Как работает интернет схема. Как устроен интернет мифы и реальность. Монтаж компонентов компьютерной сети

Данная статья посвящена основам локальной сети , здесь будут рассмотрены следующие темы:

  • Понятие локальная сеть;
  • Устройство локальной сети;
  • Оборудование для локальной сети;
  • Топология сети;
  • Протоколы TCP/IP;
  • IP-адресация.

Понятие локальной сети

Сеть — группа компьютеров, соединенных друг с другом, с помощью специального оборудования, обеспечивающего обмен информацией между ними. Соединение между двумя компьютерами может быть непосредственным (двухточечное соединение ) или с использованием дополнительных узлов связи.

Существует несколько типов сетей, и локальная сеть — лишь одна из них. Локальная сеть представляет собой, по сути, сеть, используемую в одном здании или отдельном помещении, таком как квартира, для обеспечения взаимодействия используемых в них компьютеров и программ. Локальные сети, расположенные в разных зданиях, могут быть соединены между собой с помощью спутниковых каналов связи или волоконно-оптических сетей, что позволяет создать глобальную сеть, т.е. сеть, включающую в себя несколько локальных сетей.

Интернет является еще одним примером сети, которая уже давно стала всемирной и всеобъемлющей, включающей в себя сотни тысяч различных сетей и сотни миллионов компьютеров. Независимо от того, как вы получаете доступ к Интернету, с помощью модема, локального или глобального соединения, каждый пользователь Интернета является фактически сетевым пользователем. Для работы в Интернете используются самые разнообразные программы, такие как обозреватели Интернета, клиенты FTP, программы для работы с электронной почтой и многие другие.

Компьютер, который подключен к сети, называется рабочей станцией (Workstation ). Как правило, с этим компьютером работает человек. В сети присутствуют и такие компьютеры, на которых никто не работает. Они используются в качестве управляющих центров в сети и как накопители информации. Такие компьютеры называют серверами,
Если компьютеры расположены сравнительно недалеко друг от друга и соединены с помощью высокоскоростных сетевых адаптеров то такие сети называются локальными. При использовании локальной сети компьютеры, как правило, расположены в пределах одной комнаты, здания или в нескольких близко расположенных домах.
Для объединения компьютеров или целых локальных сетей, которые расположены на значительном расстоянии друг от друга, используются модемы, а также выделенные, или спутниковые каналы связи. Такие сети носят название глобальные. Обычно скорость передачи данных в таких сетях значительно ниже, чем в локальных.

Устройство локальной сети

Существуют два вида архитектуры сети: одноранговая (Peer-to-peer ) и клиент/ сервер (Client/Server ), На данный момент архитектура клиент/сервер практически вытеснила одноранговую.

Если используется одноранговая сеть, то все компьютеры, входящие в нее, имеют одинаковые права. Соответственно, любой компьютер может выступать в роли сервера, предоставляющего доступ к своим ресурсам, или клиента, использующего ресурсы других серверов.

В сети, построенной на архитектуре клиент/сервер, существует несколько основных компьютеров - серверов. Остальные компьютеры, которые входят в сеть, носят название клиентов, или рабочих станций.

Сервер — это компьютер, который обслуживает другие компьютеры в сети. Существуют разнообразные виды серверов, отличающиеся друг от друга услугами, которые они предоставляют; серверы баз данных, файловые серверы, принт-серверы, почтовые серверы, веб-серверы и т. д.

Одноранговая архитектура получила распространение в небольших офисах или в домашних локальных сетях, В большинстве случаев, чтобы создать такую сеть, вам понадобится пара компьютеров, которые снабжены сетевыми картами, и кабель. В качестве кабеля используют витую пару четвертой или пятой категории. Витая пара получила такое название потому, что пары проводов внутри кабеля перекручены (это позволяет избежать помех и внешнего влияния ). Все еще можно встретить достаточно старые сети, которые используют коаксиальный кабель. Такие сети морально устарели, а скорость передачи информации в них не превышает 10 Мбит/с.

После того как сеть будет создана, а компьютеры соединены между собой, нужно настроить все необходимые параметры программно. Прежде всего убедитесь, что на соединяемых компьютерах были установлены операционные системы с поддержкой работы в сети (Linux, FreeBSD, Windows )

Все компьютеры в одноранговой сети объединяются в рабочие группы, которые имеют свои имена (идентификаторы ).
В случае использования архитектуры сети клиент/сервер управление доступом осуществляется на уровне пользователей. У администратора появляется возможность разрешить доступ к ресурсу только некоторым пользователям. Предположим, что вы делаете свой принтер доступным для пользователей сети. Если вы не хотите, чтобы кто угодно печатал на вашем принтере, то следует установить пароль для работы с этим ресурсом. При одноранговой сети любой пользователь, который узнает ваш пароль, сможет получить доступ к вашему принтеру. В сети клиент/ сервер вы можете ограничить использование принтера для некоторых пользователей вне зависимости от того, знают они пароль или нет.

Чтобы получить доступ к ресурсу в локальной сети, построенной на архитектуре клиент/сервер, пользователь обязан ввести имя пользователя (Login - логин) и пароль (Password). Следует отметить, что имя пользователя является открытой информацией, а пароль — конфиденциальной.

Процесс проверки имени пользователя называется идентификацией. Процесс проверки соответствия введенного пароля имени пользователя - аутентификацией. Вместе идентификация и аутентификация составляют процесс авторизации. Часто термин «аутентификация » — используется в широком смысле: для обозначения проверки подлинности.

Из всего сказанного можно сделать вывод о том, что единственное преимущество одноранговой архитектуры — это ее простота и невысокая стоимость. Сети клиент/сервер обеспечивают более высокий уровень быстродействия и защиты.
Достаточно часто один и тот же сервер может выполнять функции нескольких серверов, например файлового и веб-сервера. Естественно, общее количество функций, которые будет выполнять сервер, зависит от нагрузки и его возможностей. Чем выше мощность сервера, тем больше клиентов он сможет обслужить и тем большее количество услуг предоставить. Поэтому в качестве сервера практически всегда назначают мощный компьютер с большим объемом памяти и быстрым процессором (как правило, для решения серьезных задач используются многопроцессорные системы )

Оборудование для локальной сети

В самом простом случае для работы сети достаточно сетевых карт и кабеля. Если же вам необходимо создать достаточно сложную сеть, то понадобится специальное сетевое оборудование.

Кабель

Компьютеры внутри локальной сети соединяются с помощью кабелей, которые передают сигналы. Кабель, соединяющий два компонента сети (например, два компьютера ), называется сегментом. Кабели классифицируются в зависимости от возможных значений скорости передачи информации и частоты возникновения сбоев и ошибок. Наиболее часто используются кабели трех основных категорий:

  • Витая пара;
  • Коаксиальный кабель;
  • Оптоволоконный кабель,

Для построения локальных сетей сейчас наиболее широко используется витая пара . Внутри такой кабель состоит из двух или четырех пар медного провода, перекрученных между собой. Витая пара также имеет свои разновидности: UTP (Unshielded Twisted Pair - неэкранированная витая пара ) и STP (Shielded Twisted Pair - экранированная витая пара ). Эти разновидности кабеля способны передавать сигналы на расстояние порядка 100 м. Как правило, в локальных сетях используется именно UTP. STP имеет плетеную оболочку из медной нити, которая имеет более высокий уровень защиты и качества, чем оболочка кабеля UTP.

В кабеле STP каждая пара проводов дополнительно экранировала (она обернута слоем фольги ), что защищает данные, которые передаются, от внешних помех. Такое решение позволяет поддерживать высокие скорости передачи на более значительные расстояния, чем в случае использования кабеля UTP, Витая пара подключается к компьютеру с помощью разъема RJ-45 (Registered Jack 45 ), который очень напоминает телефонный разъем RJ-11 (Regi-steredjack ). Витая пара способна обеспечивать работу сети на скоростях 10,100 и 1000 Мбит/с.

Коаксиальный кабель состоит из медного провода, покрытого изоляцией, экранирующей металлической оплеткой и внешней оболочкой. По центральному проводу кабеля передаются сигналы, в которые предварительно были преобразованы данные. Такой провод может быть как цельным, так и многожильным. Для организации локальной сети применяются два типа коаксиального кабеля: ThinNet (тонкий, 10Base2 ) и ThickNet (толстый, 10Base5 ). В данный момент локальные сети на основе коаксиального кабеля практически не встречаются.

В основе оптоволоконного кабеля находятся оптические волокна (световоды), данные по которым передаются в виде импульсов света. Электрические сигналы по оптоволоконному кабелю не передаются, поэтому сигнал нельзя перехватить, что практически исключает несанкционированный доступ к данным. Оптоволоконный кабель используют для транспортировки больших объемов информации на максимально доступных скоростях.

Главным недостатком такого кабеля является его хрупкость: его легко повредить, а монтировать и соединять можно только с помощью специального оборудования.

Сетевые карты

Сетевые карты делают возможным соединение компьютера и сетевого кабеля. Сетевая карта преобразует информацию, которая предназначена для отправки, в специальные пакеты. Пакет - логическая совокупность данных, в которую входят заголовок с адресными сведениями и непосредственно информация. В заголовке присутствуют поля адреса, где находится информация о месте отправления и пункте назначения данных, Сетевая плата анализирует адрес назначения полученного пакета и определяет, действительно ли пакет направлялся данному компьютеру. Если вывод будет положительным, то плата передаст пакет операционной системе. В противном случае пакет обрабатываться не будет. Специальное программное обеспечение позволяет обрабатывает все пакеты, которые проходят внутри сети. Такую возможность используют системные администраторы, когда анализируют работу сети, и злоумышленники для кражи данных, проходящих по ней.

Любая сетевая карта имеет индивидуальный адрес, встроенный в ее микросхемы. Этот адрес называется физическим, или MAC-адресом (Media Access Control - управление доступом к среде передачи ).

Порядок действий, совершаемых сетевой картой, такой.

  1. Получение информации от операционной системы и преобразование ее в электрические сигналы для дальнейшей отправки по кабелю;
  2. Получение электрических сигналов по кабелю и преобразование их обратно в данные, с которыми способна работать операционная система;
  3. Определение, предназначен ли принятый пакет данных именно для этого компьютера;
  4. Управление потоком информации, которая проходит между компьютером и сетью.

Концентраторы

Концентратор (хаб ) — устройство, способное объединить компьютеры в физическую звездообразную топологию. Концентратор имеет несколько портов, позволяющих подключить сетевые компоненты. Концентратор, имеющий всего два порта, называют мостом. Мост необходим для соединения двух элементов сети.

Сеть вместе с концентратором представляет собой «общую шину ». Пакеты данных при передаче через концентратор будут доставлены на все компьютеры, подключенные к локальной сети.

Существует два вида концентраторов.

Пассивные концентраторы. Такие устройства отправляют полученный сигнал без его предварительной обработки.
Активные концентраторы (многопостовые повторители ). Принимают входящие сигналы, обрабатывают их и передают в подключенные компьютеры.

Коммутаторы

Коммутаторы необходимы для организации более тесного сетевого соединения между компьютером-отправителем и конечным компьютером. В процессе передачи данных через коммутатор в его память записывается информация о MAC-адресах компьютеров. С помощью этой информации коммутатор составляет таблицу маршрутизации, в которой для каждого из компьютеров указана его принадлежность определенному сегменту сети.

При получении коммутатором пакетов данных он создает специальное внутреннее соединение (сегмент ) между двумя своими Портами, используя таблицу маршрутизации. Затем отправляет пакет данных в соответствующий порт конечного компьютера, опираясь на информацию, описанную в заголовке пакета.

Таким образом, данное соединение оказывается изолированным от других портов, что позволяет компьютерам обмениваться информацией с максимальной скоростью, которая доступна для данной сети. Если у коммутатора присутствуют только два порта, он называется мостом.

Коммутатор предоставляет следующие возможности:

  • Послать пакет с данными с одного компьютера на конечный компьютер;
  • Увеличить скорость передачи данных.

Маршрутизаторы

Маршрутизатор по принципу работы напоминает коммутатор, однако имеет больший набор функциональных возможностей, Он изучает не только MAC, но и IP-адреса обоих компьютеров, участвующих в передаче данных. Транспортируя информацию между различными сегментами сети, маршрутизаторы анализируют заголовок пакета и стараются вычислить оптимальный путь перемещения данного пакета. Маршрутизатор способен определить путь к произвольному сегменту сети, используя информацию из таблицы маршрутов, что позволяет создавать общее подключение к Интернету или глобальной сети.
Маршрутизаторы позволяют произвести доставку пакета наиболее быстрым путем, что позволяет повысить пропускную способность больших сетей. Если какой-то сегмент сети перегружен, поток данных пойдет по другому пути,

Топология сети

Порядок расположения и подключения компьютеров и прочих элементов в сети называют сетевой топологией. Топологию можно сравнить с картой сети, на которой отображены рабочие станции, серверы и прочее сетевое оборудование. Выбранная топология влияет на общие возможности сети, протоколы и сетевое оборудование, которые будут применяться, а также на возможность дальнейшего расширения сети.

Физическая топология — это описание того, каким образом будут соединены физические элементы сети. Логическая топология определяет маршруты прохождения пакетов данных внутри сети.

Выделяют пять видов топологии сети:

  • Общая шина;
  • Звезда;
  • Кольцо;

Общая шина

В этом случае все компьютеры подключаются к одному кабелю, который называется шиной данных. При этом пакет будет приниматься всеми компьютерами, которые подключены к данному сегменту сети.

Быстродействие сети во многом определяется числом подключенных к общей шине компьютеров. Чем больше таких компьютеров, тем медленнее работает сеть. Кроме того, подобная топология может стать причиной разнообразных коллизий, которые возникают, когда несколько компьютеров одновременно пытаются передать информацию в сеть. Вероятность появления коллизии возрастает с увеличением количества подключенных к шине компьютеров.

Преимущества использования сетей с топологией «общая шина » следующие:

  • Значительная экономия кабеля;
  • Простота создания и управления.

Основные недостатки:

  • вероятность появления коллизий при увеличении числа компьютеров в сети;
  • обрыв кабеля приведет к отключению множества компьютеров;
  • низкий уровень защиты передаваемой информации. Любой компьютер может получить данные, которые передаются по сети.

Звезда

При использовании звездообразной топологии каждый кабельный сегмент, идущий от любого компьютера сети, будет подключаться к центральному коммутатору или концентратору, Все пакеты будут транспортироваться от одного компьютера к другому через это устройство. Допускается использование как активных, так и пассивных концентраторов, В случае разрыва соединения между компьютером и концентратором остальная сеть продолжает работать. Если же концентратор выйдет из строя, то сеть работать перестанет. С помощью звездообразной структуры можно подключать друг к другу даже локальные сети.

Использование данной топологии удобно при поиске поврежденных элементов: кабеля, сетевых адаптеров или разъемов, «Звезда » намного удобнее «общей шины » и в случае добавления новых устройств. Следует учесть и то, что сети со скоростью передачи 100 и 1000 Мбит/с построены по топологии «звезда ».

Если в самом центре «звезды » расположить концентратор, то логическая топология изменится на «общую шину».
Преимущества «звезды »:

  • простота создания и управления;
  • высокий уровень надежности сети;
  • высокая защищенность информации, которая передается внутри сети (если в центре звезды расположен коммутатор ).

Основной недостаток - поломка концентратора приводит к прекращению работы всей сети.

Кольцевая топология

В случае использования кольцевой топологии все компьютеры сети подключаются к единому кольцевому кабелю. Пакеты проходят по кольцу в одном направлении через все сетевые платы подключенных к сети компьютеров. Каждый компьютер будет усиливать сигнал и отправлять его дальше по кольцу.

В представленной топологии передача пакетов по кольцу организована маркерным методом. Маркер представляет собой определенную последовательность двоичных разрядов, содержащих управляющие данные. Если сетевое устройство имеет маркер, то у него появляется право на отправку информации в сеть. Внутри кольца может передаваться всего один маркер.

Компьютер, который собирается транспортировать данные, забирает маркер из сети и отправляет запрошенную информацию по кольцу. Каждый следующий компьютер будет передавать данные дальше, пока этот пакет не дойдет до адресата. После получения адресат вернет подтверждение о получении компьютеру-отправителю, а последний создаст новый маркер и вернет его в сеть.

Преимущества данной топологии следующие:

  • эффективнее, чем в случае с общей шиной, обслуживаются большие объемы данных;
  • каждый компьютер является повторителем: он усиливает сигнал перед отправкой следующей машине, что позволяет значительно увеличить размер сети;
  • возможность задать различные приоритеты доступа к сети; при этом компьютер, имеющий больший приоритет, сможет дольше задерживать маркер и передавать больше информации.

Недостатки:

  • обрыв сетевого кабеля приводит к неработоспособности всей сети;
  • произвольный компьютер может получить данные, которые передаются по сети.

Протоколы TCP/IP

Протоколы TCP/IP (Transmission Control Protocol/Internet Protocol — Протокол управления передачей данных/Интернет протокол ) являются основными межсетевыми протоколами и управляют передачей данных между сетями разной конфигурации и технологии. Именно это семейство протоколов используется для передачи информации в сети Интернет, а также в некоторых локальных сетях. Семейство протоколов TPC/IP включает все промежуточные протоколы между уровнем приложений и физическим уровнем. Общее их количество составляет несколько десятков.

Основными среди них являются:

  • Транспортные протоколы: TCP — Transmission Control Protocol (протокол управления передачей данных ) и другие — управляют передачей данных между компьютерами;
  • Протоколы маршрутизации: IP — Internet Protocol (протокол Интернета ) и другие — обеспечивают фактическую передачу данных, обрабатывают адресацию данных, определяет наилучший путь к адресату;
  • Протоколы поддержки сетевого адреса: DNS — Domain Name System (доменная система имен ) и другие — обеспечивает определение уникального адреса компьютера;
  • Протоколы прикладных сервисов: FTP — File Transfer Protocol (протокол передачи файлов ), HTTP — HyperText Transfer Protocol (Протокол передачи гипертекста), TELNET и другие — используются для получения доступа к различным услугам: передаче файлов между компьютерами, доступу к WWW, удаленному терминальному доступу к системе и др.;
  • Шлюзовые протоколы: EGP — Exterior Gateway Protocol (внешний шлюзовый протокол ) и другие — помогают передавать по сети сообщения о маршрутизации и информацию о состоянии сети, а также обрабатывать данные для локальных сетей;
  • Почтовые протоколы: POP — Post Office Protocol (протокол приема почты ) — используется для приема сообщений электронной почты, SMPT Simple Mail Transfer Protocol (протокол передачи почты ) — используется для передачи почтовых сообщений.

Все основные сетевые протоколы (NetBEUI, IPX/SPX и ТСРIР ) являются маршрутизируемыми протоколами. Но вручную приходится настраивать лишь маршрутизацию ТСРIР. Остальные протоколы маршрутизируются операционной системой автоматически.

IP-адресация

При построении локальной сети на основе протокола TCP/IP каждый компьютер получает уникальный IP-адрес, который может назначаться либо DHCP-сервером — специальной программой, установленной на одном из компьютеров сети, либо средствами Windows, либо вручную.

DHCP-сервер позволяет гибко раздавать IP-адреса компьютерам и закрепить за некоторыми компьютерами постоянные, статические IP-адреса. Встроенное средство Windows не имеет таких возможностей. Поэтому если в сети имеется DHCP-сервер, то средствами Windows лучше не пользоваться, установив в настройках сети операционной системы автоматическое (динамическое ) назначение IP-адреса. Установка и настройка DHCP-сервера выходит за рамки этой книги.

Следует, однако, отметить, что при использовании для назначения IP-адреса DHCP-сервера или средств Windows загрузка компьютеров сети и операции назначения IP-адресов требует длительного времени, тем большего, чем больше сеть. Кроме того, компьютер с DHCP-сервером должен включаться первым.
Если же вручную назначить компьютерам сети статические (постоянные, не изменяющиеся ) IP-адреса, то компьютеры будут загружаться быстрее и сразу же появляться в сетевом окружении. Для небольших сетей этот вариант является наиболее предпочтительным, и именно его мы будем рассматривать в данной главе.

Для связки протоколов TCP/IP базовым является протокол IP, так как именно он занимается перемещением пакетов данных между компьютерами через сети, использующие различные сетевые технологии. Именно благодаря универсальным характеристикам протокола IP стало возможным само существование Интернета, состоящего из огромного количества разнородных сетей.

Пакеты данных протокола IP

Протокол IP является службой доставки для всего семейства протоколов ТСР-iР. Информация, поступающая от остальных протоколов, упаковывается в пакеты данных протокола IP, к ним добавляется соответствующий заголовок, и пакеты начинают свое путешествие по сети

Система IP-адресации

Одними из важнейших полей заголовка пакета данных IP являются адреса отправителя и получателя пакета. Каждый IP-адрес должен быть уникальным в том межсетевом объединении, где он используется, чтобы пакет попал по назначению. Даже во всей глобальной сети Интернет невозможно встретить два одинаковых адреса.

IP-адрес, в отличие от обычного почтового адреса, состоит исключительно из цифр. Он занимает четыре стандартные ячейки памяти компьютера — 4 байта. Так как один байт (Byte) равен 8 бит (Bit), то длина IP-адреса составляет 4 х 8 = 32 бита.

Бит представляет собой минимально возможную единицу хранения информации. В нем может содержаться только 0 (бит сброшен ) или 1 (бит установлен ).

Несмотря на то, что IP-адрес всегда имеет одинаковую длину, записывать его можно по-разному. Формат записи IP-адреса зависит от используемой системы счисления. При этом один и тот же адрес может выглядеть совершенно по-разному:

Формат числовой записи

Значение

Двоичный (Binary)

Шестнадцатеричный (Hexadecimal)

0x86180842

Десятичный (Decimal)

2249721922

Точечно-десятичный (Dotted Decimal)

134.24.8.66

Двоичное число 10000110 преобразовывается в десятичное следующим образом: 128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =134.
Наиболее предпочтительным вариантом, с точки зрения удобства чтения человеком, является формат написания IP-адреса в точечно-десятичной нотации. Данный формат состоит из четырех десятичных чисел, разделенных точками. Каждое число, называемое октетом (Octet), представляет собой десятичное значение соответствующего байта в IP-адресе. Октет называется так потому, что один байт в двоичном виде состоит из восьми бит.

При использовании точечно-десятичной нотации записи октетов в адресе IP следует иметь в виду следующие правила:

  • Допустимыми являются только целые числа;
  • Числа должны находиться в диапазоне от 0 до 255.

Старшие биты в IP-адресе, расположенные слева, определяют класс и номер сети. Их совокупность называется идентификатором подсети или сетевым префиксом. При назначении адресов внутри одной сети префикс всегда остается неизменным. Он идентифицирует принадлежность IP-адреса данной сети.

Например, если IP-адреса компьютеров подсети 192.168.0.1 — 192.168.0.30, то первые два октета определяют идентификатор подсети — 192.168.0.0, а следующие два — идентификаторы хостов.

Сколько именно бит используется в тех или иных целях, зависит от класса сети. Если номер хоста равен нулю, то адрес указывает не на какой-то один конкретный компьютер, а на всю сеть в целом.

Классификация сетей

Существует три основных класса сетей: А, В, С. Они отличаются друг от друга максимально возможным количеством хостов, которые могут быть подключены к сети данного класса.

Общепринятая классификация сетей приведена в следующей таблице, где указано наибольшее количество сетевых интерфейсов, доступных для подключения, какие октеты IP-адреса используются для сетевых интерфейсов (*), а какие - остаются неизменяемыми (N).

Класс сети

Наибольшее количество хостов

Изменяемые октеты IP — адреса , используемые для нумерации хостов

16777214

N *.*.*

65534

N.N.*.*

N.N.N.*

Например, в сетях наиболее распространенного класса С не может быть более 254 компьютеров, поэтому для нумерации сетевых интерфейсов используется только один, самый младший байт IP-адреса. Этому байту соответствует крайний правый октет в точечно-десятичной нотации.

Возникает законный вопрос: почему к сети класса С можно подключить только 254 компьютера, а не 256? Дело в том, что некоторые внутрисетевые адреса IP предназначены для специального использования, а именно:

О — идентифицирует саму сеть;
255 — широковещательный.

Сегментирование сетей

Адресное пространство внутри каждой сети допускает разбиение на более мелкие по количеству хостов подсети (Subnets ). Процесс разбиения на подсети называется также сегментированием.

Например, если сеть 192.168.1.0 класса С разбить на четыре подсети, то их адресные диапазоны будут следующими:

  • 192.168.1.0-192.168.1.63;
  • 192.168.1.64-192.168.1.127;
  • 192.168.1.128-192.168.1.191;
  • 192.168.1.192-192.168.1.255.

В данном случае для нумерации хостов используется не весь правый октет из восьми бит, а только 6 младших из них. А два оставшихся старших бита определяют номер подсети, который может принимать значения от нуля до трех.

Как обычный, так и расширенный сетевые префиксы можно идентифицировать с помощью маски подсети (Subnet Mask ), которая позволяет также отделить в IP-адресе идентификатор подсети от идентификатора хоста, маскируя с помощью числа ту часть IP-адреса, которая идентифицирует подсеть.

Маска представляет собой комбинацию чисел, по внешнему виду напоминающую IP-адрес. Двоичная запись маски подсети содержит нули в разрядах, интерпретируемых как номер хоста. Остальные биты, установленные в единицу, указывают на то, что эта часть адреса является префиксом. Маска подсети всегда применяется в паре с IP-адресом.

При отсутствии дополнительного разбиения на подсети, маски стандартных классов сетей имеют следующие значения:

Класс сети

Маска

двоичная

точечно-десятичная

11111111.00000000.00000000.00000000

255.0.0.0

11111111.11111111.00000000.00000000

255.255.0.0

11111111.11111111.11111111.00000000

255.255.255.0

Когда используется механизм разбиения на подсети, маска соответствующим образом изменяется. Поясним это, используя уже упомянутый пример с разбиением сети класса С на четыре подсети.

В данном случае два старших бита в четвертом октете IP-адреса используются для нумерации подсетей. Тогда маска в двоичной форме будет выглядеть следующим образом: 11111111.11111111.11111111.11000000, а в точечно-десятичной -255.255.255.192.

Диапазоны адресов частных сетей

Каждый компьютер, подключенный к сети, имеет свой уникальный IP-адрес. Для некоторых машин, например, серверов, этот адрес не изменяется. Такой постоянный адрес называется статическим (Static). Для других, например, клиентов, IP-адрес может быть постоянным (статическим) или назначаться динамически, при каждом подключении к сети.

Чтобы получить уникальный статический, то есть постоянный адрес IP в сети Интернет, нужно обратиться в специальную организацию InterNIC — Internet Network Information Center (Сетевой информационный центр Интернета ). InterNIC назначает только номер сети, а дальнейшей работой по созданию подсетей и нумерации хостов сетевой администратор должен заниматься самостоятельно.

Но официальная регистрация в InterNIC с целью получения статического IP-адреса обычно требуется для сетей, имеющих постоянную связь с Интернетом. Для частных сетей, не входящих в состав Интернета, специально зарезервировано несколько блоков адресного пространства, которые можно свободно, без регистрации в InterNIC, использовать для присвоения IP-адресов:

Класс сети

Количество доступных номеров сетей

Диапазоны IP — адресов , используемые для нумерации хостов

10.0.0.0 — 10.255.255.255

172.16.0.0-172.31.255.255

192.168.0.О-192.168.255.255

LINKLOCAL

169.254.0.0-169.254.255.255

Однако эти адреса используются только для внутренней адресации сетей и не предназначены для хостов, которые напрямую соединяются с Интернетом.

Диапазон адресов LINKLOCAL не является классом сети в обычном понимании. Он используется Windows при автоматическом назначении личных адресов IP компьютерам в локальной сети.

Надеюсь Вы теперь имеете представление о локальной сети!

  • Tutorial

Всем привет. На днях возникла идея написать статьи про основы компьютерных сетей, разобрать работу самых важных протоколов и как строятся сети простым языком. Заинтересовавшихся приглашаю под кат.


Немного оффтопа: Приблизительно месяц назад сдал экзамен CCNA (на 980/1000 баллов) и осталось много материала за год моей подготовки и обучения. Учился я сначала в академии Cisco около 7 месяцев, а оставшееся время вел конспекты по всем темам, которые были мною изучены. Также консультировал многих ребят в области сетевых технологий и заметил, что многие наступают на одни и те же грабли, в виде пробелов по каким-то ключевым темам. На днях пару ребят попросили меня объяснить, что такое сети и как с ними работать. В связи с этим решил максимально подробно и простым языком описать самые ключевые и важные вещи. Статьи будут полезны новичкам, которые только встали на путь изучения. Но, возможно, и бывалые сисадмины подчеркнут из этого что-то полезное. Так как я буду идти по программе CCNA, это будет очень полезно тем людям, которые готовятся к сдаче. Можете держать статьи в виде шпаргалок и периодически их просматривать. Я во время обучения делал конспекты по книгам и периодически читал их, чтобы освежать знания.

Вообще хочу дать всем начинающим совет. Моей первой серьезной книгой, была книга Олиферов «Компьютерные сети». И мне было очень тяжело читать ее. Не скажу, что все было тяжело. Но моменты, где детально разбиралось, как работает MPLS или Ethernet операторского класса, вводило в ступор. Я читал одну главу по несколько часов и все равно многое оставалось загадкой. Если вы понимаете, что какие то термины никак не хотят лезть в голову, пропустите их и читайте дальше, но ни в коем случае не отбрасывайте книгу полностью. Это не роман или эпос, где важно читать по главам, чтобы понять сюжет. Пройдет время и то, что раньше было непонятным, в итоге станет ясно. Здесь прокачивается «книжный скилл». Каждая следующая книга, читается легче предыдущей книги. К примеру, после прочтения Олиферов «Компьютерные сети», читать Таненбаума «Компьютерные сети» легче в несколько раз и наоборот. Потому что новых понятий встречается меньше. Поэтому мой совет: не бойтесь читать книги. Ваши усилия в будущем принесут плоды. Заканчиваю разглагольствование и приступаю к написанию статьи.

Вот сами темы

1) Основные сетевые термины, сетевая модель OSI и стек протоколов TCP/IP.
2)
3)
4)
5)
6)
7)
8)
9) Маршрутизация: статическая и динамическая на примере RIP, OSPF и EIGRP.
10) Трансляция сетевых адресов: NAT и PAT.
11) Протоколы резервирования первого перехода: FHRP.
12) Безопасность компьютерных сетей и виртуальные частные сети: VPN.
13) Глобальные сети и используемые протоколы: PPP, HDLC, Frame Relay.
14) Введение в IPv6, конфигурация и маршрутизация.
15) Сетевое управление и мониторинг сети.

P.S. Возможно, со временем список дополнится.


Итак, начнем с основных сетевых терминов.

Что такое сеть? Это совокупность устройств и систем, которые подключены друг к другу (логически или физически) и общающихся между собой. Сюда можно отнести сервера, компьютеры, телефоны, маршрутизаторы и так далее. Размер этой сети может достигать размера Интернета, а может состоять всего из двух устройств, соединенных между собой кабелем. Чтобы не было каши, разделим компоненты сети на группы:

1) Оконечные узлы: Устройства, которые передают и/или принимают какие-либо данные. Это могут быть компьютеры, телефоны, сервера, какие-то терминалы или тонкие клиенты, телевизоры.

2) Промежуточные устройства: Это устройства, которые соединяют оконечные узлы между собой. Сюда можно отнести коммутаторы, концентраторы, модемы, маршрутизаторы, точки доступа Wi-Fi.

3) Сетевые среды: Это те среды, в которых происходит непосредственная передача данных. Сюда относятся кабели, сетевые карточки, различного рода коннекторы, воздушная среда передачи. Если это медный кабель, то передача данных осуществляется при помощи электрических сигналов. У оптоволоконных кабелей, при помощи световых импульсов. Ну и у беспроводных устройств, при помощи радиоволн.

Посмотрим все это на картинке:

На данный момент надо просто понимать отличие. Детальные отличия будут разобраны позже.

Теперь, на мой взгляд, главный вопрос: Для чего мы используем сети? Ответов на этот вопрос много, но я освещу самые популярные, которые используются в повседневной жизни:

1) Приложения: При помощи приложений отправляем разные данные между устройствами, открываем доступ к общим ресурсам. Это могут быть как консольные приложения, так и приложения с графическим интерфейсом.

2) Сетевые ресурсы: Это сетевые принтеры, которыми, к примеру, пользуются в офисе или сетевые камеры, которые просматривает охрана, находясь в удаленной местности.

3) Хранилище: Используя сервер или рабочую станцию, подключенную к сети, создается хранилище доступное для других. Многие люди выкладывают туда свои файлы, видео, картинки и открывают общий доступ к ним для других пользователей. Пример, который на ходу приходит в голову, - это google диск, яндекс диск и тому подобные сервисы.

4) Резервное копирование: Часто, в крупных компаниях, используют центральный сервер, куда все компьютеры копируют важные файлы для резервной копии. Это нужно для последующего восстановления данных, если оригинал удалился или повредился. Методов копирования огромное количество: с предварительным сжатием, кодированием и так далее.

5) VoIP: Телефония, работающая по протоколу IP. Применяется она сейчас повсеместно, так как проще, дешевле традиционной телефонии и с каждым годом вытесняет ее.

Из всего списка, чаще всего многие работали именно с приложениями. Поэтому разберем их более подробно. Я старательно буду выбирать только те приложения, которые как-то связаны с сетью. Поэтому приложения типа калькулятора или блокнота, во внимание не беру.

1) Загрузчики. Это файловые менеджеры, работающие по протоколу FTP, TFTP. Банальный пример - это скачивание фильма, музыки, картинок с файлообменников или иных источников. К этой категории еще можно отнести резервное копирование, которое автоматически делает сервер каждую ночь. То есть это встроенные или сторонние программы и утилиты, которые выполняют копирование и скачивание. Данный вид приложений не требует прямого человеческого вмешательства. Достаточно указать место, куда сохранить и скачивание само начнется и закончится.

Скорость скачивания зависит от пропускной способности. Для данного типа приложений это не совсем критично. Если, например, файл будет скачиваться не минуту, а 10, то тут только вопрос времени, и на целостности файла это никак не скажется. Сложности могут возникнуть только когда нам надо за пару часов сделать резервную копию системы, а из-за плохого канала и, соответственно, низкой пропускной способности, это занимает несколько дней. Ниже приведены описания самых популярных протоколов данной группы:

FTP- это стандартный протокол передачи данных с установлением соединения. Работает по протоколу TCP (этот протокол в дальнейшем будет подробно рассмотрен). Стандартный номер порта 21. Чаще всего используется для загрузки сайта на веб-хостинг и выгрузки его. Самым популярным приложением, работающим по этому протоколу - это Filezilla. Вот так выглядит само приложение:


TFTP- это упрощенная версия протокола FTP, которая работает без установления соединения, по протоколу UDP. Применяется для загрузки образа бездисковыми рабочими станциями. Особенно широко используется устройствами Cisco для той же загрузки образа и резервных копий.

Интерактивные приложения. Приложения, позволяющие осуществить интерактивный обмен. Например, модель «человек-человек». Когда два человека, при помощи интерактивных приложений, общаются между собой или ведут общую работу. Сюда относится: ICQ, электронная почта, форум, на котором несколько экспертов помогают людям в решении вопросов. Или модель «человек-машина». Когда человек общается непосредственно с компьютером. Это может быть удаленная настройка базы, конфигурация сетевого устройства. Здесь, в отличие от загрузчиков, важно постоянное вмешательство человека. То есть, как минимум, один человек выступает инициатором. Пропускная способность уже более чувствительна к задержкам, чем приложения-загрузчики. Например, при удаленной конфигурации сетевого устройства, будет тяжело его настраивать, если отклик от команды будет в 30 секунд.

Приложения в реальном времени. Приложения, позволяющие передавать информацию в реальном времени. Как раз к этой группе относится IP-телефония, системы потокового вещания, видеоконференции. Самые чувствительные к задержкам и пропускной способности приложения. Представьте, что вы разговариваете по телефону и то, что вы говорите, собеседник услышит через 2 секунды и наоборот, вы от собеседника с таким же интервалом. Такое общение еще и приведет к тому, что голоса будут пропадать и разговор будет трудноразличимым, а в видеоконференция превратится в кашу. В среднем, задержка не должна превышать 300 мс. К данной категории можно отнести Skype, Lync, Viber (когда совершаем звонок).

Теперь поговорим о такой важной вещи, как топология. Она делится на 2 большие категории: физическая и логическая . Очень важно понимать их разницу. Итак, физическая топология - это как наша сеть выглядит. Где находятся узлы, какие сетевые промежуточные устройства используются и где они стоят, какие сетевые кабели используются, как они протянуты и в какой порт воткнуты. Логическая топология - это каким путем будут идти пакеты в нашей физической топологии. То есть физическая - это как мы расположили устройства, а логическая - это через какие устройства будут проходить пакеты.

Теперь посмотрим и разберем виды топологии:

1) Топология с общей шиной (англ. Bus Topology)


Одна из первых физических топологий. Суть состояла в том, что к одному длинному кабелю подсоединяли все устройства и организовывали локальную сеть. На концах кабеля требовались терминаторы. Как правило - это было сопротивление на 50 Ом, которое использовалось для того, чтобы сигнал не отражался в кабеле. Преимущество ее было только в простоте установки. С точки зрения работоспособности была крайне не устойчивой. Если где-то в кабеле происходил разрыв, то вся сеть оставалась парализованной, до замены кабеля.

2) Кольцевая топология (англ. Ring Topology)


В данной топологии каждое устройство подключается к 2-ум соседним. Создавая, таким образом, кольцо. Здесь логика такова, что с одного конца компьютер только принимает, а с другого только отправляет. То есть, получается передача по кольцу и следующий компьютер играет роль ретранслятора сигнала. За счет этого нужда в терминаторах отпала. Соответственно, если где-то кабель повреждался, кольцо размыкалось и сеть становилась не работоспособной. Для повышения отказоустойчивости, применяют двойное кольцо, то есть в каждое устройство приходит два кабеля, а не один. Соответственно, при отказе одного кабеля, остается работать резервный.

3) Топология звезда (англ. Star Topology)


Все устройства подключаются к центральному узлу, который уже является ретранслятором. В наше время данная модель используется в локальных сетях, когда к одному коммутатору подключаются несколько устройств, и он является посредником в передаче. Здесь отказоустойчивость значительно выше, чем в предыдущих двух. При обрыве, какого либо кабеля, выпадает из сети только одно устройство. Все остальные продолжают спокойно работать. Однако если откажет центральное звено, сеть станет неработоспособной.

4)Полносвязная топология (англ. Full-Mesh Topology)


Все устройства связаны напрямую друг с другом. То есть с каждого на каждый. Данная модель является, пожалуй, самой отказоустойчивой, так как не зависит от других. Но строить сети на такой модели сложно и дорого. Так как в сети, в которой минимум 1000 компьютеров, придется подключать 1000 кабелей на каждый компьютер.

5)Неполносвязная топология (англ. Partial-Mesh Topology)


Как правило, вариантов ее несколько. Она похожа по строению на полносвязную топологию. Однако соединение построено не с каждого на каждый, а через дополнительные узлы. То есть узел A, связан напрямую только с узлом B, а узел B связан и с узлом A, и с узлом C. Так вот, чтобы узлу A отправить сообщение узлу C, ему надо отправить сначала узлу B, а узел B в свою очередь отправит это сообщение узлу C. В принципе по этой топологии работают маршрутизаторы. Приведу пример из домашней сети. Когда вы из дома выходите в Интернет, у вас нет прямого кабеля до всех узлов, и вы отправляете данные своему провайдеру, а он уже знает куда эти данные нужно отправить.

6) Смешанная топология (англ. Hybrid Topology)


Самая популярная топология, которая объединила все топологии выше в себя. Представляет собой древовидную структуру, которая объединяет все топологии. Одна из самых отказоустойчивых топологий, так как если у двух площадок произойдет обрыв, то парализована будет связь только между ними, а все остальные объединенные площадки будут работать безотказно. На сегодняшний день, данная топология используется во всех средних и крупных компаниях.

И последнее, что осталось разобрать - это сетевые модели. На этапе зарождения компьютеров, у сетей не было единых стандартов. Каждый вендор использовал свои проприетарные решения, которые не работали с технологиями других вендоров. Конечно, оставлять так было нельзя и нужно было придумывать общее решение. Эту задачу взвалила на себя международная организация по стандартизации (ISO - International Organization for Standartization). Они изучали многие, применяемые на то время, модели и в результате придумали модель OSI , релиз которой состоялся в 1984 году. Проблема ее была только в том, что ее разрабатывали около 7 лет. Пока специалисты спорили, как ее лучше сделать, другие модели модернизировались и набирали обороты. В настоящее время модель OSI не используют. Она применяется только в качестве обучения сетям. Мое личное мнение, что модель OSI должен знать каждый уважающий себя админ как таблицу умножения. Хоть ее и не применяют в том виде, в каком она есть, принципы работы у всех моделей схожи с ней.

Состоит она из 7 уровней и каждый уровень выполняет определенную ему роль и задачи. Разберем, что делает каждый уровень снизу вверх:

1) Физический уровень (Physical Layer): определяет метод передачи данных, какая среда используется (передача электрических сигналов, световых импульсов или радиоэфир), уровень напряжения, метод кодирования двоичных сигналов.

2) Канальный уровень (Data Link Layer): он берет на себя задачу адресации в пределах локальной сети, обнаруживает ошибки, проверяет целостность данных. Если слышали про MAC-адреса и протокол «Ethernet», то они располагаются на этом уровне.

3) Сетевой уровень (Network Layer): этот уровень берет на себя объединения участков сети и выбор оптимального пути (т.е. маршрутизация). Каждое сетевое устройство должно иметь уникальный сетевой адрес в сети. Думаю, многие слышали про протоколы IPv4 и IPv6. Эти протоколы работают на данном уровне.

4) Транспортный уровень (Transport Layer): Этот уровень берет на себя функцию транспорта. К примеру, когда вы скачиваете файл с Интернета, файл в виде сегментов отправляется на Ваш компьютер. Также здесь вводятся понятия портов, которые нужны для указания назначения к конкретной службе. На этом уровне работают протоколы TCP (с установлением соединения) и UDP (без установления соединения).

5) Сеансовый уровень (Session Layer): Роль этого уровня в установлении, управлении и разрыве соединения между двумя хостами. К примеру, когда открываете страницу на веб-сервере, то Вы не единственный посетитель на нем. И вот для того, чтобы поддерживать сеансы со всеми пользователями, нужен сеансовый уровень.

6) Уровень представления (Presentation Layer): Он структурирует информацию в читабельный вид для прикладного уровня. Например, многие компьютеры используют таблицу кодировки ASCII для вывода текстовой информации или формат jpeg для вывода графического изображения.

7) Прикладной уровень (Application Layer): Наверное, это самый понятный для всех уровень. Как раз на этом уроне работают привычные для нас приложения - e-mail, браузеры по протоколу HTTP, FTP и остальное.

Самое главное помнить, что нельзя перескакивать с уровня на уровень (Например, с прикладного на канальный, или с физического на транспортный). Весь путь должен проходить строго с верхнего на нижний и с нижнего на верхний. Такие процессы получили название инкапсуляция (с верхнего на нижний) и деинкапсуляция (с нижнего на верхний). Также стоит упомянуть, что на каждом уровне передаваемая информация называется по-разному.

На прикладном, представления и сеансовым уровнях, передаваемая информация обозначается как PDU (Protocol Data Units). На русском еще называют блоки данных, хотя в моем круге их называют просто данные).

Информацию транспортного уровня называют сегментами. Хотя понятие сегменты, применимо только для протокола TCP. Для протокола UDP используется понятие - датаграмма. Но, как правило, на это различие закрывают глаза.
На сетевом уровне называют IP пакеты или просто пакеты.

И на канальном уровне - кадры. С одной стороны это все терминология и она не играет важной роли в том, как вы будете называть передаваемые данные, но для экзамена эти понятия лучше знать. Итак, приведу свой любимый пример, который помог мне, в мое время, разобраться с процессом инкапсуляции и деинкапусуляции:

1) Представим ситуацию, что вы сидите у себя дома за компьютером, а в соседней комнате у вас свой локальный веб-сервер. И вот вам понадобилось скачать файл с него. Вы набираете адрес страницы вашего сайта. Сейчас вы используете протокол HTTP, которые работает на прикладном уровне. Данные упаковываются и спускаются на уровень ниже.

2) Полученные данные прибегают на уровень представления. Здесь эти данные структурируются и приводятся в формат, который сможет быть прочитан на сервере. Запаковывается и спускается ниже.

3) На этом уровне создается сессия между компьютером и сервером.

4) Так как это веб сервер и требуется надежное установление соединения и контроль за принятыми данными, используется протокол TCP. Здесь мы указываем порт, на который будем стучаться и порт источника, чтобы сервер знал, куда отправлять ответ. Это нужно для того, чтобы сервер понял, что мы хотим попасть на веб-сервер (стандартно - это 80 порт), а не на почтовый сервер. Упаковываем и спускаем дальше.

5) Здесь мы должны указать, на какой адрес отправлять пакет. Соответственно, указываем адрес назначения (пусть адрес сервера будет 192.168.1.2) и адрес источника (адрес компьютера 192.168.1.1). Заворачиваем и спускаем дальше.

6) IP пакет спускается вниз и тут вступает в работу канальный уровень. Он добавляет физические адреса источника и назначения, о которых подробно будет расписано в последующей статье. Так как у нас компьютер и сервер в локальной среде, то адресом источника будет являться MAC-адрес компьютера, а адресом назначения MAC-адрес сервера (если бы компьютер и сервер находились в разных сетях, то адресация работала по-другому). Если на верхних уровнях каждый раз добавлялся заголовок, то здесь еще добавляется концевик, который указывает на конец кадра и готовность всех собранных данных к отправке.

7) И уже физический уровень конвертирует полученное в биты и при помощи электрических сигналов (если это витая пара), отправляет на сервер.

Процесс деинкапсуляции аналогичен, но с обратной последовательностью:

1) На физическом уровне принимаются электрические сигналы и конвертируются в понятную битовую последовательность для канального уровня.

2) На канальном уровне проверяется MAC-адрес назначения (ему ли это адресовано). Если да, то проверяется кадр на целостность и отсутствие ошибок, если все прекрасно и данные целы, он передает их вышестоящему уровню.

3) На сетевом уровне проверяется IP адрес назначения. И если он верен, данные поднимаются выше. Не стоит сейчас вдаваться в подробности, почему у нас адресация на канальном и сетевом уровне. Это тема требует особого внимания, и я подробно объясню их различие позже. Главное сейчас понять, как данные упаковываются и распаковываются.

4) На транспортном уровне проверяется порт назначения (не адрес). И по номеру порта, выясняется какому приложению или сервису адресованы данные. У нас это веб-сервер и номер порта - 80.

5) На этом уровне происходит установление сеанса между компьютером и сервером.

6) Уровень представления видит, как все должно быть структурировано и приводит информацию в читабельный вид.

7) И на этом уровне приложения или сервисы понимают, что надо выполнить.

Много было написано про модель OSI. Хотя я постарался быть максимально краток и осветить самое важное. На самом деле про эту модель в Интернете и в книгах написано очень много и подробно, но для новичков и готовящихся к CCNA, этого достаточно. Из вопросов на экзамене по данной модели может быть 2 вопроса. Это правильно расположить уровни и на каком уровне работает определенный протокол.

Как было написано выше, модель OSI в наше время не используется. Пока разрабатывалась эта модель, все большую популярность получал стек протоколов TCP/IP. Он был значительно проще и завоевал быструю популярность.
Вот так этот стек выглядит:


Как видно, он отличается от OSI и даже сменил название некоторых уровней. По сути, принцип у него тот же, что и у OSI. Но только три верхних уровня OSI: прикладной, представления и сеансовый объединены у TCP/IP в один, под названием прикладной. Сетевой уровень сменил название и называется - Интернет. Транспортный остался таким же и с тем же названием. А два нижних уровня OSI: канальный и физический объединены у TCP/IP в один с названием - уровень сетевого доступа. Стек TCP/IP в некоторых источниках обозначают еще как модель DoD (Department of Defence). Как говорит википедия, была разработана Министерством обороны США. Этот вопрос встретился мне на экзамене и до этого я про нее ничего не слышал. Соответственно вопрос: «Как называется сетевой уровень в модели DoD?», ввел меня в ступор. Поэтому знать это полезно.

Было еще несколько сетевых моделей, которые, какое то время держались. Это был стек протоколов IPX/SPX. Использовался с середины 80-х годов и продержался до конца 90-х, где его вытеснила TCP/IP. Был реализован компанией Novell и являлся модернизированной версией стека протоколов Xerox Network Services компании Xerox. Использовался в локальных сетях долгое время. Впервые IPX/SPX я увидел в игре «Казаки». При выборе сетевой игры, там предлагалось несколько стеков на выбор. И хоть выпуск этой игры был, где то в 2001 году, это говорило о том, что IPX/SPX еще встречался в локальных сетях.

Еще один стек, который стоит упомянуть - это AppleTalk. Как ясно из названия, был придуман компанией Apple. Создан был в том же году, в котором состоялся релиз модели OSI, то есть в 1984 году. Продержался он совсем недолго и Apple решила использовать вместо него TCP/IP.

Также хочу подчеркнуть одну важную вещь. Token Ring и FDDI - не сетевые модели! Token Ring - это протокол канального уровня, а FDDI это стандарт передачи данных, который как раз основывается на протоколе Token Ring. Это не самая важная информация, так как эти понятия сейчас не встретишь. Но главное помнить о том, что это не сетевые модели.

Вот и подошла к концу статья по первой теме. Хоть и поверхностно, но было рассмотрено много понятий. Самые ключевые будут разобраны подробнее в следующих статьях. Надеюсь теперь сети перестанут казаться чем то невозможным и страшным, а читать умные книги будет легче). Если я что-то забыл упомянуть, возникли дополнительные вопросы или у кого есть, что дополнить к этой статье, оставляйте комментарии, либо спрашивайте лично. Спасибо за прочтение. Буду готовить следующую тему.

  • топология сети
  • Добавить метки

    Предыстория
    Пятнадцать лет назад у меня был компьютер и для того, чтоб поменяться играми и программами с другими владельцами компьютеров мне нужно было ездить в другой район города. Но потом у меня появился друг с компьютером, живший в моем дворе. И вот пока мы ждали пока на дискетку что то скопируется мы высказывали самые невероятные догадки о развитии компьютеров. То, что компьютеры будут в каждом доме мы конечно тогда догадывались. Мы не догадывались зачем они нужны будут в каждом доме, потому что на компьютере в те времена можно было запускать только специализированные программы и игры. Для игр существовали приставки, а программы в каждом доме не нужны. Самое невероятное, что мы по тем временам могли предположить в плане развития компьютеров это то, что к любому другу можно будет прийти с дискетой и поменяться программами. Но, то что произошло за это время с компьютерами даже моя воспаленная фантазия не могла породить. Если бы мне сказали, что для обмена программами и играми не нужно будет ходить с дискетами, не нужно будет даже вставать из-за компьютера я бы плюнул в глаз, сославшись на неадекватность этого бредящего человека. Сейчас я работаю в сфере IT и меня уже перестало удивлять все что касается компьютеров, но для многих моих знакомых компьютер и интернет кажутся очень сложными и непонятными по принципу действия вещами. Для тех, кто хочет понять как это все работает и насколько просто устроенно я и решил написать это руководство.

    Internet - international network. Дословно означает «интернациональная сеть». Фактически куча компьютеров, которые соединены между собой. Но, для того чтоб компьютеры могли находить друг друга им присваивают адреса. Такой адрес в сети интернет называется IP - адрес.

    IP - internet protocol. Протокол - это нечто вроде языка или условностей. Например, я объясняю товарищам условный знак: если у меня в окне стоит цветок на подоконнике с левой или правой стороны, то родители дома, а если по центру подоконника то родаки уехали на дачу и ко мне можно забуриться с пивом на ночь. Это будет протокол мгновенного определения наличия предков дома и возможности зависнуть на ночь. Этим протоколом смогут пользоваться все ребята в нашей компании, кто точно знает об оговоренной условности. Если же эти условности узнают и будут использовать в другой компании, то мы им не сможем помешать, особенно если вместо цветка они обусловятся ставить на подоконник бутылку водки. Так же само протокол IP никто не запрещает использовать в сетях отличных от интернет. Сети использующие TCP/IP протоколы, но не входящие в сеть Internet называются Intranet.

    На самом деле IP - это не один протокол, а сборник протоколов. Называется этот сборник стэк протоколов TCP/IP. Большинство сегодняшних программ написано именно под эти протоколы и ничто мне не мешает на необитаемом острове построить свою сеть интранет с использованием оборудования и программ работающих через интернет протокол TCP/IP, установить сервер с сайтом и вести блог на этом сайте. Вот только прочитать мой блог смогут только жители необитаемого острова, подключенные к моей сети интранет. А вот если, это будет сайт компании через который каждый работник будет получать план работы на день, то построение такой сети даже возымеет смысл.

    Как я уже говорил каждый компьютер в интернете имеет IP-адрес. Его можно увидеть, если зайти в кнопку «ПУСК» -> «Выполнить», запустить «cmd» и выполнить команду «ipconfig». Эта команда напишет все сетевые настройки компьютера, независимо от того вписаны они вручную или получены автоматически.

    Предположим что IP-адрес вашего компьютера 192.168.99.100 и маска подсети 255.255.255.0. Это значит, что ваш компьютер сможет напрямую без помощи маршрутизатора связаться с другими компьютерами вашей подсети 192.168.99.* . Это равносильно тому, что с любым из соседей вашего дома вы можете связаться просто высунувшись из окна и крикнуть во двор «Ваааська, заходи ко мне с пивом». Если же Васька живет на другой улице, то тут прийдется связываться с ним совсем по другому алгоритму - например по телефону.

    Шлюз по умолчанию - маршрутизатор на который скидываются пакеты, которые предназначаются для IP адресов не относящихся в вашей подсети. На английском языке шлюз называется «gateway» или просто «gate». Так как на пользовательских компьютерах не известно и не должно быть известно ничего о нахождении других IP адресов во всем мире, то все что компьютер делает перед отправкой пакета - проверяет относится ли IP-адрес получателя к локальной подсети. Если относится, то пакет отправляется напрямую, если не относится, то пакет скидывается в шлюз и пусть шлюз сам разбирается как и где найти получателя. Аналогию можно провести такую. Вы выходите из своей двери в коридор. В коридоре множество дверей. Двери с разными номерами ведут в такие же кабинеты, как у вас и только одна дверь - это выход. Дверь выхода может иметь любой номер и выглядеть как и все остальные, единственное что ее отличает - это то что она является выходом с коридора. Выходов может быть много, включая пожарный. Так же и шлюзов в подсети может быть несколько. Итак, шлюз - это IP адрес в той же подсети, который отвечает за вывод пакетов во внешний мир. Если выход во внешний мир не нужен и локальная сеть работает самодостаточно, то шлюз не нужен.

    Маршрутизатор - это, компьютер который согласно таблицам маршрутов знает куда отправлять пакеты, предназначенные для того или иного IP адреса. В английской терминологии маршрутизатор называют router, которое происходит от слова route - путь. Таблицы маршрутизации во всем мире меняются ежедневно из-за того, что появляются новые провайдеры, интернет расширяется, проводятся новые магистрали между странами и континентами. Изначально интернет был военной сетью и основной целью этой сети было обеспечение надежной связи, которая бы работала даже при разрушении части сети в случае военных действий. Эта надежность обеспечивается за счет наличия запасных маршрутов. А маршрутизатор знает эти маршруты и выбирает самый подходящий рабочий маршрут, по которому можно доставить пакет получателю. Таким образом, чтоб доехать из Харькова в Ростов вам нужно сначала добраться до трассы Харьков-Ростов, а когда доедете до Ростова по мелким улочкам закоулкам добраться до нужного вам адреса. Если же трассу Харьков-Ростов перекроют или разломают, это не будет значить, что больше нет возможности добраться в Ростов. Это будет значить что дорога будет дольше, неудобней и прийдется попотеть над картой, чтоб выбрать подходящий маршрут, который наверняка будет загружен, потому что желающих добраться в Ростов меньше не станет.

    Виртуальные порты TCP/IP
    Представте ситуацию, когда приходит почтальон и приносит по вашему адресу письмо, на котором стоит только номер вашей квартиры. Его встречает вся семья и интересуется, а для кого из членов семьи собственно говоря письмо? Такая же ситуация получилась бы, если бы на IP-адрес вашего компьютера пришел пакет, нельзя было бы определить какой программе предназначается пакет ICQ, Skype, Firefox ? Для того, чтоб не возникало таких инцидентов и мы могли запускать одновременно множество программ, использующих сеть ввели понятие виртуальных портов. Так же как на почтовых конвертах пишут имя получателя, IP-пакеты маркируются номером порта, для которого он предназначается. Так, каждая сетевая программа резервирует за собой воображаемый порт и все пакеты попадают нужным программам. Благодаря портам мы на одном компьютере можем запускать одновременно множество сетевых программ. Порт является просто числом от 0 до 65535 - двойка в 16 степени.

    Кроме того, сервера предоставляя сервисы используют именно те порты, которые во всем мире принято использовать для каждого сервиса. Так, например, веб-сайты всегда работают по умолчанию на порту с номером 80, почта отправляется через порт 25, а получается через порт 110. Ничто не мешает администратору настроить сервер отдавать сайты через порт 25, но тогда получится ситуация что клиенты, зная что 25й порт это почтовый порт отправки почты работает по протоколу SMTP будут пытаться общаться с сервером, который отвечает по протоколу HTTP. Результат будет подобен тому, что я по оговоренному выше протоколу при желании выпить пива буду искать на подоконнике цветок, а буду находить бутылку водки.

    Доменные имена
    У каждого владельца паспорта имеется фискальный код, но так уж повелось, нам людям в отличие от компьютеров удобней работать с именами, а не с цифрами и мы друг друга зовем по имени, а не по фискальному коду. Так и вместо IP-адресов нам удобней набирать имена сайтов, такие как mail.ru или google.com. Система, которая преобразовывает имя в IP-адрес называется DNS - Domain Name System. В настройках сети, если вы пишете их вручную, всегда указывается DNS сервер для преобразования доменных имен в IP адреса. Или же сервер DNS получается вашим компьютером автоматически при подключении к интернету . Каждый раз когда вы набираете адрес сайта в браузере, ваш компьютер запрашивает у DNS сервера его IP адрес и устанавливает соединение с нужным IP адресом. У одного доменного имени может быть множество IP адресов. Это делается для распределения нагрузки. Можно увидеть набрав на разных компьютерах команду ping google.com, что пингуются совсем разные IP-адреса. Таким образом во всем мире люди набирают один адрес google.com, но попадают на разные сервера google, которых по всему миру тысячи. То же самое как в любой стране мира мы можем обратиться в Макдональдс, чтоб получить гамбургер, независимо от его адреса.

    Сервер - это компьютер, который предоставляет сервисы. Название образуется от английского «to serve» - обслуживать. Когда вы даете доступ на файлы вашего компьютера, чтоб на него можно было зайти через сетевое окружение и скачать что либо, ваш компьютер становится сервером, потому что предоставляет сервис доступа к файлам. То же самое, если вы поставите на свой компьютер программное обеспечение веб сервера (например, веб сервер apache), то на ваш компьютер можно будет зайти через веб-браузер просто набрав IP адрес вашего компьютера и просмотреть вашу страничку. Другой вопрос, что для настоящих серверов используют более качественное и надежное оборудование, которое позволяет сервисам работать без сбоев круглые сутки и круглый год. Примеры предоставляемых популярных сервисов: HTTP для предоставления сайтов, DNS для преобразования доменных имен, FTP для обмена файлами, SMTP для отправки почты, POP3 или IMAP4 для получения почты, BitTorrent для пиринговых сетей, игровые серверы типа BattleNet. Свой сервер - это отличное решение для фирмы, офиса, локальной компьютерной сети или интернет клуба. Сервер помогает оптимизировать работу и сложить многие функции с людей на машину. Простой сервер может настроить единожды системный администратор. Корректно настроенный сервер практически не нуждается в обслуживании. Если же на сервер возложенно множество функций и от них зависит вся работа офиса, то фирме для обслуживания сервера понадобится должность системного администратора.

    NAT
    В любой локальной сети рано или поздно возникает потребность подключения к интернету. В локальных сетях для адресации компьютеров используются приватные IP-адреса, которые всему миру не известны. Провайдер же выдает только один реальный адрес на одно подключение. Как же быть, если в интернет надо подключить множество компьютеров, а адрес всего один? Так же, как это делается при подключении внутренних телефонных станций. Внутри офиса с телефонной станцией вы можете набрать номер 100 чтоб дозвониться начальнику или номер 101 чтоб дозвониться к коллеге. Но, если вы за пределеами офиса наберете номер 100 или 101, то вы наберете не существующий номер. Этот номер существует только в пределах внутренней телефонной сети вашего предприятия. Аналогично, в локальных компьютерных сетях используют внтренние IP адреса, которые начинаются на 192.168.*.* для адресации компьютеров и называются приватными. Такие адреса могут быть как в вашей локальной сети, так и в тысячах локалках всего мира. При попадании в интернет пакеты с таких приватных адресов выбрасываются, для них нет получателя. Поэтому при выходе пакета из локальной сети в мир используется следующий финт, который называется NAT - network address translation - преобразование сетевых адресов. На маршрутизаторе локалки, который отвечает за раздачу интернета, исходящий адрес пакета перебивается на адрес маршрутизатора. Всему интернету кажется что именно маршрутизатор отправил этот пакет и ответные пакеты отправляются на адрес этого же маршрутизатора. Маршрутизатор имеет именно тот единственный реальный IP адрес, который дал провайдер при подключении к интернету. При попадании на маршрутизатор система NAT понимает, что хоть адресом назначения и является адрес маршрутизатора, на самом деле пакет предназначается другому компьютеру. На пакете адрес назначения меняется на внутренний приватный адрес в вашей локальной сети и маршрутизатор заворачивает его в локальную сеть. Система NAT просто запоминает какой из компьютеров локальной сети инициализировал подключение и по таблицам подключений возвращает обратные пакеты. При такой системе выхода в интернет неудобство заключается в том, что никто из интернета не сможет инициализировать подключение к вашему компьютеру. Это плохо, если вы хотите на своем компьютере запустить веб сервер или сделать сервер ftp, или хотя бы создать сетевую игру вроде Counter-Strike или WarCraft. А преймущество в том, что вам не нужно защищать свой компьютер, ведь из интернета никто не может к вам подключиться и получить доступ к вашим ресурсам. Защищаться нужно только от компьютеров локальной сети, а это намного проще с учетом того что их немного и как правило они не настроены против вас враждебно.

    Пробрасывание портов
    Если же мы находимсся в локальной сети без реального адреса, а создать игру в WarCraft ой как хочется. В таком случае на помощь прийдет port forwarding. Маршрутизатор настраивается таким образом, что все попытки подключения на адрес маршрутизатора локальной сети на определенный порт не будут игнорироваться, даже если на этом порту маршрутизатора не запущены никакие сервисы. Пакеты приходящие на обусловленный порт маршрутизатора будут закидываться внутрь локалки на тот компьютер, где была создана сетевая игра или запущен какой то другой сетевой сервис.

    Что такое фаервол/брэндмауэр и как он работает.
    Жила была девочка Маша и радовалась каждому письму которое ей приходило. Но, когда она выросла и стала звездой мирового масштаба, ее стали заваливать сотнями писем в день. Одни письма были признаниями в любви, другие оскорблениями и угрозами, а Машу из всех писем интересовали только те, которые являлись предложениями о сотрудничестве. Маша доверила обработку всех приходящих пакетов секретарю, чтоб тот их фильтровал и выбирал только единицы полезных писем, проверял наличие корректного обратного адреса и оставлял письма только отпечатанные на лазерном принтере, а остальные выбрасывал. Так же секретарю указали выкидывать все письма из городов Урюпинск, Мухосранск и Бобруйск после неудачных концертов в этих городах. А для того, чтоб через письмо с якобы предложением о сотрудничестве не прислали бомбу или отраву снабдили секретаря приборами для тестирования всех писем на наличие взрывоопасных и токсичных веществ. А секретаря назвали Файрволом. В общем файрвол - это программа, которая фильтрует весь сетевой траффик приходящий на ваш компьютер, и в зависимости от ваших настроек блокирует его или разрешает. Так же файрвол может быть наделен функциями проверки траффика на вирусы и на прочие вредоносные данные.

    Килобиты и килобайты
    И последний вопрос, в котором больше всего путаются пользователи интернета - это килобиты и килобайты. Для пользователя все равно 128 килобит или килобайт, ему Opera на закачке показала 128кб, а в контракте написано 1024 кбит - обманули. Но разьве это не одно и тоже? А какая разница? Давайте все по порядку.

    Компьютер воспринимает любую информацию в виде нулей и единиц. Будь это картинка, текст музыка или видео. Почему нулей и единиц? Потому что компьютеру так проще, он понимает только есть напряжение или нет напряжения. Допустим, вы с другом договорились свет горит в зале - есть родаки дома (единица), свет не горит - значит никого нет дома (ноль). Вы можете с помощью одного выключателя передать только два числа - ноль или один. А если нужно передать количество требуемых бутылок пива? Если выключателей несколько, то можно передать числа гораздо больше чем ноль и один даже несмотря на то что выключатель может только показать ВКЛ или ВЫКЛ, только надо обусловиться, как переводить из одной системы в другую. Рисуем такую таблицу для двух выключателей в двух разных комнатах:
    00 - 0
    01 - 1
    10 - 2
    11 - 3
    Получается двумя выключателями можно передать число от 0 до 3 (то есть четыре числа). А если выключателей три?
    000 - 0
    001 - 1
    010 - 2
    011 - 3
    100 - 4
    101 - 5
    110 - 6
    111 - 7
    Если выключателей три, то можно передать числа от нуля до 7, то есть восемь чисел.

    Для того чтоб узнать сколько чисел можно передать с помощью имеющегося количества выключателей, надо двойку (количество позиций выключателя) возвести в степень количества выключателей. Для трех выключателей это 2 в третей степени - 8 чисел.

    Итак, если выключателей 8 штук, то 8 в восьмой степени = 256. В компьютерной терминологии один выключатель имеет объем информации 1 бит. А восемь объединенных в группу выключателей 1 байт. Итак, 1 байт - это число от 0 до 255.

    С помощью числа от 0 до 255 можно уже договориться передавать буквы. Например,
    1 = A
    2 = B
    и т.д.
    Примерно так хранятся буквы в вашем компьютере. Так же само можно обсуловиться что каждое число будет обозначать градации какого то цвета в изобращении и тогда с помощью выключателей можно передавать изображения. Если же число будет обуславливать напряжение на динамике в определенный момент времени, то поток таких чисел задаст мелодию.

    Понятное дело, что выключатели емкостью информации в 1 бит прийдется заменить на что то поменьше. Такие выключатели в компьютере называются транзисторы и в одну микросхему их влазят миллионы и даже миллиарды.

    Для передачи информации по сети в сетевом кабеле на долю секунды выставляется состояние ВКЛ или ВЫКЛ. ВКЛ - есть напряжение, ВЫКЛ - нет напряжения. За такую долю секунды передается 1 бит. Чем быстрее передающий компьютер сможет выставлять состояние напряжения в кабеле, а принимающий распознать это состояние, тем больше информации можно передать за одну секунду по сети. Так, если переключать состояние напряжения сто миллионов раз в секунду, то мы получим сеть в сто мегабит. Вместо напряжения можно использовать любой эффект, который может нести информацию. Например, свет - горит или не горит как в случае с окнами. С помощью света информация передается по оптоволокну. В оптоволоконных кабелях скорость передачи информации составляет гигабит, десятки гигабит и даже сотни гигабит - это миллиард переключений в секунду.

    Итак, в сети биты, килобиты, мегабиты используются потому что передаваемая информация приводится к элементарному ВКЛ или ВЫКЛ, что и является ячейкой в один бит.

    Но, мы привыкли мерять объем текста, фото или видео с помощью байтов, килобайтов или мегабайтов. Зная, что 1 байт = 8 бит несложно преобразовать одну единицу измерения в другую. Именно поэтому Opera на закачке меряет в байтах, а сетевое оборудование меряют в битах.

    Всегда с чем то интересным Новак Сергей на блоге

    В это статье я расскажу вам как создать простую локальную сеть из двух компьютеров соединенных с помощью свитча\роутера.

    Как создать локальную сеть

      Первое что нам понадобиться - узнать IP адрес роутера (если он имеется). Узнать его можно посмотрев документацию или на «животе» роутера, обычно это 192.168.1.1 .
    1. Нам необходимо всем компьютерам дать оригинальные имена и включить их в одну рабочую группу. Для этого на каждом компьютере, кликаем правой кнопкой по «мой компьютер», открываем «свойства» и вкладку «Имя компьютера», нажимаем кнопку «изменить».
    2. В открывшемся окне вводим оригинальное имя компьютера (без пробелов, латинскими буквами), в качестве рабочей группы будем использовать название «HOME». Нажимаем «ок» и перезагружаем компьютер.Если в сети используется роутер, то советую сперва выполнить пункты 7 и 8, только в случае если вы не увидите общую папку использовать пункты 3,4,5,6.
    3. Теперь открываем сетевые подключения:
      Для Windows XP: Меню «Пуск» — Панель управления - Сеть и подключения к Интернету - Сетевые подключения.
      Для Windows 7: Меню «Пуск» — Панель управления — Просмотр состояния сети и задач — Изменение параметров адаптера.
    4. В сетевых подключениях вы увидите «Подключение по локальной сети», кликаем по нему правой кнопкой и открываем свойства. Во вкладке «Общее» (Windows XP) или «Сеть» (Windows 7), выделяем «Протокол Интернета (TCP\IP)» (Windows XP) или «Протокол интернета версии 4 (TCP\IPv4)» (Windows 7) и жмем кнопочку «свойства»
    5. Важно, если у вас уже прописаны адреса вам необходимо переписать их на бумагу, в случае появления ошибок и придется восстановить. В открывшемся окне переключаем радиоточки в положение «Использовать следующий IP адрес:» и «Использовать следующие адреса DNS-серверов:»
    6. Теперь вводим наши данные:
      Если в сети используется роутер, то во всех данных меняются первые 3 группы IP-адреса. В нашем примере используется роутер с IP-адресом 192.168.1.1, и в связи с этим для поле IP-адрес меняется только число в последней группе, первые 3 группы чисел остаются 192.168.1.2 .
      IP-адрес: 192.168.1.2 (Последнее число «2» меняется на каждом компьютере, то есть растет 3 4 5 6 и так далее).
      Маска подсети: 255.255.255.0 (Одинакова на всех компьютерах).
      Основной шлюз: 192.168.1.1 (IP адрес роутера)
      Предпочитаемый DNS-сервер: 192.168.1.1 (IP адрес роутера)
      Альтернативный DNS-сервер: 8.8.8.8
      Нажимаем «ОК» и закрываем свойства подключения по локальной сети.
    7. Теперь необходимо создать общую папку на обоих компьютерах (или открыть доступ к существующей папке), для этого кликаем правой кнопкой по нужной папке и открываем свойства, открываем вкладку «Доступ». Если вы проделываете это впервые - кликаем по надписи «Если вы понимаете потенциальную опасность, но все равно хотите включить общий доступ без помощи мастера, щелкните здесь».
      Во всплывающем окне выбираем «Просто включить общий доступ к файлам»
      Теперь во вкладке «Доступ» ставим галочки «Открыть общий доступ к этой папке» и «Разрешить изменение файлов по сети». Нажимаем «ок».
    8. Перезагружаем компьютер, открываем сетевые подключения и если все прошло правильно - видим общую папку другого компьютера.

    Добрый день, друзья! В прошлой статье, мы узнали, . Теперь, давайте разберем, как устроен интернет? У большинства людей по данному вопросу ошибочное мнение. Многие люди считают, что интернет – это просто цепь подключенных между собой компьютеров.

    Это и правда, и нет. Интернет не просто сеть подключенных друг к другу компьютеров посредством различных кабельных сетей и телефонных линий. Это ещё и сервера, передающие информацию, и суперкомпьютеры, обрабатывающие, передающие и хранящие данную информацию и прочее.

    Интернет, это набор сетей, которые функционируют, как одна. Это последовательность подобных сетей, которые появились в Америки, чтобы мегакомпьютеры различных университетов и исследовательских центров взаимодействовали между собой. Это опорная сеть, которую финансирует национальный научный фонд Америки.

    Со времени первых линий, пользоваться которыми могло небольшое число людей, глобальная сеть переросла в сеть, которая, как паутина опутала весь мир. Теперь доступ к ней появился практически у каждого желающего подключиться человека.

    Чтобы легче проходить по линиям сети, данные разбиваются специальным протоколом TCP/IP на пакеты нужного объёма. Когда данные пакеты идут к нужному месту, они идут по множеству различных сетей и уровней.

    От одной точки до другой, подобные пакеты могут дойти разными путями. Чаще всего, выбирается ближайший. Но если отдельный сервер переполнен информацией или не функционирует, пакет может его обойти и прибыть в нужное место иным путём.

    Такой пакет информации может проходить региональные сити, локальные, различные маршрутизаторы, хабы, повторители, шлюзы и мосты. Региональные сети отличаются от локальных тем, что имеют возможность передавать данные, без входа в интернет.

    Повторитель занимается предотвращением потухания сигнала, повышая его и передавая далее данные, которые получил. Хабы занимаются соединением ПК в сеть, давая им возможность обмениваться информацией между собой.

    Мосты занимаются соединением сетей, помогая им осуществлять передачу информации. Особый вид подобного моста, шлюз, занимается преобразованием сообщений среди сетей различных типов (к примеру, среди сетей Apple и Windows).

    Кто поставляет услуги интернета

    Предоставляют интернет людям компании поставщики, вроде Internet Service Provide. Таким компаниям принадлежат блоки адресов Internet. Они их предоставляют клиентам. Человек подсоединяет свой ПК к подобному поставщику, его тут же соединяет с сервером.

    Сервер соединён с интернетом, благодаря устройствам, называющимися Маршрутизаторами. Маршрутизатор – это прибор, получающий информацию от узлов сети и определяющий её адрес назначения в сети и наиболее выгодный путь по доставке данных к нужному адресу.

    Подобный маршрут происходит с помощью известных путей в Internet и объема трафика на различных частях сегмента. Затем, маршрутизатор отдаёт информацию в нужную точку сети – Network Access Point. Сервисы включают в себя:

    1. Электронную почту посредством серверов SMTP и POP
    2. Услугу идентификации компьютера благодаря IP адресу.
    3. Путь с применением серверов DNS.
    4. Услугу новостной службы благодаря сервирам Usenet.

    Как устроен интернет и его IP адрес

    Я думаю, многие из вас знают, что такое IP адрес и для чего он нужен. Даже знают собственный IP. Но я всё же сделаю пояснения. Провайдеры дают своим клиентам IP адрес для соединения компьютеров с интернетом. Их ещё называют адреса протокола IP.

    IP адрес проводит идентификацию ПК человека в интернете, давая ему возможность получать различные данные из глобальной сети. Я думаю, многие из вас знают, что большая часть пользователей используют протокол IPv4. Но всё больше людей переходят на протокол IPv6.

    Как устроен интернет с адресом IPv4

    В конце 20 века преобладал протокол IPv4. Данная версия IP даёт адрес вида – XXX.YYY.ZZZ.AAA. Группы символов представляют трехзначную цифру в десятичном формате. Число может быть 8 – битное и формат двоичный.

    Он носит название – Десятичное представление с разделительными точками. Группа же называется – октет. Десятичные цифры образуются из двоичных. С двоичными работает система компьютера. К примеру, адрес 106.122.115.102 в десятичном будет выглядеть как 01101010. 01111010. 01110011. 01100110.

    Не пытайтесь разобрать в этом суть и смысл. Есть специальные таблицы кодов. Кому интересно, как выглядит его IP в десятичном виде, он может это узнать по ссылке.

    IP адрес включает в себя адрес узла и сети. Соответственно, адрес сети проводит идентификацию всей сети, а адрес узла – отдельного узла в данной сети: сервер, рабочую станцию или маршрутизатор. Локальную сеть делят на 3 класса: A,B,C. Сетевая часть IP определяет принадлежность сети к её классу.

    Как устроен интернет три класса сетей


    Класс А занят крупными сетями. Сетевая часть применяет 8 битов, узловая 24 бита IP. У старшего бита первый октет = 0. Далее, идёт комбинация из любых других семи битов. Отсюда, IP А класса имеет диапазон: 001.х.х.х-126.х.х.х. Это даёт возможность появлению 126 сетей или 17000000 узлов.

    Класс В даётся среднего размера сетям. Суть начальных октетов находится в пределах 128.х.х.х – 191.254.0.0. что даёт возможность появления 16384 сетей. Любой из подобных сетей может принадлежать 65534 узлов.

    Класс С нужен для сетей, число узлов которых довольно мало. Сетевой элемент состоит из первых трех октетов. Адрес же сети – октетом последним. Суть первых 3-х октетов находится в диапазоне 192.х.х.х – 223.254.254.0. Отсюда, к классу С относится около 2000000 сетей. Каждой из данных сетей может принадлежать 254 узлов.

    Как устроен интернет с адресом IPv6

    Я думаю, вам понятно, что протокол IPv6 создан из-за банальной нехватки IP адресов, т.к. число пользователей интернета значительно возросло. Данный адрес равен 128 битам и 16 байтам. Это значительно увеличивает число IP.

    IPv6, кроме прочего, проверяет подлинность пакета отправителя, и шифрование подобного пакета. Данный протокол поддерживают ОС от Windows 7 до Windows 10 и часть дистрибутивов Linux. IPv6 в последнее время применяют всё больше. Также, мобильные телефоны поддерживают данный протокол, автомобильные компьютеры и прочие устройства.

    IPv6 состоит из 8 групп четырехзначных шестнадцатеричных цифр, которые разделены двоеточием: 1045: 0аке: 4df3: 56uy: 0045: ert1: g56j: 0001. Что интересно, группы, где одни нули, могут писаться просто двоеточием, но не более двух двоеточий.

    Иногда нули даже отпускаются. URL адрес такого вида обязательно заключается в квадратные скобочки: — http://.

    Как устроен интернет подсети

    Узлы сети группируются в подсети, их назвали интрасетями. Каждая часть интрасети должна иметь защитный шлюз, выполняющий роль точек для входа и выхода сегмента. Функцию шлюза выполняет прибор, называющийся – маршрутизатором.

    Маршрутизатор представляет интеллектуальный прибор, пересылающий информацию получателю. Часть сетей в виде шлюза использует защитный сетевой экран, firewall (брандмауэр).

    Firewall это комбинация различных компонентов, программных и аппаратных, которые создают барьер для защиты вашего ПК. Брандмауэр можно сравнить с дверью в интернет. Она может быть открытой для части программ, приоткрытой и закрытой. Именно firewall, а не антивирус не даёт попасть вирусу на компьютер. Поэтому, firewall должен быть установлен на каждом ПК. Антивирус же просто лечит уже зараженную систему. Наилучший вариант – это антивирус со встроенным файрволлом.

    Можно провести настройку файрволла так, чтобы он пропускал информацию лишь на необходимые порты и адреса. Чтобы создать подсеть, маскируют сетевую часть IP адреса узла. Отсюда, мобильность информации ограничивают узлами подсети, т.к. данные узлы распознают адреса в определенном замаскированном диапазоне.

    Причины создания подсети

    1. Эффективное использование IP адресов. Когда используют 32 битный адрес, получается ограниченное число адресов. На первый взгляд, 126 сетей и 17000000 узлов кажется приличным количеством, но, в глобальном масштабе это не много.
    2. Изоляция различных сегментов сети. К примеру, у сети имеется 1000 ПК. Если не применять сегментацию, информация пройдёт через все 1000 ПК. Можете представить, какую нагрузку в это время испытывает канал связи. Также, все пользователи сети получат доступ и информации всех её участников.
    3. Для повторного использования одного IP. К примеру, если разделить адреса класса С в двух местах подсети, можно дать каждой подсети одну вторую часть адресов сети. Отсюда, две подсети смогут применять один IP класса С.

    Для создания подсети, необходима блокировка цифрами части или всех битов данного IP. К примеру, маска, имеющее значение 254 будет блокировать все адреса октета, кроме одного. Значение 255, заблокирует весь октет.

    Чтобы создать подсеть класса А, подойдёт маска 255.0.0.0. Класса В – 255.255.0.0. Класса С 255.255.255.0. Чтобы узнать свой IP адрес, достаточно в поисковик ввести «Узнать IP адрес» и вы в течение секунды узнаете свой IP.

    Что такое хостинги

    Я забыл упомянуть про хостинги, где располагаются сайты, с которых мы получаем большинство информации. Хостинги — это тоже суперкомпьютеры, в которых, как в ячейках, находятся сайты. Хостинги также дают и получают информацию, точнее, это делают сайты и блоги, которые в них находятся. Даже Яндекс с Google находятся в суперкомпьютерах и имеют множество своих серверов по всему миру.

    Рекордсмен в этом деле поисковая система Google. У неё по всему миру тысячи своих серверов и все они соединены между собой с помощью оптиковолоконных или просто телефонных линий. Это действительно похоже на гигантскую сеть (или паутину), которая опутала весь мир. Недаром, интернет называют Глобальной сетью! И удивительно, как быстро данная Глобальная сеть распространяется по всему миру!

    Я надеюсь, теперь вам понятно, как устроен интернет. Успехов!