Каково назначение трансформатора. Принцип работы и предназначение трансформатора

Силовые трансформаторы служат для преобразования электрической энергии одного напряжения в энергию другого напряжения. Они являются основным оборудованием электрических подстанций. Электроэнергия, вырабатываемая на электростанциях, при передаче к потребителям претерпевает многократную трансформацию в повышающих и понижающих трансформаторах. Передача электроэнергии на большие расстояния более экономична высоким напряжением. Мощность трансформаторов, установленных в электроэнергетических системах, превышает установленную мощность генераторов в 4-5 раз. Несмотря на относительно высокий КПД трансформаторов стоимость энергии, теряемой ежегодно в них, составляет значительную сумму. Необходимо стремиться к уменьшению числа ступеней трансформации, уменьшению установленной мощности трансформаторов.

Трансформаторы изготовляют однофазными и трехфазными, двух- и трехобмоточными. Преимущественное применение в системах и сетях имеют трехфазные трансформаторы, экономические показатели которых выше показателей групп из однофазных трансформаторов. Группы из однофазных трансформаторов применяют только при самых больших мощностях и напряжениях 500 кВ и выше в целях уменьшения массы для транспортировки от места изготовления до места установки. Однофазные трансформаторы применяются также на тяговых подстанциях при электрификации железных дорог переменным током.

Трансформаторы и автотрансформаторы имеют номинальные мощности десятично кратные следующим значениям: 1; 1,6; 2,5; 4; 6,3 кВ*А.

Для удобства планирования работ, связанных с транспортировкой и ремонтом трансформаторов, их условно делят по габаритам в зависимости от мощности и напряжения обмоток ВН.

На рис. показано устройство и компоновка основных частей силового масляного трансформатора третьего габарита.

Основой конструкции трансформатора служит активная часть, состоящая из магнитопровода 17 с расположенными на нем обмотками 21 высшего напряжения (ВН) и низшего напряжения (НН), расположенными под ВН на стержнях магнитопровода, отводов НН 16 и BH18 и переключающего устройства 6. Магнитопровод, набранный из отдельных тонких листов трансформаторной стали с жаропрочным изоляционным покрытием, стягивается ярмовыми балками 19 и шпильками, пропущенными через сквозные отверстия стержней магнитопровода и ярмовых балок.

Отводами 16 и 18 называются соединительные провода, идущие от концов обмоток НН и ВН к вводам НН 14 и ВН 12.

Переключающее устройство 6 обмоток трансформатора служит для ступенчатого изменения напряжения в определенных пределах, поддержания номинального напряжения на зажимах обмотки НН при его изменении.

С этой целью обмотки ВН трансформаторов снабжают регулировочными ответвлениями 20, которые присоединяют к переключателям 6.

Необходимость регулирования вызвана тем, что в электросистемах возможны различные отклонения от нормального режима электроснабжения, приводящие к неэкономичной работе приемников электроэнергии.

Рис.1

1 - бак; 2 - вентиль; 3 - болт заземления; 4 - термосифонный фильтр; 5 - радиатор; 6 - переключатель; 7 - расширитель; 8 - маслоуказатель; 9 - воздухоосушитель; 10 - выхлопная труба; 11 - газовое реле; 12 - ввод ВН; 13 - привод переключающего устройства; 14 - ввод НН; 15 - подъемный рым; 16 - отвод НН; 17 - остов; 18 - отвод ВН; 19 - ярмовая балка остова (верхняя и нижняя); 20-- регулировочные ответвления обмоток ВН; 21 - обмотка ВН (внутри НН); 22 - каток тележки.

В трансформаторах могут быть два вида переключателей ответвления: регулирование под нагрузкой (РПН) и без нагрузки после отключения трансформатора, т.е. переключение без возбуждения (ПБВ). Переключающее устройство приводится в действие с помощью привода 13, расположенного на крышке бака трансформатора 1.

Бак трансформатора представляет собой стальной резервуар овальной формы, заполненный трансформаторным маслом, с погруженной в него активной частью трансформатора. Масло, являясь охлаждающей средой, отводит тепло, выделяющееся в обмотках и магнитопроводе, и отдает его в окружающую среду через стенки и крышку бака. Кроме охлаждения масло служит для повышения Уровня изоляции между токоведущими частями и заземленным баком. Для увеличения поверхности охлаждения баки делают ребристыми, вваривают в них трубы или снабжают съемными радиаторами 5. В нижней части бака имеется кран для слива масла 2, а в днище - пробка для спуска осадков после слива масла через кран. Ко дну бака трансформатора массой выше 800 кг приваривают тележку с поворотными катками 22, позволяющими изменять направление передвижения трансформатора с поперечного на продольное. Для подъема трансформатора на верхних ярмовых балках крепятся подъемные шпильки с рым-кольцами 15.

Термосифонный фильтр 4 крепится к баку трансформатора двумя патрубками с фланцами и промежуточными плоскими кранами. Фильтр предназначен для поддержания изоляционных свойств масла, а следовательно, продления срока его службы. Он представляет собой цилиндрическое устройства, заполненное активным материалом - сорбентом, который поглощает продукты старения трансформаторного масла. Работа фильтра основана на термосифонном принципе: более нагретое масло верхних слоев попадет в фильтр, охлаждается и опускается вниз, непрерывно при этом очищаясь.

На крышке бака размещены вводы 12 и 14, расширитель 7, выхлопная труба 10, газовое реле 11.

Вводы представляют собой фарфоровые проходные изоляторы, к которым в баке крепятся выводы обмоток трансформатора, а снаружи - токоведущие части распределительных устройств. Вводы внутри бака имеют гладкую поверхность, для наружной установки, работающие в тяжелых условиях (под дождем, снегом, в загрязненном воздухе), отличаются более развитой поверхностью (имеют зонтообразные ребра) для увеличения пути поверхностного электрического разряда по фарфору и электрической прочности ввода.

Расширитель 7 служит для компенсации колебаний уровня масла в трансформаторе при изменении температуры и уменьшения площади соприкосновения с воздухом открытой поверхности масла, защиты его от преждевременного окисления кислородом воздуха и увлажнения. Расширитель представляет собой цилиндрический бак, закрепленный с помощью кронштейна на крышке трансформатора. Расширитель сообщается с баком трансформатора трубой, не выступающей ниже внутренней поверхности крышки трансформатора и заканчивающейся внутри расширителя выше его дна во избежание попадания осадков масла в бак. Объем расширителя должен обеспечивать постоянное наличие в нем масла во всех режимах работы трансформатора как в летних так и в зимних условиях.

Для наблюдения за маслом на боковой стенке расширителя устанавливают маслоуказатель 8, выполненный в виде стеклянной трубки в металлической оправе. Воздухоосушитель 9 предназначен для поглощения влаги из воздуха, поступающего в расширитель.

Воздухоосушитель, устанавливаемый на расширителе трансформатора, имеет металлический корпус, заполненный селикагелем, отбирающим влагу у воздуха, поступающего в расширитель при понижении уровня масла.

Газовое реле 11 встраивают в рассечку трубы, соединяющей бак трансформатора с расширителем. Оно защищает трансформатор при внутренних повреждениях, связанных с выделением газа или утечкой из бака.

Повреждения внутри трансформатора, сопровождаемые электрической дугой, приводит к интенсивному разложению масла с образованием большого количества газа и, как следствие, резкому повышению давления внутри бака, при этом может разорваться бак и возникнуть пожар. Выхлопная труба 10, устанавливаемая на крышке бака трансформатора, закрыта стеклянным диском. При повышении давления внутри бака стекло лопается и газы вместе с маслом выбрасываются наружу раньше, чем произойдет деформация бака.

При сборке схем обмоток трансформаторов большое значение придается не только получению результирующего напряжения на его зажимах, но и направлению векторов напряжений первичной и вторичной обмоток, определяющих группу соединения трансформатора. Стандартом предусмотрены группы соединения обмоток трансформаторов: нулевая (0) и одиннадцатая (11). За единицу группы принят угол смещения вектора линейного напряжения обмотки НН относительно соответствующего вектора линейного напряжения обмотки ВН, равный 30. Смещение отсчитывают от вектора линейного напряжения ВН по часовой стрелке.

Начала фазных обмоток ВН трехфазных трансформаторов обозначают прописными латинскими буквами А, В, С, концы - буквами X, Y, Z. Начала обмоток НН обозначают строчными латинскими буквами а, в, с, концы - буквами х, у, z. Для трехобмоточных трансформаторов начала обмоток среднего напряжения (СН) обозначают буквами А аВа Са концы - буквами Х Y ZM

Фазные обмотки трехфазных трансформаторов могут быть соединены в звезду CD, треугольник (А) или зигзаг (У). Эти схемы в тексте обозначают буквами У, Д и Z.

В схеме соединения обмоток трансформатора ответвление нейтрали, сделанное на внешний зажим, обозначается буквой N.

Рис. 2.

Для отличия по конструкции, назначению, мощности, напряжению и другим признакам трансформаторы подразделяются на типы. Каждому типу присваивают обозначения, состоящие из букв и цифр.

Буквенные обозначения по конструктивному выполнению:

А - автотрансформатор (понижающий - А в начале обозначения, повышающий - А в конце); Т - трехфазный; 0 --однофазный; Р - с расщепленной обмоткой НН;

Т - трехобмоточный (вторая буква Т в обозначении трехфазного трансформатора).

Буквенное обозначение по видам охлаждения:

С - сухой (естественное воздушное);

М - масляный (естественное масляное);

Д - дутьевой (принудительная циркуляция воздуха при охлаждении радиаторов вентиляторами);

ДЦ - дутьевой, с принудительной циркуляцией масла через охладитель с помощью насоса;

МЦ - масляный, с принудительной циркуляцией масла и естественной - воздуха.

Буквенное обозначение при наличии регуляторов напряжения:

Н - с регулированием напряжения под нагрузкой (наличие РПН).

Число в числителе после буквенного обозначения указывает мощность трансформатора в киловольт-амперах, в знаменателе - класс напряжения обмотки ВН в киловольтах.

В условном обозначении указывают также год разработки конструкции, климатическое исполнение и категорию размещения трансформатора (1 - на открытом воздухе, 3 - в закрытом помещении)

Рис. 3. Пример обозначения типа трансформатора и его расшифровка:


Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Транс-

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной , подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i 1 , образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е 1 и е 2 . Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е 2 по ее цепи проходит ток i 2 .

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока. Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е 1 и E 2 , индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков ? 1 и? 2 этих обмоток, т. е.

E 1 /E 2 = ? 1 / ? 2 .

Отношение э. д. с. Е вн обмотки высшего напряжения к э. д. с. E нн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации ,

n = Е вн / E нн = ? вн / ? нн .

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2-5 % номинальных значений напряжений U 1 и U 2), то можно считать, что отношение напряжения U 1 первичной обмотки к напряжению U 2 вторичной обмотки приблизительно равно отношению чисел их витков , т. е.

U 1 /U 2 ? ? 1 / ? 2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i 2 , отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i 1 , поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I 1 /I 2 ? U 2 /U 1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I 1 /I 2 ? ? 2 /? 1 . Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U 2 больше напряжения U 1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.

Простейший представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.

Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток

Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.

Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)

Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.

Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов

Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.

Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.

Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.

Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)

Первым может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.

Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время

Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.

Генераторы, которые стоят на электростанциях, вырабатывают очень мощное ЭДС. На практике такое напряжения редко когда бывает нужно. Поэтому такое напряжение необходимо преобразовывать.

Трансформаторы

Для преобразования напряжения используются устройства, называемы трансформаторами. Трансформаторы могут как и повысить напряжение, так и понизить его. Существуют также стабилизирующие трансформаторы, которые не повышают и не понижают напряжение.

Рассмотрим устройство трансформатора на следующем рисунке.

картинка

Устройство и работа трансформатора

Трансформатор состоит из двух катушек с проволочными обмотками. Эти катушки надевают на стальной сердечник. Сердечник не является монолитным, а собирается из тонких пластин.

Одна из обмоток называется первичной. К этой обмотке подсоединяют переменное напряжение, которое идет от генератора, и которое нужно преобразовать. Другая обмотка называется вторичной. К ней подсоединяют нагрузку. Нагрузка это все приборы и устройства, которые потребляют энергию.

На следующем рисунке представлено условное обозначение трансформатора.

картинка

Работа трансформатора основана на явлении электромагнитной индукции. Когда через первичную обмотку проходит переменный ток, в сердечнике возникает переменный магнитный поток. А так как сердечник общий, магнитный поток индуцирует ток и в другой катушке.

В первичной обмотке трансформатора имеется N1 витков, её полная ЭДС индукции равняется e1 = N1*e, где е – мгновенное значение ЭДС индукции во всех витках. е одинаково для всех витков обоих катушек.

Во вторичной обмотке имеется N2 витков. В ней индуцируется ЭДС e2 = N2*e.

Следовательно:

Сопротивлением обмоток пренебрегаем. Следовательно, значения ЭДС индукции и напряжения будут приблизительно равны по модулю:

При разомкнутой цепи вторичной обмотки в ней не идет ток, следовательно:

Мгновенные значения ЭДС e1, e2 колеблются в одной фазе. Их отношение можно заменить отношением значений действующих ЭДС: E1 и E2. А отношение мгновенных значений напряжения заменим действующими значениями напряжения. Получим:

E1/E2 ≈U1/U2 ≈N1/N2 = K

К – коэффициент трансформации. При K>0 трансформатор повышает напряжение, при K<0 – трансформатор понижает напряжение. Если же к концам вторичной обмотки подключить нагрузку, то во второй цепи появится переменный ток, который вызовет появление в сердечнике еще одного магнитного потока.

Это магнитный поток будет уменьшать изменение магнитного потока сердечника. Для нагруженного трансформатора будет справедлива следующая формула:

U1/U2 ≈ I2/I1.

То есть при повышении напряжения в несколько раз, мы во столько же раз уменьшим силу тока.

Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков,Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины - вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1 dФ/dt, e2= -n2dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода. В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k. Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым.

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.