описаны. Именно поэтому, подобные методы как нельзя лучше подходят в качестве методов-фабрик (factory), и методов-утилит (utility). Класс java.lang.Math - замечательный пример, в котором почти все методы статичны, по этой же причине классы-утилиты в Java финализированы (final).

    Другим важным моментом является то, что вы НЕ можете переопределять (Override) статические методы. Если вы объявите такой же метод в классе-наследнике (subclass), т.е. метод с таким же именем и сигнатурой, вы лишь «спрячете» метод суперкласса (superclass) вместо переопределения. Это явление известно как сокрытие методов (hiding methods). Это означает, что при обращении к статическому методу, который объявлен как в родительском, так и в дочернем классе, во время компиляции всегда будет вызван метод исходя из типа переменной. В отличие от переопределения, такие методы не будут выполнены во время работы программы. Рассмотрим пример:

    class Vehicle { public static void kmToMiles (int km) { System. out. println ("Внутри родительского класса/статического метода" ) ; } } class Car extends Vehicle { public static void kmToMiles (int km) { System. out. println ("Внутри дочернего класса/статического метода " ) ; } } public class Demo { public static void main (String args ) { Vehicle v = new Car () ; v. kmToMiles (10 ) ; } }

    Вывод в консоль:

    Внутри родительского класса/статического метода

    Код наглядно демонстрирует: несмотря на то, что объект имеет тип Car , вызван статический метод из класса Vehicle , т.к. произошло обращение к методу во время компиляции. И заметьте, ошибки во время компиляции не возникло!

    Объявить статическим также можно и класс, за исключением классов верхнего уровня. Такие классы известны как «вложенные статические классы» (nested static class). Они бывают полезными для представления улучшенных связей. Яркий пример вложенного статического класса - HashMap.Entry , который предоставляет структуру данных внутри HashMap . Стоит заметить, также как и любой другой внутренний класс, вложенные классы находятся в отдельном файле.class. Таким образом, если вы объявили пять вложенных классов в вашем главном классе, у вас будет 6 файлов с расширением.class. Ещё одним примером использования является объявление собственного компаратора (Comparator), например компаратор по возрасту (AgeComparator) в классе сотрудники (Employee).

    Модификатор static также может быть объявлен в статичном блоке, более известным как «Статический блок инициализации» (Static initializer block), который будет выполнен во время загрузки класса. Если вы не объявите такой блок, то Java соберёт все статические поля в один список и выполнит его во время загрузки класса. Однако, статичный блок НЕ может пробросить перехваченные исключения, но может выбросить не перехваченные. В таком случае возникнет «Exception Initializer Error». На практике, любое исключение возникшее во время выполнения и инициализации статических полей, будет завёрнуто Java в эту ошибку. Это также самая частая причина ошибки «No Class Def Found Error», т.к. класс не находился в памяти во время обращения к нему.

    Полезно знать, что статические методы связываются во время компиляции, в отличие от связывания виртуальных или не статических методов, которые связываются во время исполнения на реальном объекте. Следовательно, статические методы не могут быть переопределены в Java, т.к. полиморфизм во время выполнения не распространяется на них. Это важное ограничение, которое необходимо учитывать, объявляя метод статическим. В этом есть смысл, только тогда, когда нет возможности или необходимости переопределения такого метода классами-наследниками. Методы-фабрики и методы-утилиты хорошие образцы применения модификатора static . Джошуа Блох выделил несколько преимуществ использования статичного метода-фабрики перед конструктором, в книге «Effective Java », которая является обязательной для прочтения каждым программистом данного языка.

    Важным свойством статического блока является инициализация. Статические поля или переменные инициализируются после загрузки класса в память. Порядок инициализации сверху вниз, в том же порядке, в каком они описаны в исходном файле Java класса. Поскольку статические поля инициализируются на потокобезопасный манер, это свойство также используется для реализации паттерна Singleton . Если вы не используется список Enum как Singleton , по тем или иным причинам, то для вас есть хорошая альтернатива. Но в таком случае необходимо учесть, что это не «ленивая» инициализация. Это означает, что статическое поле будет проинициализировано ещё ДО того как кто-нибудь об этом «попросит». Если объект ресурсоёмкий или редко используется, то инициализация его в статическом блоке сыграет не в вашу пользу.

    Во время сериализации, также как и transient переменные, статические поля не сериализуются. Действительно, если сохранить любые данные в статическом поле, то после десериализации новый объект будет содержать его первичное (по-умолчанию) значение, например, если статическим полем была переменная типа int , то её значение после десериализации будет равно нулю, если типа float – 0.0, если типа Object – null . Честно говоря, это один из наиболее часто задаваемых вопросов касательно сериализации на собеседованиях по Java. Не храните наиболее важные данные об объекте в статическом поле!

    И напоследок, поговорим о static import . Данный модификатор имеет много общего со стандартным оператором import , но в отличие от него позволяет импортировать один или все статические члены класса. При импортировании статических методов, к ним можно обращаться как будто они определены в этом же классе, аналогично при импортировании полей, мы можем получить доступ без указания имени класса. Данная возможность появилась в Java версии 1.5, и при должном использовании улучшает читабельность кода. Наиболее часто данная конструкция встречается в тестах JUnit , т.к. почти все разработчики тестов используют static import для assert методов, например assertEquals() и для их перегруженных дубликатов. Если ничего не понятно – добро пожаловать за дополнительной информацией .

    На этом всё. Все вышеперечисленные пункты о модификаторе static в Java обязан знать каждый программист. В данной статье была рассмотрена базовая информация о статических переменных, полях, методах, блоках инициализации и импорте. В том числе некоторые важные свойства, знание которых является критичным при написании и понимании программ на Java. Я надеюсь, что каждый разработчик доведёт свои навыки использования статических концептов до совершенства, т.к. это очень важно для серьёзного программирования."

Модификатор static (статичный) применяется переменным, методам и даже к странным фрагментам кода, которые не являются частью метода. Статичные фрагменты кода принадлежат не объекту класса, но ко всему классу.

Рассмотрим пример простого класса с одной статичной переменной:

1. class Ecstatic{
2. static int x = 0;
3. Ecstatic() { x++; }
4. }

Переменная x объявлена статичной. Это означает, что не важно, сколько объектов класса Ecstatic существует в данный момент - x всего лишь одна. При загрузке класса Ecstatic выделяется 4 байта под переменную x . И её инициализация происходит (см. строку №2) тоже в момент загрузки класса. И каждый раз, когда создаётся объект класса Ecstatic , x инкрементируется. Этот приём позволяет знать точное количество созданных объектов класса Ecstatic .

Получить доступ к статичным переменным можно двумя способами:

  • Через любой объект класса: обьект.переменная .
  • Через сам класс: класс.переменная .

Первый метод, однако, считается дурным тоном, так как очень сильно вводит в заблуждение. Давайте рассмотрим это на примере:



3. e1.x = 100;
4. e2.x = 200;
5. reallyImportantVariable = e1.x;

Если вы заранее не знаете, что x - статичная переменная, то можете подумать, что в 5-й строке переменной reallyImportantVariable присваивается 100. Но на самом деле ей присваивается 200, потому что e1.x и e2.x - это всё одна и та же переменная х .

Поэтому лучше доступаться к статичным переменным через имя класса. Вот фрагмент кода, эквивалентный предыдущему:

1. Ecstatic e1 = new Ecstatic();
2. Ecstatic e2 = new Ecstatic();
3. Ecstatic.x = 100; // Бессмысленное действие
4. Ecstatic.x = 200;
5. reallyImportantVariable = Ecstatic.x;

Теперь всё встаёт на свои места: строка 3 не несёт никакого смысла - это всего лишь лишняя операция, а в 5-й строке переменной reallyImportantVariable присваивается сразу 200.


Статичные методы не могут использовать нестатичные элементы (переменные и методы) своиего класса, но могут использовать другие статичные элементы. Статичные методы не принадлежат ни одному объекту класса. Поэтому они могут вообще вызваться до того, как класс инстанциирован.

Каждое Java приложение содержит в себе статичный метод main() :

1. class SomeClass {
2. static int i = 48;
3. int j = 1;
4.
5. public static void main(String args) {
6. i += 100;
7. // j *= 5; Если раскомментировать, будет ошибка
8. }
9. }

Когда приложение запускается (то есть кто-то вызывает из коммандной строки java SomeClass ), не существует ни одного объекта класса SomeClass . Однако существует переменная i , которая инициализурется во 2-й строке и инкрементируется в 6-й строке. А если бы мы раскомметировали 7-ю строку, то вообще получили бы ошибку компиляции, потому что статичный метод не может использовать нестатичные переменные класса.