Какая информация содержится в таблице arp. ARP: протокол определения адреса. Вот полная справка команды arp

Ранее говорилось, что порт или интерфейс, с помощью которого маршрутизатор подключен к сети, рассматривается как часть этой сети. Следовательно, интерфейс маршрутизатора, подключенный к сети, имеет тот же IP-адрес, что и сеть (рис. 6.12). Поскольку маршрутизаторы, как и любые другие устройства, принимают и отправляют данные по сети, они также строят ARP-таблицы, в которых содержатся отображения IP-адресов на МАС-адреса.

Рисунок 6.11. RARP-сервер откликается на IP запрос от рабочей станции с МАС-адресом 08-00-20-67-92-89


Рисунок 6.12. IP-адреса приводятся в соответствие с МАС-адресами с помощью ARP-таблиц.

Маршрутизатор может быть подключен к нескольким сетям или подсетям. Вообще, сетевые устройства имеют наборы только тех МАС- и IP-адресов, которые регулярно повторяются. Короче говоря, это означает, что типичное устройство содержит информацию об устройствах своей собственной сети. При этом об устройствах за пределами собственной локальной сети известно очень мало. В то же время маршрутизатор строит таблицы, описывающие все сети, подключенные к нему. В результате ARP-таблицы маршрутизаторов могут содержать МАС- и IP-адреса устройств более чем одной сети (6.13). Кроме карт соответствия IP-адресов МАС адресам в таблицах маршрутизаторов содержатся отображение портов (рис. 6.14)

Что происходит если пакет данных достигает маршрутизатора, который не подключен к сети назначения пакета? Кроме МАС и IP-адресов устройств тех сетей, к которым подключен данный маршрутизатор, он еще содержит МАС- и IP-адреса других маршрутизаторов. Маршрутизатор использует эти адреса для направления данных конечному получателю (рис.6.15). При получении пакета, адрес назначения которого отсутствует в таблице маршрутизации, маршрутизатор направляет этот пакет по адресам других маршрутизаторов, которые, возможно, содержат в своих таблицах маршрутизации информацию о хост-машине пункта назначения.



Рисунок 6.14. Порты также заносятся в таблицу маршрутизации

Шлюз по умолчанию

Если источник расположен в сети с номером, который отличается от номера сети назначения, и источник не знает МАС-адрес получателя, то для того, чтобы доставить данные получателю, источник должен воспользоваться услугами маршрутизатора. Если маршрутизатор используется подобным образом, то его называют шлюзом по умолчанию (default gateway). Чтобы воспользоваться услугами шлюза по умолчанию, источник инкапсулирует данные, помещая в них в качестве МАС-адреса назначения МАС-адрес маршрутизатора. Так как источник хочет доставить данные устройству, а не маршрутизатору, то в заголовке в качестве IP-адреса назначения используется IP-адрес устройства, а не маршрутизатора (рис. 6.16). Когда маршрутизатор получает данные, он убирает информацию канального уровня, использованную при инкапсуляции. Затем данные передаются на сетевой уровень, где анализируется IP-адрес назначения. После этого маршрутизатор сравнивает IP-адрес назначения с информацией, которая содержится в таблице маршрутизации. Если маршрутизатор обнаруживает отображение IP-адреса пункта назначения на соответствующий МАС-адрес и приходит к выводу, что сеть назначения подключена к одному из его портов, он инкапсулирует данные, помещая в них информацию о новом МАС-адресе, и передает их по назначению.



Рисунок 6.15. Данные переправляются маршрутизатором к пункту их назначения


Рисунок 6.16. Для доставки данных используются IP-адрес пункта назначения

Резюме

  • Все устройства в локальной сети должны следить за ARP-запросами, но только те устройства, чей IP-адрес совпадает с IP-адресом, содержащимся в запросе, должны откликнуться путем сообщения своего MAC-адреса устройству, создавшему запрос.
  • Если IP-адрес устройства совпадает с IP-адресом, содержащимся в ARP-запросе, устройство откликается, посылая источнику свой МАС-адрес. Эта процедура называется ARP-ответом.
  • Если источник не может обнаружить МАС-адрес пункта назначения в своей ARP-таблице, он создает ARP-запрос и отправляет его в широковещательном режиме всем устройствам в сети.
  • Если устройство не знает собственного IP-адреса, оно использует протокол RARP.
  • Когда устройство, создавшее RARP-запрос, получает ответ, оно копирует свой IP-адрес в кэш-память, где этот адрес будет храниться на протяжении всего сеанса работы.
  • Маршрутизаторы, как и любые другие устройства, принимают и отправляют данные по сети, поэтому они также строят ARP-таблицы, в которых содержатся отображения IP-адресов на МАС-адреса.
  • Если источник расположен в сети с номером, который отличается от номера сети назначения, и источник не знает МАС-адрес получателя, то для того, чтобы доставить данные получателю, источник должен использовать маршрутизатор в качестве шлюза по умолчанию.

Глава 7 Топологии

В этой главе:

  • Определение понятия топология
  • Шинная топология, ее преимущества и недостатки
  • Топология "звезда", ее преимуществ и недостатки
  • Внешние терминаторы
  • Активные и пассивные концентраторы
  • Характеристики топологии "расширенная звезда", определение
  • длины кабеля для топологии "звезда" и способы увеличения размеров области охватываемой сетью с топологией "звезда”
  • Аттенюация

Введение

В главе 6, "ARP и RARP”, было рассказано, каким образом устройства в локальных сетях используют протокол преобразования адреса ARP перед отправкой данных получателю. Было также выяснено, что происходит, если устройство в одной сети не знает адреса управления доступом к среде передачи данных (МАС-цреса) устройства в другой сети. В этой главе рассказывается о топологиях, используемых при создании сетей.

Топология

В локальной вычислительной сети (ЛВС) все рабочие станции должны быть соединены между собой Если в ЛВС входит файл-сервер, он также должен быть подключен к рабочим станциям. Физическая схема, которая описывает структуру локальной сети, называется топологией В этой главе описываются три типа топологий шинная, “звезда" и "расширенная звезда" (рис 71 , 72)


Рисунок 7.1. Шинная топология типична для ЛВС Ethernet, включая 10Base2 и 10BaseS


Рисунок 7.2. Топология «звезда» типична для сетей Ethernet и Token Ring, которые используют в качестве центра сети концентратор, коммутатор или повторитель

Шинная топология

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема (рис. 7.3). Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.


Всем привет! Сегодня я расскажу, как посмотреть arp таблицу в Windows. Что такое arp - это протокол распознавания адреса, предназначен для преобразования IP-адресов в MAC-адреса, часто называемые также физическими адресами. Ранее я уже рассказывал, как выглядит arp таблица cisco . Думаю, что многим коллегам, кто только начинает знакомиться с сетевой инфраструктурой данной операционной системы, данная информация окажет хорошее подспорье, для формирования фундамента. Тут главное понимать принцип работы и назначения, все остальное уже нюансы различных вендоров.

Важной особенностью интерфейса Ethernet является то, что каждая интерфейсная карта имеет свой уникальный адрес. Каждому производителю карт выделен свой пул адресов в рамках которого он может выпускать карты. Согласно протоколу Ethernet, каждый интерфейс имеет 6-ти байтовый адрес. Адрес записывается в виде шести групп шестнадцатеричных цифр по две в каждой (шестнадцатеричная записи байта). Первые три байта называются префиксом, и именно они закреплены за производителем. Каждый префикс определяет 224 различных комбинаций, что равно почти 17-ти млн. адресам.

В сетях нет однозначного соответствия между физическим адресом сетевого интерфейса (MAC адресом сетевой карты) и его IP-адресом. Поиск по IP-адресу соответствующего Ethernet-адреса производится протоколом ARP, функционирующим на уровне доступа к среде передачи. Протокол поддерживает в оперативной памяти динамическую arp-таблицу в целях кэширования полученной информации. Открываем в Windows командную строку .

Как посмотреть arp таблицу

Вводим команду

Где вы слева видите ip адрес, а правее видите Физический адрес (mac адрес). Это и есть arp таблица windows.

По умолчанию данный кэш живет 300 секунд

очистка arp таблицы

Делается с помощью команды

И видим,произошла очистка arp таблицы

Как добавить свою запись в arp таблицу

Делается это с помощью команды

arp -s 157.55.85.212 00-aa-00-62-c6-09

Увеличиваем время жизни arp записи Windows 7 по 10

Давайте рассмотрим на примере Windows 8.1 как можно увеличить время жизни arp записей, для чего это может быть нужно, ну, чтобы разгрузить сеть лишним трафиком, если у вас в сети мало, что меняется. Делается это все через реестр Windows

Нажимаем Win+R и вводим regedit и переходим в ветку

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Тут вам для изменения периода хранения данных в кэше ARP, нужно создать Параметр DWORD, если у вас разрядность системы 32, то создаем 32, если 64, то такой же.

Задаем имя ArpCacheLife и ставим значение в секундах, после чего нужно перезагрузиться и у вас поменяется время жизни arp записи.

Вот полная справка команды arp

Отображение и изменение таблиц преобразования IP-адресов в физические,
используемые протоколом разрешения адресов (ARP).

ARP -s inet_addr eth_addr
ARP -d inet_addr
ARP -a [-N if_addr] [-v]

  • -a Отображает текущие ARP-записи, опрашивая текущие данные протокола. Если задан inet_addr, то будут отображены IP и физический адреса только для заданного компьютера. Если ARP используют более одного сетевого интерфейса, то будут отображаться записи для каждой таблицы.
  • -g То же, что и параметр -a.
  • -v Отображает текущие ARP-записи в режиме подробного протоколирования. Все недопустимые записи и записи в интерфейсе обратной связи будут отображаться.
    inet_addr Определяет IP-адрес.
  • -N if_addr Отображает ARP-записи для заданного в if_addr сетевого интерфейса.
  • -d Удаляет узел, задаваемый inet_addr. Параметр inet_addr может содержать знак шаблона * для удаления всех узлов.
  • -s Добавляет узел и связывает адрес в Интернете inet_addr с физическим адресом eth_addr. Физический адрес задается 6 байтами (в шестнадцатеричном виде), разделенных дефисом. Эта связь является постоянной eth_addr Определяет физический адрес.
  • if_addr - Если параметр задан, он определяет адрес интерфейса в Интернете, чья таблица преобразования адресов должна измениться. Если параметр не задан, будет использован первый доступный интерфейс.

RARP

Reverse ARP, обратный ARP протокол служит для того, чтобы по имеющемуся MAC адресу узнать IP адрес. Этот протокол используется в бездисковых машинах (https://ru.wikipedia.org/wiki/Бездисковая_рабочая_станция), загружающихся по сети. Первым делом такая машина должна узнать свой IP адрес, и параметры сети, чтобы она могла обратиться по сети, допустим к TFTP серверу, с которого она будет скачивать загрузочную запись. Единственное, что знает о себе эта машина - её MAC адрес.

Протокол ARP предназначен для определения адресов канального уровня (MAC-адресов) по известным IP-адресам. Это очень важный протокол, его работа напрямую влияет на работоспособность сети в целом.

Назначение протокола ARP

Для взаимодействия устройств друг с другом необходимо, чтобы у передающего устройства был IP- и MAC-адреса получателя. Когда одно из устройств пытается установить связь с другим, с известным , ему необходимо определить MAC-адрес получателя. имеет в своем составе специальный протокол, называемый ARP (Address Resolution Protocol - протокол преобразования адресов), который позволяет автоматически получить MAC-адрес. На рис. ниже проиллюстрирован процесс, позволяющий определить MAC-адрес, связанный с известным IP-адресом.

Некоторые устройства хранят специальные ARP-таблицы, в которых содержится информация о MAC- и IP-адресах других устройств, подключенных к той же локальной сети. ARP-таблицы позволяют установить однозначное соответствие между IP- и MAC-адресами. Такие таблицы хранятся в определенных областях оперативной памяти и обслуживаются автоматически на каждом из сетевых устройств (см. таблицы ниже). В редких случаях приходится создавать ARP-таблицы вручную. Обратите внимание, что каждый компьютер в сети поддерживает свою собственную ARP-таблицу.

Куда бы не передавались сетевым устройством данные, для их пересылки всегда используется информация, хранящаяся в ARPтаблице (рис. ниже: одно из устройств хочет передать данные другому устройству).

Функционирование протокола ARP в подсетях

Для передачи данных от одного узла другому отправитель должен знать IP- и MAC-адрес получателя. Если он не может получить искомый физический адрес из собственной ARP-таблицы, инициируется процесс, называемый ARPзапросом, ко торый проиллюстрирован на рис. выше.

ARP-запрос позволяет узлу определить MAC-адрес получателя. Узел создает фрейм ARP-запроса и рассылает его всем сетевым устройствам. Фрейм ARP-запроса состоит из двух частей:

  • заголовка фрейма;
  • сообщения ARP-запроса.

Для того чтобы все устройства могли получить ARP-запрос, используется широковещательный MAC-адрес. В схеме MAC-адресации широковещательный адрес содержит во всех битах шестнадцатеричное число F и имеет, таким образом, вид FF-FF-FF-FF-FF-FF (Такая запись MAC-адреса называется канонической, в ней части адреса разделены дефисом (-); существует также альтернативная запись, в которой части адреса разделены двоеточием (:).). Поскольку пакеты ARP-запроса передаются в широковещательном режиме, все сетевые устройства, подключенные к локальной сети, могут получить такие пакеты и передать их протоколам более высоких уровней для последующей обработки. Если IP-адрес устройства совпадает с IP-адресом получателя в широковещательном ARP-запросе, это устройство отвечает отправителю, сообщая свой MAC-адрес. Такое сообщение называется ARP-ответом.

После получения ARP-ответа устройство-отправитель широковещательного ARP-запроса извлекает MAC-адрес из поля аппаратного адреса отправителя и обновляет свою ARP-таблицу. Теперь это устройство может надлежащим образом адресовать пакеты, используя как MAC-, так и IP-адрес. Полученная информация используется для инкапсуляции данных на втором и третьем уровнях перед их отправкой по сети. Когда данные достигают пункта назначения, на канальном уровне проводится проверка на соответствие адреса, отбрасывается канальный заголовок, который содержит MAC-адреса, и данные передаются на сетевой уровень. На сетевом уровне проверяется соответствие собственного IP-адреса и IP-адреса получателя, содержащегося в заголовке третьего уровня. На сетевом уровне отбрасывается IP-заголовок, и инкапсулированные данные передаются на следующий уровень - транспортный (уровень 4). Подобный процесс повторяется до тех пор, пока оставшиеся, частично распакованные, данные не достигнут приложения (уровень 7), в котором будет прочитана пользовательская часть данных.

ARP кэш

На каждом хосте содержится ARP кэш (ARP cache). Записи в эше могут быть двух видов: статические и динамические. В современных сетевых ОС (Windows, Linux, BSD) можно просмотреть эти записи в консоли с помощью команды:

Очистка ARP кэша

Иногда в Windows ARP кэш оказывается поврежденным (действие вирусов, например) и его нужно очистить. «Симптомы» этой проблемы могут быть распознаны в не возможности отображения веб-страниц (time out) и ping`а других компьютеров.

Чтобы очистить ARP кэш в Windows нужно в командной строке набрать:

C:>netsh interface ip delete arpcache Ok.

Если не удалось очистить ARP кэш и появилось сообщение об ошибке вроде этого «Невозможно завершить исправление ошибки, так как не удается выполнить следующие действия: Выполнить очистку ARP-кэша». То нужно отключить службу «Маршрутизация и удаленный доступ» и попробовать снова. Процесс удаления ARP-кэша должен быть выполниться без ошибок.

Еще одна команда для очистки ARP-кэша:

ARP-spoofing

ARP-spoofing (ARP-poisoning) - это вид сетевой атаки в Ethernet-сетях в котором используются особенности работы протокола ARP. Суть механизма данной атаки заключается в следующем: перехватив широковещательный ARP-запрос в домене широковещательных рассылок, отправителю высылается ложный ARP-ответ, в котором атакующая сторона выдает себя за получателя (например, за маршрутизатор), а затем начинает контролировать весь трафик предназначенный для настоящего объекта в сети.

Противодействовать атакам такого рода можно отслеживая работу ARP (с помощью arpwatch) или шифруя передаваемый трафик на сетевом уровне (IPSec) и другими способами.

ARP и IPv6

В IPv6 больше не используется ARP. На его замену пришел NDP (The Neighbor Discovery Protocol ). Этот протокол описан в

Любое устройство, подключенное к локальной сети (Ethernet, FDDI и т.д.), имеет уникальный физический сетевой адрес, заданный аппаратным образом. 6-байтовый Ethernet-адрес выбирает изготовитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Если у машины меняется сетевой адаптер, то меняется и ее Ethernet-адрес.

4-байтовый IP-адрес задает менеджер сети с учетом положения машины в сети Интернет. Если машина перемещается в другую часть сети Интернет, то ее IP-адрес должен быть изменен. Преобразование IP-адресов в сетевые выполняется с помощью arp-таблицы. Каждая машина сети имеет отдельную ARP-таблицу для каждого своего сетевого адаптера. Не трудно видеть, что существует проблема отображения физического адреса (6 байт для Ethernet) в пространство сетевых IP-адресов (4 байта) и наоборот.

Протокол ARP (address resolution protocol, RFC-826) решает именно эту проблему - преобразует ARP- в Ethernet-адреса.

ARP-таблица для преобразования адресов

Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети. В двух столбцах содержатся IP- и Ethernet-адреса. Если требуется преобразовать IP-адрес в Ethernet-адрес, то ищется запись с соответствующим IP-адресом. Ниже приведен пример упрощенной ARP-таблицы.

IP-адрес Ethernet-адрес
223.1.2.1 223.1.2.3 223.1.2.4 08:00:39:00:2F:C3 08:00:5A:21:A7:22 08:00:10:99:AC:54

Табл.1. Пример ARP-таблицы

Принято все байты 4-байтного IP-адреса записывать десятичными числами, разделенными точками. При записи 6-байтного Ethernet-адреса каждый байт указывается в 16-ричной системе и отделяется двоеточием.

ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой. IP-адрес выбирает менеджер сети с учетом положения машины в сети internet. Если машину перемещают в другую часть сети internet, то ее IP-адрес должен быть изменен. Ethernet-адрес выбирает производитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется плата сетевого адаптера, то меняется и ее Ethernet-адрес.

Протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol) является обязательным стандартом TCP/IP, описанным в документе RFC 792, «Internet Control MessageProtocol (ICMP)». Используя ICMP, узлы и маршрутизаторы, связывающиеся по протоколу IP, могут сообщать об ошибках и обмениваться ограниченной управляющей информацией и сведениями о состоянии.



ICMP-сообщения обычно автоматически отправляются в следующих случаях.

Протокол обмена управляющими сообщениями ICMP (Internet Control Message Protocol) позволяет маршрутизатору сообщить конечному узлу об ошибках, с которыми машрутизаторстолкнулся при передаче какого-либо IP-пакета от данного конечного узла.

Управляющие сообщения ICMP не могут направляться промежуточному маршрутизатору, который участвовал в передаче пакета, с которым возникли проблемы, так как для такой посылки нет адресной информации - пакет несет в себе только адрес источника и адрес назначения, не фиксируя адреса промежуточных маршрутизаторов.

Протокол ICMP - это протокол сообщения об ошибках, а не протокол коррекции ошибок. Конечный узел может предпринять некоторые действия для того, чтобы ошибка больше не возникала, но эти действия протоколом ICMP не регламентируются.

Каждое сообщение протокола ICMP передается по сети внутри пакета IP. Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.

Формат ICMP-пакета

ICMP-сообщения инкапсулируются и передаются в IP-датаграммах, как показано на следующем рисунке.

Существует несколько типов сообщений ICMP. Каждый тип сообщения имеет свой формат, при этом все они начинаются с общих трех полей: 8-битного целого числа, обозначающего тип сообщения (TYPE), 8-битного поля кода (CODE), который конкретизирует назначение сообщения, и 16-битного поля контрольной суммы (CHECKSUM). Кроме того, сообщение ICMP всегда содержит заголовок и первые 64 бита данных пакета IP, который вызвал ошибку. Это делается для того, чтобы узел-отправитель смог более точно проанализировать причину ошибки, так как все протоколы прикладного уровня стека TCP/IP содержат наиболее важную информацию для анализа в первых 64 битах своих сообщений.



Прежде всего, TCP и UDP - протоколы. А основное их отличие в том TCP - протокол с гарантированной доставкой пакетов, UDP - нет.

TCP - «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.
UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.
И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Rip ospf

В первое время RIP распространялся вместе с операционной системой BSD и не рассматривался в качестве стандарта для Интернет. Однако впоследствии, подобно множеству других служб BSD, он стал критически важным элементом IP-сетей. В настоящее время в документах IETF закреплено две версии RIP: версия 1 (исходная) - в RFC 1058 и версия 2 - в RFC 1722 (Internet Standard 56). Обе они похожи, но между ними имеются некоторые важные различия.

Протокол RIP основан на алгоритме “длины векторов” (distance-vector), который связывает длину маршрута (число переходов - hops) с его вектором (сетью или хостом назначения). Информацию о маршрутах к тем или иным сетям/хостам устройства RIP получают от соседних маршрутизаторов и затем выбирают маршрут с наименьшим числом переходов. Как только маршрут к месту назначения выбран, он сохраняется в локальной базе данных, а информация обо всех остальных маршрутах к тому же месту назначения стирается. Периодически каждый маршрутизатор сообщает остальным об обнаруженных им маршрутах.

Количество переходов в RIP равно числу маршрутизаторов между отправителем и сетью/хостом назначения. Если маршрутизатор подключен к требуемой сети напрямую, то расстояние до нее - ноль переходов. Если для доступа к нужной сети требуется лишь переслать дейтаграммы через соседний маршрутизатор, то расстояние до нее равно одному переходу. Когда маршрутизатор рассылает информацию о найденном маршруте, он увеличивает число переходов на единицу. Как только эти данные поступают на соседние маршрутизаторы, они сравниваются с информацией их собственных баз данных. Если какой-нибудь из предложенных маршрутов оказывается короче, нежели хранящийся в базе данных, он заносится в локальную таблицу маршрутизации, а маршрутизатор, с которого пришло сообщение, становится первым узлом для пересылки трафика по этому маршруту.

Протокол OSPF появился как ориентированный на IP-сети вариант протокола IS-IS. Он определен в нескольких документах IETF: в RFC 1131 описан OSPF 1 (устаревшая версия), в RFC 1583, - вероятно, самая распространенная версия OSPF 2, и, наконец, в RFC 2328 определен последний вариант OSPF 2 (Internet Standard 54).

При использовании OSPF на каждом маршрутизаторе содержится независимая база данных по административной области маршрутизации, включающая информацию о доступных сетях, маршрутизаторах и стоимости каждого соединения. Когда состояние сети, маршрутизатора или интерфейса изменяется, каждый обнаруживший это маршрутизатор (в пределах области) вносит информацию в локальную базу данных, а затем соответственно перестраивает карты маршрутизации. Выбор маршрута производится с учетом стоимости всех маршрутов к конкретной точке назначения и напрямую не зависит от числа переходов. Другими словами, для выбора оптимальных маршрутов в OSPF применяется алгоритм “стоимости векторов” (cost vector).

Эта модель предоставляет больше возможностей для улучшения маршрутизации (например, быстрее происходит синхронизация изменений), но требует большей вычислительной мощности и большего объема памяти от участвующих в процессе машин. По этой причине на рынке гораздо шире представлены системы с поддержкой RIP, нежели OSPF. Например, хотя во многих серверных ОС имеются те или иные OSPF-демоны, лишь очень небольшое число сетевых клиентов или устройств низшего класса поддерживают OSPF, поскольку даже для пассивного “прослушивания” приходится снабжать устройство полнофункциональным механизмом анализа базы данных OSPF.

В основе архитектуры OSPF лежит концепция административных областей. Маршрутизаторы, работающие в одной области, обмениваются подробной информацией о ней, но маршрутизаторам из удаленных областей передаются только общие сведения. Если имеется несколько областей, то для обмена информацией между ними организуется магистральная (стержневая) область. Через нее пограничные устройства будут обмениваться общей информацией, что означает наличие в OSPF двухуровневой иерархии обмена маршрутной информацией между областями (это относится не ко всему сетевому трафику, а только к сообщениям протоколов маршрутизации).

Областям присваиваются 32-битовые идентификаторы (обычно они представлены в виде адресов IPv4), магистраль же всегда имеет номер 0. Маршрутизаторы могут одновременно присутствовать в нескольких областях, но для каждой из них они должны хранить отдельную базу данных о состоянии соединений. Согласно терминологии OSPF, маршрутизатор, присутствующий одновременно в нескольких областях, называется ABR (Area Border Router), а маршрутизатор, обменивающийся данными с другим протоколом маршрутизации, - ASBR (Autonomous System Border Router).

Введение

Проблема, которую мы будем обсуждать в этой главе, заключается в том, что IP адреса имеют какое-либо значение только в семействе протоколов TCP/IP. Канальные уровни, такие как Ethernet или Token ring, имеют собственную схему адресации (в основном 48-битные адреса); сетевые уровни, в свою очередь, используют эти канальные уровни. Сеть Ethernet, может быть использована различными сетевыми уровнями в одно и то же время. Компьютеры использующие разные сетевые протоколы могут находиться на одном и том же физическом кабеле.

Когда фрейм Ethernet отправляется от одного хоста по локальной сети к другому, по его 48-битному Ethernet адресу определяется, к какому интерфейсу он должен быть доставлен. Драйвер сетевой платы никогда не смотрит на IP адрес назначения в IP датаграмме.

Другими словами возникает необходимость установить соответствие между двумя различными формами адресов: 32-битными IP адресами и каким-либо типом адресов канального уровня. RFC 826 [ Plummer 1982] - официальная спецификация ARP.

На рисунке 4.1 показаны два протокола, которые мы рассмотрим в этой и следующей главах: протокол определения адреса (ARP - address resolution protocol) и обратный протокол определения адреса (RARP - reverse address resolution protocol).

Рисунок 4.1 Протоколы определения адреса: ARP и RARP.

ARP предоставляет динамическое сопоставление IP адресов и соответствующих аппаратных адресов. Мы используем термин динамическое, так как это происходит автоматически и обычно не зависит от используемых прикладных программ или воли системного администратора.

RARP, в основном, используется системами без жестких дисков (бездисковые рабочие станции или X терминалы), однако здесь требуется ручная конфигурация с участием системного администратора. Мы рассмотрим RARP в .

Если мы введем команду

% ftp bsdi

будет выполнена следующая последовательность действий. (См. рисунок 4.2.)

  1. Приложение, FTP клиент, вызывает функцию gethostbyname(3), чтобы конвертировать имя хоста (bsdi) в 32-битный IP адрес. Эта функция в DNS (Domain Name System) называется разборщиком (resolver) , мы опишем это подробно в . Подобное преобразование осуществляется с использованием DNS или, если существует маленькая сеть, то с помощью статического файла хостов ( /etc/hosts).
  2. FTP клиент требует установить TCP соединение с указанным IP адресом.
  3. TCP посылает запрос на установление соединения удаленному хосту, посылая IP датаграммы по указанному IP адресу. (Мы рассмотрим как это делается более подробно в .)
  4. Если хост назначения подключен к сети (Ethernet, Token ring, или к другому концу канала точка-точка), IP датаграмма может быть послана непосредственно хосту. Если хост назначения находится в удаленной сети, IP маршрутизатор определяет Internet адрес непосредственно подключенного маршрутизатора следующей пересылки, чтобы послать туда IP датаграмму. В обоих случаях IP датаграмма посылается либо хосту, либо маршрутизатору, подключенные непосредственно к данной сети.
  5. Если используется Ethernet, посылающий хост должен конвертировать 32-битный адрес в 48-битный Ethernet адрес. Или другими словами, осуществить преобразование из логического Internet адреса в соответствующий физический аппаратный адрес. Этим занимается ARP. ARP работает в широковещательных сетях, где много хостов или маршрутизаторов подключено к одной и той же сети.
  6. ARP посылает фрейм Ethernet, который называется ARP запрос (ARP request), каждому хосту в сети. Подобный метод рассылки называется широковещательным запросом (broadcast). На рисунке 4.2 широковещательный запрос показан пунктирными линиями. ARP запрос содержит IP адрес хоста назначения (имя которого bsdi) и запрос "если Вы владелец этого IP адреса, пожалуйста сообщите мне Ваш аппаратный адрес".

Рисунок 4.2 Реакция ARP на ввод пользователя: ftp hostname.

  • Хост назначения на ARP уровне получает этот широковещательный запрос, определяет, что отправитель спрашивает именно его IP адрес, и отвечает на него ARP откликом (ARP reply). Этот отклик содержит IP адрес и соответствующий аппаратный адрес.
  • ARP отклик принимается, и IP датаграмма, из-за которой начался обмен ARP запрос - ARP отклик, может быть послана.
  • IP датаграмма отправляется на хост назначения.
  • Фундаментальная концепция, заложенная в ARP, заключается в следующем. Сетевой интерфейс имеет аппаратный адрес (48-битное значение для Ethernet или Token ring). Фреймы, которыми обмениваются на аппаратном уровне, должны адресоваться к корректному интерфейсу. Однако TCP/IP испоьзует собственную схему адрессации: 32-битные IP адреса. Знание IP адреса хоста не позволяет ядру послать датаграмму этому хосту. Драйвер Ethernet должен знать аппаратный адрес пункта назначения, чтобы послать туда данные. В задачу ARP входит обеспечение динамического соответствия между 32-битными IP адресами и аппаратными адресами, используемыми различными сетевыми технологиями.

    Каналы точка-точка не используют ARP. Когда эти каналы конфигурируются (обычно во время загрузки), ядру необходимо сказать IP адрес для каждого конца канала. Аппаратные адреса, такие как Ethernet адреса, в данном случае не используются.

    Эффективность функционирования ARP во многом зависит от ARP кэша (ARP cache), который присутствует на каждом хосте. В кэше содержатся Internet адреса и соответствующие им аппаратные адреса. Стандартное время жизни каждой записи в кэше составляет 20 минут с момента создания записи.

    Содержимое ARP кэша можно увидеть с использованием команды arp(8). Опция -a показывает все записи, содержащиеся в кэше:

    bsdi % arp -a
    sun (140.252.13.33) at 8:0:20:3:f6:42
    svr4 (140.252.13.34) at 0:0:c0:c2:9b:26

    48-битные Ethernet адреса приведены в виде шести шестнадцатиричных чисел, разделенных двоеточиями. Дополнительные функции команды arp обсуждаются в разделе главы 4.

    Формат пакета ARP

    На рисунке 4.3 показан формат ARP запроса и формат ARP отклика, в случае использования Ethernet и IP адресов. (ARP можно использовать в других сетей, при этом он способен устанавливать соответствие не только для IP адресов. Первые четыре поля, следующие за полем типа фрейма, указывают на типы и размеры заключительных четырех полей.)

    Рисунок 4.3 Формат ARP запроса или отклика при работе с Ethernet.

    Два первых поля в Ethernet заголовке - поля источника и назначения Ethernet. Специальный адрес назначения Ethernet, состоящий из всех единиц, означает широковещательный адрес. Фреймы с таким адресом будут получены всеми Ethernet интерфейсами на кабеле.

    Двухбайтовый тип фрейма (frame type) Ethernet указывает, данные какого типа, пойдут следом. Для ARP запроса или ARP отклика это поле содержит 0x0806.

    Выражения аппаратный (hardware) и протокол (protocol) используются для описания полей в пакетах ARP. Например, ARP запрос запрашивает аппаратный адрес (в данном случае Ethernet адрес) соответствующий адресу протокола (в данном случае IP адрес).

    Поле hard type указывает на тип аппаратного адреса. Для Ethernet это значение равно единице. Prot type указывает тип адреса протокола, к которому будет приведено соответствие. Для IP адресов используется значение 0x0800. По своему целевому назначению это значение соответствует полю типа во фрейме Ethernet, который содержит IP датаграмму. (См. рисунок 2.1.)

    Два следующих однобайтных поля, hard size и prot size, указывают на размеры в байтах аппаратного адреса и адреса протокола. В ARP запросах и откликах они составляют 6 для Ethernet и 4 для IP адреса.

    Поле op указывает на тип операции: ARP запрос (значение устанавливается в 1), ARP отклик (2), RARP запрос (3) и RARP отклик (4). (Мы поговорим о RARP в .) Это поле необходимо, так как поля типа фрейма (frame type) одинаковы для ARP запроса и ARP отклика.

    Следующие четыре поля: аппаратный адрес отправителя (Ethernet адрес в данном примере), адрес протокола (IP адрес), аппаратный адрес назначения и адрес протокола назначения. Обратите внимание, что в данном случае происходит некоторое дублирование информации: аппаратный адрес отправителя может быть получен как из Ethernet заголовка, так и из ARP запроса.

    Для ARP запроса все поля заполнены, за исключением аппаратного адреса назначения. Когда система получает ARP запрос, который предназначается ей, она вставляет свой аппаратный адрес, меняет местами адреса источника и назначения, устанавливает поле op в значение 2 и отправляет отклик.

    Примеры ARP

    В этом разделе мы воспользуемся командой tcpdump, чтобы посмотреть, как в действительности работает ARP при запуске обычного TCP приложения, например, Telnet. В содержится дополнительная информация о работе программы tcpdump.

    Типичный пример

    Чтобы посмотреть как функционирует ARP, мы запустим команду telnet, чтобы подсоединиться к discard (discard server - сервер, не предоставляющий пользователю никаких услуг) серверу.

    bsdi% arp -a проверяем, что ARP кэш пуст
    bsdi% telnet svr4 discard подсоединяемся к серверу
    Trying 140.252.13.34 ...
    Connected to svr4.
    Escape character is "^]" .
    ^] нажимаем Control и правую квадратную скобку,
    telnet> quit чтобы получить приглашение Telnet и закрыть сессию
    Connection closed.

    Пока осуществляются эти действия, мы запускаем команду tcpdump с опцией -e на другом хосте (sun). Это позволит нам посмотреть аппаратные адреса (48-битные адреса Ethernet).


    arp who-has svr4 tell bsdi
    2 0.002174 (0.0022) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60:
    arp reply svr4 is-at 0:0:c0:c2:9b:26
    3 0.002831 (0.0007) 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
    bsdi.1030>svr4.discard: S 596459521:596459521 (0)
    win 4096
    4 0.007834 (0.0050) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60:
    svr4.discard>bsdi.1030: S 3562228252:3562228252 (0)
    ack 596459522 win 4096
    5 0.009615 (0.0018) 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
    bsdi.1030>svr4.discard: . ack 1 win 4096

    Рисунок 4.4 ARP запрос и ARP отклик, сгенерированные при запросе на Telnet соединение.

    %D0%A7%D0%B8%D1%81%D0%BB%D0%BE,%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D0%BE%D0%B5%20%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%B5%D1%82%D1%81%D1%8F%20%D0%B2%20%D0%BA%D0%B0%D0%B6%D0%B4%D0%BE%D0%B9%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B5,%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%B0%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B8%20-%20%D1%8D%D1%82%D0%BE%0A%D0%B2%D1%80%D0%B5%D0%BC%D1%8F%20(%D0%B2%20%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D0%B0%D1%85)%20%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0%20%D0%BF%D0%B0%D0%BA%D0%B5%D1%82%20%D0%B1%D1%8B%D0%BB%20%D0%BF%D1%80%D0%B8%D0%BD%D1%8F%D1%82%20%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BE%D0%B9%20tcpdump.%20%D0%92%20%D0%BA%D0%B0%D0%B6%D0%B4%D0%BE%D0%B9%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B5%0A%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D0%BF%D0%B5%D1%80%D0%B2%D0%BE%D0%B9%20%D1%81%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B8%D1%82%D1%81%D1%8F%20%D1%80%D0%B0%D0%B7%D0%BD%D0%B8%D1%86%D0%B0%20%D0%B2%D0%BE%20%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%B8%20(%D0%B2%20%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D0%B0%D1%85)%20%D1%81%20%D0%BF%D1%80%D0%B5%D0%B4%D1%8B%D0%B4%D1%83%D1%89%D0%B5%D0%B9%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%BE%D0%B9.%0A%D0%AD%D1%82%D0%BE%20%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%BF%D1%80%D0%B8%D0%B2%D0%BE%D0%B4%D0%B8%D1%82%D1%81%D1%8F%20%D0%B2%20%D1%81%D0%BA%D0%BE%D0%B1%D0%BA%D0%B0%D1%85.%20%D0%9A%D0%B0%D0%BA%20%D0%B2%D0%B8%D0%B4%D0%BD%D0%BE%20%D0%B8%D0%B7%20%D1%80%D0%B8%D1%81%D1%83%D0%BD%D0%BA%D0%B0,%20%D0%B2%D1%80%D0%B5%D0%BC%D1%8F%20%D0%BC%D0%B5%D0%B6%D0%B4%D1%83%20%D0%BE%D1%82%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%BE%D0%B9%0AARP%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%D0%B0%20%D0%B8%20%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC%20ARP%20%D0%BE%D1%82%D0%BA%D0%BB%D0%B8%D0%BA%D0%B0%20%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D1%8F%D0%B5%D1%82%202,2%20%D0%BC%D1%81.%20%D0%9F%D0%B5%D1%80%D0%B2%D1%8B%D0%B9%20TCP%20%D1%81%D0%B5%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%0A%D0%BF%D0%BE%D1%81%D0%BB%D0%B0%D0%BD%20%D1%87%D0%B5%D1%80%D0%B5%D0%B7%200,7%20%D0%BC%D1%81%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D1%8D%D1%82%D0%BE%D0%B3%D0%BE.%20%D0%A2%D0%B0%D0%BA%D0%B8%D0%BC%20%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%BC,%20%D0%B4%D0%BB%D1%8F%20%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%0A%D0%B0%D0%B4%D1%80%D0%B5%D1%81%D0%B0%20%D1%81%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5%D0%BC%20ARP,%20%D0%B2%20%D0%B4%D0%B0%D0%BD%D0%BD%D0%BE%D0%BC%20%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D0%B5,%20%D0%BF%D0%BE%D1%82%D1%80%D0%B5%D0%B1%D0%BE%D0%B2%D0%B0%D0%BB%D0%BE%D1%81%D1%8C%20%D0%BC%D0%B5%D0%BD%D0%B5%D0%B5%20%D1%87%D0%B5%D0%BC%203%20%D0%BC%D1%81.

    %D0%98%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B5%D0%B5%20%D0%BD%D0%B0%20%D1%87%D1%82%D0%BE%20%D1%81%D0%BB%D0%B5%D0%B4%D1%83%D0%B5%D1%82%20%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%B8%D1%82%D1%8C%20%D0%B2%D0%BD%D0%B8%D0%BC%D0%B0%D0%BD%D0%B8%D0%B5%20%D0%B2%20%D0%B2%D1%8B%D0%B2%D0%BE%D0%B4%D0%B5%20tcpdump:%20%D0%BC%D1%8B%20%D0%BD%D0%B5%0A%D1%83%D0%B2%D0%B8%D0%B4%D0%B8%D0%BC%20ARP%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%20%D0%BE%D1%82%20svr4,%20%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0%20%D0%BE%D0%BD%20%D0%BF%D0%BE%D1%81%D1%8B%D0%BB%D0%B0%D0%B5%D1%82%20%D1%81%D0%B2%D0%BE%D0%B9%20%D0%BF%D0%B5%D1%80%D0%B2%D1%8B%D0%B9%20TCP%20%D1%81%D0%B5%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%20(%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B0%204).%0A%D0%94%D0%B5%D0%BB%D0%BE%20%D0%B2%20%D1%82%D0%BE%D0%BC,%20%D1%87%D1%82%D0%BE%20svr4%20%D1%83%D0%B6%D0%B5%20%D0%B8%D0%BC%D0%B5%D0%B5%D1%82%20%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BE%20bsdi%20%D0%B2%20%D1%81%D0%B2%D0%BE%D0%B5%D0%BC%20ARP%20%D0%BA%D1%8D%D1%88%D0%B5,%20%D1%82%D0%B0%D0%BA%20%D0%BA%D0%B0%D0%BA,%20%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0%0A%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%20%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B0%D0%B5%D1%82%20ARP%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81,%20%D0%BF%D0%BE%D0%BC%D0%B8%D0%BC%D0%BE%20%D1%82%D0%BE%D0%B3%D0%BE%20%D1%87%D1%82%D0%BE%20%D0%BE%D0%BD%D0%B0%20%D0%BF%D0%BE%D1%81%D1%8B%D0%BB%D0%B0%D0%B5%D1%82%20ARP%20%D0%BE%D1%82%D0%BA%D0%BB%D0%B8%D0%BA,%20%D0%BE%D0%BD%D0%B0%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%0A%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D1%8F%D0%B5%D1%82%20%D0%B0%D0%BF%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B9%20%D0%B0%D0%B4%D1%80%D0%B5%D1%81%20%D0%B8%20IP%20%D0%B0%D0%B4%D1%80%D0%B5%D1%81%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%D0%B8%D0%B2%D1%88%D0%B5%D0%B3%D0%BE%20%D0%B2%20%D1%81%D0%B2%D0%BE%D0%B5%D0%BC%20ARP%20%D0%BA%D1%8D%D1%88%D0%B5.%20%D0%AD%D1%82%D0%BE%0A%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%BD%D0%BE,%20%D1%82%D0%B0%D0%BA%20%D0%BA%D0%B0%D0%BA%20%D0%B5%D1%81%D0%BB%D0%B8%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%D0%B8%D0%B2%D1%88%D0%B8%D0%B9%20%D1%81%D0%BE%D0%B1%D0%B8%D1%80%D0%B0%D0%B5%D1%82%D1%81%D1%8F%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B0%D1%82%D1%8C%20IP%20%D0%B4%D0%B0%D1%82%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%83,%20%D1%82%D0%BE%0A%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B8%D0%B2%D1%88%D0%B5%D0%BC%D1%83%20%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%B5%20%D0%B2%D1%81%D0%B5%D0%B3%D0%BE%20%D0%BF%D1%80%D0%B8%D0%B4%D0%B5%D1%82%D1%81%D1%8F%20%D0%BE%D1%82%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D1%8C%20%D0%BE%D1%82%D0%B2%D0%B5%D1%82%20%D0%BD%D0%B0%20%D1%8D%D1%82%D1%83%0A%D0%B4%D0%B0%D1%82%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%83.

    %0A%0A

    в этот раз telnet на IP адрес, а не на имя хоста (hostname)
    bsdi % date ; telnet 140.252.13.36 ; date
    Sat Jan 30 06:46:33 MST 1993
    Trying 140.252.13.36 ...
    telnet: Unable to connect to remote host: Connection timed out
    Sat Jan 30 06:47:49 MST 1993 прошло 76 секунд

    bsdi % arp -a проверяем ARP кэш
    ? (140.252.13.36) at (incomplete)

    На рисунке 4.5 мы видим вывод tcpdump.

    1 0.0 arp who-has 140.252.13.36 tell bsdi
    2 5.509069 (5.5091) arp who-has 140.252.13.36 tell bsdi
    3 29.509745 (24.0007) arp who-has 140.252.13.36 tell bsdi

    Рисунок 4.5 ARP запрос на несуществующий хост.

    Сейчас мы не указываем опцию -e, так как мы уже знаем, что ARP запрос широковещательный.

    Здесь интересно посмотреть, с какой частотой рассылаются ARP запросы: 5,5 секунд после первого запроса и снова через 24 секунды. (Мы рассмотрим тайм-ауты TCP и алгоритм повторных передач более подробно в .) Полное время, показанное в выводе tcpdump, составляет 29,5 секунды. Однако вывод от команды date перед и после команды telnet показывает, что запрос на соединение от Telnet клиента длился в течении 75 секунд. И действительно, мы увидим позже, что большинство BSD реализаций устанавливают ограничение в 75 секунд для завершения запроса на установление TCP соединения.

    Уполномоченный агент ARP

    Уполномоченный агент ARP позволяет маршрутизатору отвечать на ARP запросы в одну сеть, в то время как запрашиваемый хост находится в другой сети. С помощью этого средства происходит обман отправителя, который отправил ARP запрос, после чего он думает, что маршрутизатор является хостом назначения, тогда как в действительности хост назначения находится "на другой стороне" маршрутизатора. Маршрутизатор выступает в роли уполномоченного агента хоста назначения, перекладывая пакеты от другого хоста.

    Для того чтобы лучше описать работу уполномоченных агентов ARP, мы рассмотрим пример. Из рисунка 3.10 видно, что система sun подключена к двум сетям Ethernet. Однако в действительности это не так, в чем можно убедиться, если сравнить этот рисунок с рисунком, который приведен на внутренней стороне обложки. Между sun и подсетью 140.252.1 находится маршрутизатор, который выступает в роли уполномоченного агента ARP, при этом все выглядело так, как будто sun находится в подсети 140.252.1. На рисунке 4.6 показано, что Telebit NetBlazer, названный netb, находится между подсетью и хостом sun.

    Рисунок 4.6 Пример уполномоченного ARP.

    Когда какой-либо другой хост в подсети 140.252.1 (скажем, gemini) хочет послать IP датаграмму хосту sun на адрес 140.252.1.29, gemini сравнивает идентификатор сети (140.252) и идентификатор подсети (1), и если они идентичны, отправляет ARP запрос в верхний Ethernet (на рисунке 4.6) на IP адрес 140.252.1.29. Маршрутизатор netb распознает этот IP адрес как принадлежащий одному из dialup хостов и отвечает, отправив аппаратный адрес этого Ethernet интерфейса в кабель 140.252.1. Хост gemini посылает IP датаграмму в netb по Ethernet, а netb направляет датаграмму в sun по SLIP каналам с дозвоном (dialup). Это делает его прозрачным для всех хостов подсети 140.252.1, так как хост sun действительно находится "позади" маршрутизатора netb.

    Если мы запустим команду arp на хосте gemini после общения с хостом sun, то увидим, что оба эти адреса принадлежат подсети 140.252.1 (netb и sun) и что им соответствует один аппаратный адрес. Как правило, это основная причина, по которой используется уполномоченный агент ARP.

    gemini % arp -a
    появится много строк про хосты из подсети 140.252.1
    netb (140.252.1.183) at 0:80:ad:3:6a:80
    sun (140.252.1.29) at 0:80:ad:3:6a:80

    Еще одна деталь на рисунке 4.6, которую необходимо объяснить, это отсутствие IP адреса под квадратиком, который обозначает маршрутизатор netb (SLIP канал). Почему на обоих концах SLIP канала нет IP адреса, как между bsdi и slip? В разделе главы 3, из вывода команды ifconfig, мы заметили, что адрес назначения SLIP канала 140.252.1.183. NetBlazer не требует наличия IP адресов на каждом конце SLIP канала. (Это позволяет сэкономить несколько столь ценных в настоящее время IP адресов.) Он определяет какой хост посылает пакет в зависимости от того по какому последовательному интерфейсу прибыл пакет, поэтому нет необходимости каждому хосту на SLIP канале использовать уникальный IP адрес для своего канала с маршрутизатором. Все dialup хосты используют адрес 140.252.1.183 в качестве адреса назначения для своих SLIP каналов.

    Уполномоченный агент ARP обеспечивает доставку датаграмм к маршрутизатору sun, однако как это делают другие хосты из подсети 140.252.13? Для направления датаграмм в другие хосты должна использоваться маршрутизация. Где-либо в сети 140.252 должны быть сделаны записи в таблице маршрутизации, поэтому все датаграммы, направляющиеся в подсеть 140.252.13 или в указанные хосты этой подсети, будут направляться на маршрутизатор netb. Этот маршрутизатор знает, как доставить датаграммы в их конечный пункт назначения, отправляя их через маршрутизатор sun.

    Уполномоченный агент ARP также называется смешанным (promiscuous ARP) или расщепленным (ARP hack). Эти имена появились благодаря другому использованию уполномоченных агентов ARP: они применялись для того, чтобы спрятать друг от друга две физические сети между которыми находился маршрутизатор. В этом случае обе физические сети использовали один и тот же идентификатор сети, так как маршрутизатор, находящийся между ними, был сконфигурирован как уполномоченный ARP агент, чтобы отвечать на ARP запросы из одной сети к хостам в другой сети. Эта техника использовалась в прошлом, чтобы спрятать группу хостов с более старой версией TCP/IP на отдельном физическом кабеле. Две причины, по которым приходилось отделять эти "устаревшие" хосты, заключались в том, что, во-первых, они не могли поддерживать разделение на подсети и, во-вторых, использовали старые широковещательные адреса (идентификатор хоста состоял из всех нулевых бит вместо современного стандарта, при котором идентификатор хоста состоит из единичных битов).

    "Беспричинный" ARP

    Другая характеристика ARP, которую стоит рассмотреть - "беспричинный" ARP (gratuitous ARP). Он проявляется, когда хост посылает ARP запрос, основываясь на собственном IP адресе. Обычно это делается, когда интерфейс конфигурируется во время загрузки.

    Если мы запустим tcpdump на хосте sun при загрузке хоста bsdi, то увидим пакет, показанный на рисунке 4.7.

    1 0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
    arp who-has 140.252.13.35 tell 140.252.13.35

    Рисунок 4.7 Пример "беспричинного" ARP.

    (Мы использовали флаг -n программы tcpdump, чтобы напечатать адреса в цифровом десятичном виде вместо имен хостов.) В терминах полей ARP запроса, адрес протокола отправителя и адрес протокола назначения идентичны: 140.252.13.35 (что соответствует хосту bsdi). Адрес источника в заголовке Ethernet, 0:0:c0:6f:2d:40 как показано программой tcpdump, эквивалентен аппаратному адресу отправителя (из рисунка 4.4).

    "Беспричинный" ARP предоставляет две характеристики.

    1. Он позволяет хосту определить, существует ли другой хост с тем же самым IP адресом. Хост bsdi не ожидает отклика на свой запрос, однако если отклик принят, на консоли возникает сообщение об ошибке "обнаружен дублирующий IP адрес с Ethernet адресом: a:b:c:d:e:f". Это предупреждение системному администратору о том, что одна из систем неправильно сконфигурирована.
    2. Если хост, посылающий "беспричинный" ARP, только что изменил свой аппаратный адрес (может быть потому, что хост был выключен, удалена интерфейсная плата и затем хост был перезагружен), этот пакет заставляет другой хост на кабеле, который имеет запись в своем кэше для старого аппаратного адреса, обновить ARP кэш соответствующим образом. Малоизвестный факт о протоколе ARP заключается в том, что если хост получает ARP запрос для IP адреса, который он уже имеет в кэше, содержимое кэша обновляется аппаратным адресом отправителя (Ethernet адресом) из запроса ARP. Это делается для любого запроса ARP, полученного хостом. (Повторим, что ARP запросы широковещательные, поэтому такие действия осуществляются всеми хостами в сети каждый раз при появлении ARP запроса.) описывает приложения, которые используют эту характеристику ARP. Она позволяет запасному (backup) файл-серверу занять место вышедшего из строя сервера с использованием "беспричинного" ARP запроса с запасным аппаратным адресом, однако с тем же IP адресом, который имел вышедший из строя хост. При этом все пакеты, направляемые серверу, вышедшему из строя, будут посланы на запасной сервер, а пользовательские приложения не будут знать о том, что основной сервер вышел из строя.
    К сожалению, авторы затем отказались от этого подхода, так как он зависит от корректности реализации ARP на всех типах клиентов. Существуют различные типы ARP, которые не поддерживают эту спецификацию.

    Наблюдения за всеми системами в подсети, используемой в этой книге, показывает, что SunOS 4.1.3 и 4.4BSD используют "беспричинный" ARP при загрузке, а SVR4 не поддерживает эту характеристику.

    Команда arp

    Мы использовали эту команду с флагом -a, чтобы отобразить все записи ARP кэша. Существуют и другие опции.

    Суперпользователь может использовать опцию -d, чтобы удалить запись из ARP кэша. (Это было сделано перед запуском некоторых примеров, чтобы показать изменения ARP.)

    Записи могут быть добавлены с использованием опции -s. При использовании этой опции необходимо указать имя хоста и Ethernet адрес, IP адрес, соответствующий имени хоста, и Ethernet адрес добавляются в кэш. Подобная запись делается на постоянной основе (она не будет удалена из кэша по тайм-ауту), если только в конце командной строки не будет использовано ключевое слово temp.

    Ключевое слово pub в конце командной строки с опцией -s приведет к тому, что система будет функционировать как ARP агент для этого хоста. Система будет отвечать на ARP запросы для IP адресов, соответствующих имени хоста, при этом ответ будет содержать указанный Ethernet адрес. Если объявленный адрес это адрес самой отвечающей системы, это означает, что система работает как уполномоченный агент ARP для указанного имени хоста.

    Краткие выводы

    ARP это основной протокол, который используется практически во всех реализациях TCP/IP. Обычно его функционирование не зависит от используемых приложений или воли системного администратора. ARP кэш является фундаментом этой работы. Мы использовали команду arp, чтобы просмотреть или модифицировать кэш. Каждая запись в кэше имеет таймер, который используется для удаления незавершенных или завершенных записей. Команда arp отображает модифицированные записи в ARP кэше.

    Мы посмотрели обычное функционирование ARP и специализированные версии: уполномоченный агент ARP (когда маршрутизатор отвечает на ARP запросы для хостов, находящихся на другом интерфейсе маршрутизатора) и "беспричинный" ARP (посылающий ARP запросы для своего собственного IP адреса, обычно во время загрузки).

    Упражнения

    1. Вернемся к команде, которую мы исполнили, чтобы получить вывод, показанный на рисунке 4.4. Что произойдет, если после того как мы проверили локальный ARP кэш и он оказался пустым, мы введем команду

      bsdi % rsh svr4 arp -a

      чтобы проверить, что ARP кэш также пуст на хосте назначения? (Эта команда исполнит команду arp -a на хосте svr4.)

    2. Опишите тест, который позволит определить, корректно ли обрабатывает определенный хост "беспричинные" ARP запросы.
    3. Шаг номер 7 в разделе может занять определенное время (миллисекунды), потому что пакет отправлен и ARP ожидает ответа. Как Вы думаете, обработает ли ARP несколько датаграмм, которые прибыли от IP на тот же адрес назначения в течение этого периода времени?
    4. В конце раздела мы упомянули, что RFC Host Requirements и Berkeley реализации отличаются с точки зрения обработки тайм-аутов для активных записей ARP. Что произойдет, если клиент Berkeley постарается установить контакт с сервером, который был выключен и из него была удалена плата Ethernet? Изменится ли что-нибудь, если сервер выдаст "беспричинный" ARP запрос при загрузке?