Контрольные вопросы. Значение звука воспроизведение и запись: воспроизведение звука в словаре кольера

ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ , воспроизведение натуральных звучаний электромеханическими средствами и сохранение их в форме, позволяющей восстанавливать их с максимальной верностью оригиналу. Более подробная информация о физических принципах, лежащих в основе затрагиваемых ниже вопросов акустики, содержится в статье УХО; СЛУХ; МУЗЫКАЛЬНЫЕ ИНСТРУМЕНТЫ; МУЗЫКАЛЬНЫЕ ГАММЫ.

ВОСПРОИЗВЕДЕНИЕ ЗВУКА

Запись и воспроизведение звука - это область, в которой наука сочетается с искусством (звукорежиссера). Здесь есть две важные стороны: верность воспроизведения (как отсутствие нежелательных искажений) и пространственно-временная организация звучаний, поскольку задача воспроизведения звука электромеханическими средствами состоит не только в том, чтобы воссоздать звук, максимально приближенный к воспринимаемому в студии или концертном зале, но и в том, чтобы преобразовать его с учетом той акустической обстановки, в которой он будет прослушиваться.

В графическом представлении простейшую форму имеют звуковых колебания чистых тонов типа создаваемых камертоном. Им соответствуют синусоидальные кривые. Но большинство реальных звучаний имеет неправильную форму, которая однозначно характеризует звучание, так же, как отпечатки пальцев - человека. Всякое звучание может быть разложено на чистые тона разных частот (рис. 1). Эти тона состоят из основного тона и обертонов (гармоник). Основным тоном (с низшей частотой) определяется высота ноты. По обертонам мы различаем музыкальные инструменты, даже когда на них берется одна и та же нота. Обертоны особенно важны тем, что они создают тембр инструмента и определяют характер его звучания.

Диапазон основных тонов большинства источников звука довольно узок, благодаря чему можно легко понимать речь и улавливать мотив, даже если у воспроизводящей аппаратуры ограниченная частотная полоса. Полнота же звучания обеспечивается лишь при наличии всех обертонов, а для их воспроизведения необходимо, чтобы не искажались соотношения между уровнями основного тона и обертонов, т.е. частотная характеристика воспроизводящей системы должна быть линейной во всем диапазоне слышимых частот. Именно такую характеристику (наряду с отсутствием искажений) и имеют в виду, когда говорят о высокой точности звуковоспроизведения (системы hi-fi ).

Громкость . Восприятие громкости звука зависит не только от его интенсивности, но и от многих других факторов, в число которых входят и субъективные, не поддающиеся количественной оценке. Важное значение имеет обстановка, окружающая слушателя, уровень внешнего шума, высота и гармоническая структура звучания, громкость предыдущего звучания, эффект «маскирования» (под впечатлением предыдущего звучания ухо становится менее чувствительным к другим звучаниям близкой частоты) и даже эстетическое отношение слушателя к музыкальному материалу. Нежелательные звуки (шумы) могут казаться более громкими, чем желательные той же интенсивности. Даже восприятие высоты звучания может зависеть от интенсивности звука.

Восприятие различий в высоте музыкальных тонов определяется не абсолютной величиной частотных интервалов, а их отношением. Например, отношение двух частот, различающихся на октаву, в любой части звукоряда равно 2:1. Точно так же наша оценка изменений громкости определяется отношением (а не разностью) интенсивностей, так что изменения громкости воспринимаются как одинаковые, если одинаковы изменения логарифма интенсивности звука.

Поэтому уровень громкости звука измеряется по логарифмической шкале (на практике - в децибелах). Уши человека способны воспринимать звук в колоссальном диапазоне мощности от порога слышимости (0 дБ) до порога болевого ощущения (120 дБ), соответствующего отношению интенсивностей 10 12 . Современное оборудование способно воспроизводить изменения громкости в пределах порядка 90 дБ. Но воспроизводить весь диапазон слышимости практически и не требуется. Большинство слушает музыку примерно на уровне негромкой речи, и вряд ли кому-нибудь было бы по себе в домашних условиях при нормальной громкости оркестра или рок-группы.

Поэтому необходимо регулировать диапазон громкости, особенно при воспроизведении классической музыки. Это можно делать, постепенно понижая громкость перед крещендо (по партитуре) при сохранении нужного динамического диапазона. Для других музыкальных материалов, таких, как рок- и поп-музыка, широко применяются компрессоры, автоматически сужающие динамический диапазон усиливаемых сигналов. Но в дискотеках уровень звука нередко превышает 120 дБ, что может вызвать повреждение слуха и привести к полной глухоте. В этом отношении группа повышенного риска - поп-музыканты и звукооператоры. Особенно опасны наушники, так как они концентрируют звук.

Большинство слушателей широковещательных программ предпочитают, чтобы все программы озвучивались примерно на одном и том же уровне громкости и им самим не нужно было регулировать громкость. Но громкость - субъективное восприятие. Некоторым громкая музыка способна досаждать больше, чем речь, хотя неразборчивая речь иногда сильнее раздражает, чем музыка той же громкости.

Балансировка звука . В основе хорошего звуковоспроизведения лежит сбалансированность разных источников звука. Проще говоря, в случае одного источника звука суть хорошего звуковоспроизведения в том, чтобы сбалансировать прямой звук, приходящий к микрофону, с влиянием окружающей акустики и обеспечить правильный баланс между прозрачностью звучания и его полнотой, допускающий нужную степень подчеркивания в тех местах, где это требуется.

Микрофонная техника . Первая задача звукорежиссера состоит в том, чтобы выбрать подходящее студийное помещение. Если приходится использовать неприспособленное помещение, то оно должно быть, как минимум, в 1,5 раза больше места, отводимого исполнителям. Следующий шаг - выработка общей схемы расположения микрофонов. При воспроизведении музыкальных программ это необходимо сделать, консультируясь с дирижером и исполнителями. Микрофонов должно быть как можно меньше, поскольку наложение их звуковых полей способно снизить прозрачность звука. Правда, во многих случаях нужный эффект достигается только при использовании большого числа микрофонов.

Комбинации музыкальных инструментов редко бывают настолько сбалансированы, чтобы это отвечало требованиям прослушивания в домашних условиях. Акустика жилого помещения может оказаться далекой от идеала. Поэтому необходимо ознакомить руководителя оркестра с требованиями балансировки при воспроизведении с помощью микрофонов.

Организация воспроизводимых звучаний определяется типом микрофона, его приближенностью к источнику и обработкой его выходного сигнала. Вопрос о близости расположения микрофона к источнику звука нужно решать, учитывая соотношение между прямым и побочными звуками (включая реверберацию) других, более мощных инструментов и качество звука. Большинство инструментов дают разные звучания на разных расстояниях и в разных направлениях. Чтобы получить резкую «атаку», которая требуется от поп-музыки, и обеспечить хорошее различение инструментов, приходится прибегать к многомикрофонной схеме. При этом предъявляются высокие требования к звукорежиссеру; он должен иметь музыкальную подготовку или хотя бы уметь читать партитуру.

Бинауральный слух . Человек легко определяет направление на источник звука, поскольку звук обычно достигает одного уха раньше, чем другого. Мозг улавливает эту малую разницу во времени и небольшое различие в интенсивности звучания и по ним определяет направление на источник звука.

Мы можем также определять, что звук пришел спереди, сзади, сверху или снизу. Это объясняется тем, что наши уши по-разному передают частотный состав звуков, приходящих в разных направлениях (а также тем, что слушатель редко держит голову абсолютно неподвижно и в вертикальном положении). Этим объясняется и то, что люди с глухотой на одно ухо сохраняют все-таки некоторую способность судить о направлении на источник звука.

Бинауральный слух выработался у человека в качестве защитного механизма, но эта способность разделять звуки - важное условие понимания музыки. Если эту способность использовать при звукозаписи, то увеличивается впечатление верности и чистоты при воспроизведении.

Стереофонический звук . Двухканальная стереофоническая система, рассчитанная на прослушивание через звуковые колонки, создает для бинаурального слуха раздельные звуковые потоки, которые несут информацию о направлении распространения первичного звука.

В своей простейшей форме стереосистема состоит из двух микрофонов, расположенных рядом друг с другом и направленных под углом 45 ° к источнику звука. Сигналы микрофонов подаются на две звуковые колонки, разнесенные примерно на 2 м и одинаково удаленные от слушателя. Такая система создает «звуковую сцену» между колонками, на которой локализуются источники звука, расположенные перед микрофонами. Возможность локализации перед микрофонами источников звука, их разделения и отделения от реверберации намного повышает естественность и чистоту воспроизведения.

Такой подход дает удовлетворительные результаты только тогда, когда источник звука внутренне хорошо сбалансирован и благоприятны акустические условия. На практике обычно приходится использовать более двух микрофонов и микшировать (объединять) их сигналы для улучшения музыкального баланса, увеличения акустического разделения и придания звучанию необходимой степени атаки.

Типичный комплект аппаратуры для классического оркестра состоит из стереопары микрофонов (для создания общей звуковой картины оркестра) и нескольких местных микрофонов, установленных ближе к отдельным группам инструментов. Выходные сигналы местных микрофонов тщательно микшируются с сигналом стереопары так, чтобы обеспечивалось необходимое акцентирование каждой группы инструментов без нарушения общего баланса. Кроме того, их выходные сигналы панорамируются в кажущееся положение, которое при использовании основной пары микрофонов соответствовало бы их реальному расположению на сцене. (Панорамирование - это изменение углового направления на источник звука. Оно сочетается с регулировкой уровня посредством потенциометра.)

Многомикрофонные схемы еще шире применяются в случае легкой, а тем более поп-музыки, где обычно обходятся без общих микрофонных систем. И действительно, нет смысла гоняться за нюансами, если результат может быть достигнут при использовании переносного оборудования со звуковыми колонками, разнесенными всего лишь на шаг. Кроме того, запись поп-музыки производится, как правило, не в натуральной форме. Каждая группа инструментов, а то и каждый музыкант обслуживается отдельным микрофоном. Все инструменты рок-ансамбля - электронные. Звук разных инструментов, в том числе и клавишных синтезаторов, можно записывать либо с помощью микрофонов, установленных перед соответствующими колонками, либо путем прямой подачи сигналов первичных микрофонов на студийный пульт микширования. Эти сигналы могут быть либо сразу микшированы, либо предварительно записаны на отдельных дорожках многодорожечного магнитофона. Добавляется искусственная реверберация, осуществляется частотная коррекция и т.д. В результате оказывается мало сходства со звуком, воспринимаемым в студии, даже если все записывалось одновременно.

Выходной сигнал панорамируется и регулируется (потенциометром) для создания определенного впечатления о положении источника звука, которое может совершенно не соответствовать фактическому положению музыкантов в студии. Но, что интересно, даже если стереофонический звук не соответствует реальной ситуации, он дает эффект, намного превосходящий эффект монофонического звука.

Квадрафония . Улучшенное приближение к реальности можно получить методом квадрафонии, при котором четыре канала подключаются к четырем колонкам, попарно размещенным впереди слушателей и позади них. В простейшем варианте квадрафоническую систему можно рассматривать как две стереофонические, включенные навстречу друг другу. Сложные системы с матрицированием могут воспроизводить четыре канала с одной дорожки фонограммы при сохранении совместимости с воспроизведением стереозаписи.

Звуковое окружение . В телевидении важное значение имеет так называемая система звукового окружения. Стереофонический звуковой сигнал с левым (А ) и правым (В ) каналами матрицируется путем их суммирования (в фазе), что дает сигнал М (моносигнал), и вычитания (сложения в противофазе), что дает сигнал S (стереосигнал). Сигнал А + В соответствует средней точке источника звука и совместим с монофоническими системами воспроизведения, а сигнал А - В несет информацию направленности. Система звукового окружения формирует также разностную компоненту М - S , которая содержит «внесценический» звук, а также реверберацию, и передается на колонки, размещенные сзади слушателя. Система звукового окружения проще квадрафонической системы, но позволяет получить эффект погруженности в звуковую среду с помощью обычного стереосигнала.

Стереозвук для телевидения . Стереофоническая запись звука применяется в видеокассетах и в телевещании (особенно спутниковом) для телевизоров, снабженных специальным декодером.

Может показаться, что стереозвук не очень подходит для телевидения, поскольку, как отмечалось выше, для эффективной стереофонии требуются две колонки, расположенные на расстоянии примерно 2 м друг от друга. Кроме того, из-за малых размеров экрана взгляд телезрителя направлен в основном в его центр, так что требуется иллюстрация расстояния по глубине, а не по ширине.

Тем не менее, когда мы смотрим телевизор, мы знаем, что видим лишь малый сегмент источника звука. Точно так же, как в реальной жизни, когда, глядя в определенном направлении, мы не можем выключить звуки нашего окружения, нет ничего неестественного в том, что звуковая картина выходит за пределы телевизионного экрана.

Коррекция звука . Как это ни парадоксально, но в аппаратуре с высокой верностью воспроизведения обычно предусматриваются устройства для искажения звука. Они называются эквалайзерами и предназначены для выравнивания (путем устранения дефектов) амплитудно-частотной характеристики сигнала. Коррекцию частотной характеристики проводят также для внесения в нее искажений, обеспечивающих нужную пространственно-временную организацию звучаний. Примером может служить т.н. «фильтр присутствия», который изменяет кажущееся расстояние до источника звука. Наш слух связывает ощущение близости (присутствия) с преобладанием частот в полосе от 3 до 5 кГц, соответствующей шипящим звукам (сибилянтам). В музыке подъем характеристики в полосе от 3 до 5 кГц может создать эффект атаки, хотя и ценой огрубления звука .

Другой тип частотного корректора, позволяющего создать эффект присутствия, - это параметрический эквалайзер. Такое устройство позволяет ввести на частотной характеристике подъем или провал, регулируемый в пределах 14 дБ. При этом частоту и ширину полосы можно изменять в пределах всего спектра звуковых частот. Такой вид регулирования частотной характеристики может выполняться весьма точно и использоваться, например, для коррекции акустического резонанса в студии или в зале либо для подавления грохота или шипения.

Еще более сложный вид коррекции частотной характеристики осуществляется графическим эквалайзером. При таком способе весь звуковой спектр делится на узкие полосы с центральными частотами, разделенными с интервалами в октаву или треть октавы. Для каждой полосы имеется свой регулировочный движок, дающий увеличение или уменьшение примерно до 14 дБ. Название «графический» связано с тем, что при выполнении коррекции положение регулировочных движков на пульте приблизительно соответствует форме частотной характеристики. Графические эквалайзеры особенно подходят для компенсации акустического окрашивания резонансами в студии или зале для прослушивания. Колонки, дающие плоскую амплитудно-частотную характеристику в безэховой камере, в других условиях могут звучать совсем по-иному. Графические эквалайзеры позволяют улучшить озвучивание в таких случаях.

Уровень звука . Звуковой материал почти любого вида - записываемый, усиливаемый или передаваемый по радио или телевидению - нуждается в регулировке громкости. Это нужно для того, чтобы 1) не выйти за пределы динамического диапазона системы; 2) выделить и сбалансировать из эстетических соображений различные звучания данного источника звука; 3) установить диапазон громкости основного материала; 4) согласовать уровни громкости материала, записанного в разное время.

Регулировку громкости лучше всего проводить, прослушивая материал через хорошую колонку и учитывая при этом показания измерителя уровня. Одних же показаний измерителя уровня при монтаже фонограмм недостаточно в силу субъективного характера восприятия звука. Такой измеритель нужен для калибровки слуха.

Микширование сигналов микрофонов . При монтаже фонограммы обычно производится микширование выходных сигналов микрофонов и других преобразователей звука, число которых при записи может достигать 40. Микширование производится двумя основными способами. При микшировании в режиме реального времени можно для упрощения сгруппировать микрофоны, относящиеся, например, к вокальной группе, и регулировать уровень их звучания групповым звукомикшером. В другом варианте сигналы отдельных микрофонов направляются на входы многоканального магнитофона для последующего сведения в один стереофонический сигнал.

Второй способ позволяет точнее выбирать точки микширования, работая не в присутствии музыкантов, причем на многодорожечных магнитофонах можно воспроизводить одни дорожки при одновременной синхронной записи на других. Поэтому изменения можно вносить в нужные места фонограммы без переписывания всей программы. Все это можно делать без копирования оригинальной записи, так что она остается образцом для сравнения до окончательного микширования.

Автоматизированное микширование звука . Чтобы обеспечить высокую точность на заключительной операции перехода от многих дорожек записи к одной, некоторые звукорежиссерские пульты оснащают автоматическими микшерами. В таких системах в компьютер вводятся данные всех электронных регуляторов уровня при первой попытке микширования. Затем запись воспроизводится с автоматическим выполнением этих функций микширования. В ходе воспроизведения могут быть произведены нужные регулировки и скорректированы параметры программы компьютера. Такой процесс повторяется до достижения нужного результата. После этого выходной сигнал сводится в программную стереофонограмму.

Автоматическое управление . Автоматическое микширование не следует путать с автоматическим управлением, которое выполняется с использованием ограничителей и компрессоров, поддерживающих звуковой сигнал в требуемых пределах. Ограничитель - это устройство, которое пропускает программу без изменений, пока не достигается некоторый порог. Когда же сигнал на входе превышает данный порог, коэффициент усиления системы понижается и сигнал более не усиливается. Ограничители обычно используются в передатчиках для защиты электронных схем от перегрузки, а в ЧМ-передатчиках - для предотвращения чрезмерной девиации частоты с наложением на соседние каналы.

Компрессоры, т.е. регуляторы, автоматически осуществляющие сужение динамического диапазона усиливаемых сигналов, действуют аналогично ограничителям, понижая коэффициент усиления системы, но делают это менее резко. Упрощенные компрессоры имеются во многих кассетных магнитофонах. Компрессоры же, используемые в профессиональной звукозаписи, снабжаются органами управления для оптимизации их действия. Но никакое автоматическое регулирование не в состоянии заменить тонкости и остроты восприятия, присущих человеку.

Динамическое шумоподавление . При аналоговой звукозаписи всегда возникают трудности с шумами, в основном в форме шипения. Для подавления системного шума записывать программу всегда следует при достаточно высоком уровне громкости. Для этого применяется метод компандирования, т.е. сужения динамического диапазона программы при записи и расширения его при воспроизведении. Это позволяет повышать средний уровень при записи, а при воспроизведении понижать уровень сравнительно тихих пассажей (и вместе с ними шума). При разработке эффективной системы компандирования возникают трудности двоякого рода. Одна из них - это трудность согласования компрессора и экспандера во всем диапазоне частот и громкости. Другая - предотвращение повышения и понижения уровня шума вместе с уровнем сигнала, так как это делает шум более заметным. В системах шумоподавления Долби весьма остроумно решаются эти проблемы несколькими разными способами. В них учитывается эффект «маскирования»: чувствительность слуха на той или иной частоте существенно понижается во время и непосредственно после более громких звучаний на близких частотах (рис. 2).

«Долби А ». Метод «Долби А » - это промежуточная обработка, осуществляемая на входе и выходе звукозаписывающей аппаратуры, результатом которой является нормальная (плоская) характеристика на выходе. Метод «Долби А » применяется главным образом в профессиональной звукозаписи, в особенности на многодорожечные магнитофоны, в которых уровень шума повышается с увеличением числа используемых дорожек.

Проблема согласования компрессора и экспандера решается созданием двух параллельных путей - одного через линейный усилитель, а другого через дифференциальную цепь, выходной сигнал которой добавляется к «прямому» сигналу при записи и вычитается при воспроизведении, в результате чего действие компрессора и экспандера оказывается взаимно дополняющим. Дифференциальная схема разбивает частотный спектр на четыре полосы и каждую полосу обрабатывает отдельно, так что подавление осуществляется только там, где это требуется, т.е. в полосе, в которой сигнал программы недостаточно громок, чтобы маскировать шум. Так, например, музыка обычно концентрируется в нижней и средней полосах частот, а шипение магнитной ленты - на высоких частотах и слишком удалено по частоте, чтобы эффект маскирования был существенным.

«Долби В ». Метод «Долби В » применяется главным образом в бытовой аппаратуре, в частности в кассетных магнитофонах. В отличие от метода «Долби А », записи по методу В выполняются с характеристикой Долби, рассчитанной на воспроизведение на аппаратуре с дополнительной характеристикой. Как и при методе «Долби А », здесь имеются прямой путь для программы и боковая цепь. В боковую входит компрессор с предваряющим активным фильтром верхних частот на частоты от 500 Гц и выше.

В режиме записи компрессор повышает уровень сигналов, лежащих ниже порогового значения, и они добавляются к сигналу боковой ветви. Активный фильтр создает в своей полосе пропускания усиление, нарастающее до 10 дБ на частоте 10 кГц. Таким образом, высокочастотные сигналы низкого уровня записываются с превышением первоначального уровня, достигающим 10 дБ. Подавитель выбросов предотвращает воздействие переходных процессов на постоянную времени компрессора.

Декодер системы «Долби В » аналогичен кодеру, используемому при записи, но в нем выходной сигнал боковой ветви компрессора суммируется с сигналом основной цепи в противофазе, т.е. вычитается из него. При воспроизведении уровень высокочастотных сигналов низкого уровня, а также уровень шипения магнитной ленты и системный шум, добавляющиеся при записи, понижаются, что приводит к повышению отношения сигнал/шум на величину до 10 дБ.

Важное различие между методом Долби и простой системой введения предыскажений (повышения высокочастотной характеристики) при записи и коррекции предыскажений при воспроизведении состоит в том, что характеристика «Долби В » влияет только на звуковые сигналы низкого уровня. Материал, закодированный по методу «Долби В », можно воспроизводить на аппаратуре, не имеющей системы шумоподавления Долби, если понизить высокочастотную характеристику для компенсации характеристики Долби, но это приводит к потере высоких частот в более громких пассажах.

«Долби С ». Метод «Долби С » представляет собой дальнейшее усовершенствование метода «Долби В », позволяющее понизить шум на величину до 20 дБ. В нем используются два компрессора, включенные последовательно, при записи и два дополняющих экспандера при воспроизведении. Первый каскад работает при уровнях сигналов, сравнимых с уровнями в системе «Долби В », а второй чувствителен к сигналам, уровень которых на 20 дБ ниже. Система «Долби С » начинает действовать примерно со 100 Гц и обеспечивает понижение шума на 15 дБ на частотах около 400 Гц, тем самым ослабляя эффект модуляции средних частот высокочастотными сигналами.

Система DBX . Система шумоподавления DBX - это система взаимно дополняющей обработки на входе и выходе магнитофона. При кодировании и декодировании в ней используется коэффициент компрессии 2:1. Согласование компрессора и экспандера упрощается благодаря единому коэффициенту компрессии, а также благодаря тому, что оценка уровня производится по полной мощности сигнала. В системе DBX используется то обстоятельство, что основная часть мощности программы обычно концентрируется на средних и низких частотах, а на высоких частотах большая мощность бывает лишь при высоком общем уровне громкости. В сигнал, подаваемый на компрессор, вводятся сильные предыскажения (с нарастающим повышением уровня в области высоких частот) для повышения общей мощности при записи. При воспроизведении же предыскажения устраняются путем понижения уровня на высоких частотах, а вместе с ним и уровня шумов. Во избежание перегрузки фонограммы мощными предыскаженными высокочастотными сигналами такие предыскажения вводятся в сигнал боковой цепи компрессора, в результате чего при высоких уровнях записываемый уровень высокочастотных сигналов с увеличением частоты понижается, а с уменьшением - повышается. Система DBX может повысить отношение сигнал/шум на высоких частотах на 30 дБ.

ЗВУКОЗАПИСЬ

В идеале процесс записи звука от входа записывающего устройства до выхода устройства воспроизведения должен быть «прозрачным», т.е. ничто не должно изменяться, кроме времени воспроизведения. Многие годы эта цель казалась недостижимой. Системы звукозаписи были ограничены в диапазоне и неизбежно вносили те или иные искажения. Но исследования привели к огромным улучшениям, и, наконец, с появлением цифровой звукозаписи достигнут почти идеальный результат.

Цифровая звукозапись . При цифровой звукозаписи аналоговый звуковой сигнал преобразуется в код из последовательностей импульсов, которые соответствуют двоичным числам (0 и 1) и характеризуют амплитуду волны в каждый момент времени. Цифровые аудиосистемы обладают огромными преимуществами перед аналоговыми системами в отношении динамического диапазона, робастности (информационной надежности) и сохранения качества при записи и копировании, передаче на расстояние и мультиплексировании и т.п.

Аналого-цифровое преобразование . Процесс преобразования из аналоговой формы в цифровую состоит из нескольких шагов.

Дискретизация . Периодически с фиксированной частотой повторения делаются дискретные отсчеты мгновенных значений волнового процесса. Чем выше частота отсчетов, тем лучше. По теореме Найквиста, частота дискретизации должна не менее чем вдвое превышать наивысшую частоту в спектре обрабатываемого сигнала. Чтобы не допустить искажений, связанных с дискретизацией, на входе преобразователя необходимо установить фильтр нижних частот с очень крутой характеристикой и частотой отсечки, равной половине частоты дискретизации. К сожалению, идеальных фильтров нижних частот не существует, и фильтр с очень крутой характеристикой будет вносить искажения, которые могут свести на нет преимущества цифровой техники. Дискретизацию обычно проводят с частотой 44,1 кГц, которая позволяет применять практически приемлемый фильтр для защиты от искажений. Частота 44,1 кГц была выбрана потому, что она совместима с частотой строчной развертки телевидения, а все ранние цифровые записи производились на видеомагнитофонах.

Эта же частота 44,1 кГц является стандартной частотой дискретизации для проигрывателей компакт-дисков и большей части бытовой аппаратуры, за исключением устройств записи на цифровую аудиоленту (DAT) , в которых используется частота 48 кГц. Такая частота выбрана специально для того, чтобы воспрепятствовать нелегальному переписыванию компакт-дисков на цифровую магнитную ленту. В профессиональном оборудовании используется главным образом частота 48 кГц. В цифровых системах, применяемых для целей вещания, обычно работают с частотой 32 кГц; при таком выборе полезный диапазон частот ограничивается величиной 15 кГц (из-за предела дискретизации), но частота 15 кГц считается достаточной для целей вещания.

Квантование . Следующий шаг состоит в том, чтобы преобразовать дискретные отсчеты в код. Это преобразование выполняется путем измерения амплитуды каждого отсчета и сравнения ее со шкалой дискретных уровней, называемых уровнями квантования, величина каждого из которых представлена числом. Амплитуда отсчета и уровень квантования редко в точности совпадают друг с другом. Чем больше уровней квантования, тем выше точность измерений. Различия между амплитудами отсчетов и квантования проявляются в воспроизводимом звуке как шум.

Кодирование . Уровни квантования считаются в виде единиц и нулей. 16-разрядный двоичный код (такой же, как используемый для компакт-дисков) дает 65536 уровней квантования, что позволяет иметь отношение сигнал/шум квантования выше 90 дБ. Получаемый сигнал отличается высокой робастностью, так как от воспроизводящего оборудования требуется лишь распознать два состояния сигнала, т.е. определять, превышает ли он половину максимально возможного значения. Поэтому цифровые сигналы можно многократно записывать и усиливать, не опасаясь ухудшения их качества.

Цифро-аналоговое преобразование . Чтобы цифровой сигнал преобразовать в звуковой, его нужно сначала преобразовать в аналоговую форму. Такое преобразование обратно аналого-цифровому преобразованию. Цифровой код преобразуется в последовательность уровней (соответствующих исходным уровням дискретизации), которые сохраняются и считываются с использованием исходной частоты дискретизации.

Передискретизация . Аналоговый выходной сигнал цифро-аналогового преобразователя непосредственно использовать нельзя. Его нужно сначала пропустить через фильтр нижних частот, чтобы не допустить искажений, связанных с гармониками частоты дискретизации. Один из способов устранения этой трудности - передискретизация: частота дискретизации повышается путем интерполяции, что дает дополнительные отсчеты.

Коррекция ошибок . Одно из основных преимуществ цифровых систем состоит в возможности исправлять или маскировать ошибки и дефектные места, причиной которых могут быть грязь или недостаточное количество магнитных частиц при записи, что вызывает щелчки и пропуски звука, к которым человеческое ухо особенно чувствительно. Для исправления ошибок предусматривается проверка на четность, для чего к каждому двоичному числу добавляется бит проверки на четность, чтобы число единиц было четным (или нечетным). Если из-за ошибки произошла инверсия, то число единиц не будет четным (или нечетным). Проверка на четность обнаружит это, и либо будет повторен предыдущий отсчет, либо будет выдано значение, промежуточное между предыдущим и следующим отсчетами. Такая процедура называется маскировкой ошибок.

Компакт-диск (CD) . Компакт-диск оказался первой общедоступной цифровой аудиосистемой. Это миниатюрная грампластинка диаметром 120 мм с цифровой записью на одной стороне, воспроизводимой на лазерном проигрывателе.

Полностью записанный диск звучит 74 мин. Он дает почти идеальное воспроизведение с частотной характеристикой от 20 Гц до 20 кГц и с превышающими 90 дБ динамическим диапазоном, отношением сигнал/шум и разделением между каналами. Проблема детонационного искажения звука для него не существует, так же как и проблема износа. Диски прочны, не требуют особой осторожности в обращении, не боятся пыли (в небольших количествах) и даже царапин, так как все это не наносит ущерба качеству воспроизведения.

Первый оригинал компакт-диска (мастер-диск) изготавливают методом фотолитографии, используя лазер для выжигания питов (микроуглублений) на поверхности фоторезиста, нанесенного на стеклянный диск. В процессе производства питы становятся выступами отражающей нижней поверхности пластиковых дисков, на которую затем наносится слой прозрачного пластика толщиной 1,2 мм.

Длина питов и расстояние между ними несут цифровую информацию. Питы идут по спирали длиной 5,7 км, которая начинается в центральной части диска, закручивается по часовой стрелке и доходит до края. Шаг спирали равен 1,6 мкм (примерно 1/40 диаметра человеческого волоса и около 1/60 среднего шага канавок записи на долгоиграющей пластинке). Информация в цифровом коде считывается лазерным лучом. Там, где луч попадает в промежутки между выступами, он отражается обратно и светоделительной призмой направляется на фотоприемник. Когда же считывающий лазерный луч попадает на выступ, он при отражении диффузно рассеивается (рис. 3). Поскольку компакт-диск представляет собой цифровую систему, выходной сигнал фотоприемника имеет лишь два значения: 0 и 1.

Принцип действия компакт-диска требует предельной точности фокусировки лазерного луча и трекинга (отслеживания дорожки). Обе функции осуществляются оптическими средствами. Сервомеханизмы фокусировки и трекинга должны очень быстро действовать, чтобы компенсировать деформацию диска, его эксцентриситет и другие физические дефекты. В одном из конструктивных решений используется двухкоординатное устройство с двумя катушками, установленными под прямым углом в магнитном поле. Они обеспечивают перемещение объектива по вертикали для фокусировки и по горизонтали для трекинга.

Специальная система кодирования преобразует 8-разрядный звуковой сигнал в 14-разрядный. Такое преобразование, уменьшая требуемую полосу, облегчает выполнение операций записи и воспроизведения, вводя при этом дополнительную информацию, необходимую для синхронизации. Здесь же проводится исправление ошибок, благодаря чему компакт-диск еще менее восприимчив к мелким дефектам. В большинстве проигрывателей для улучшения цифро-аналогового преобразования предусматривается передискретизация.

В начале музыкальной программы на компакт-диск записывается сообщение о содержании диска, точках начала отдельных отрывков, а также о их числе и длительности звучания каждого отрывка. Между отрывками размещаются метки начала музыки, которые могут быть пронумерованы от 1 до 99. Длительность воспроизведения, выраженная в минутах, секундах и 1/75 долях секунды, закодирована на диске и считывается в обратном порядке перед каждым отрывком. Присваивание имен и автоматический выбор дорожек выполняются с помощью двух субкодов, указываемых в сообщении. Сообщение выдается при вставлении диска в проигрыватель (рис. 4).

Компакт-диск легко тиражировать. Как только сделан первый оригинал записи, копии можно штамповать в больших количествах.

В 1997 появилась и к концу века получила распространение оптическая технология хранения информации на многослойных двусторонних цифровых универсальных дисках DVD. Это, по-существу, более емкий (до 4Гб) и более быстрый компакт-диск, который может содержать аудио, видео и компьютерные данные. DVD-ROM читается соответствующим дисководом, подключенным к компьютеру.

Устройства цифровой магнитной записи звука . Большой прогресс был достигнут и в области устройств цифровой магнитной записи. Диапазон частот (ширина полосы), требуемый для цифровой записи, намного выше, чем для аналоговой. Для цифровой записи/воспроизведения необходима полоса пропускания шириной от 1 до 2 МГц, что намного шире диапазона обычных магнитофонов.

Запись без магнитной ленты . Легкодоступные компьютеры с большим объемом памяти и дисковые накопители, позволяющие выполнять монтаж фонограммы в цифровой форме, дают возможность осуществлять звукозапись без использования магнитной ленты. Одно из преимуществ такого метода - легкость синхронизации записей для отдельных дорожек в многодорожечной записи. Компьютеры управляют звуком во многом так же, как текстовые процессоры словами, обеспечивая практически мгновенный вызов фрагментов в режиме произвольного доступа. Они позволяют также регулировать длительность аудиоматериала в некоторых случаях в пределах 50% без изменения высоты тона или, наоборот, изменять высоту тона без изменения длительности.

Система «Синклавир» и устройство прямой записи на диск могут выполнить почти все функции студии многодорожечной звукозаписи без использования магнитной ленты. Компьютерная система такого типа предоставляет память с оперативным доступом. Жесткие диски обеспечивают оперативный доступ к библиотекам звукозаписей. Для хранения отдельных коллекций редакционных материалов, библиотек звукозаписей и материалов для обновления программных средств используются гибкие диски высокой плотности. Оптические диски служат для массового хранения записей звуковой информации с возможностью оперативного доступа к ним. Оперативная память (ОЗУ) используется для записи, редактирования и воспроизведения коротких инструментальных звучаний или звуковых эффектов; для этих задач имеется достаточный объем памяти, а дополнительная система оперативной памяти позволяет работать с многодорожечными фонограммами (до 200 дорожек). Система «Синклавир» управляется компьютерным терминалом с 76-нотной клавиатурой, чувствительной к скорости и давлению. В другом варианте управления используется мышь, которая вместе с монитором позволяет оператору точно выбирать точку фонограммы для проведения модификации, монтажа или стирания.

Устройство прямой записи на диск может быть выполнено в виде автономных 4-, 8- и 16-дорожечных установок. В такой установке для записи звука используется комплект связанных жестких дисков. 16-дорожечная установка подобного типа позволяет осуществить запись длительностью до 3 ч при частоте дискретизации 50 кГц. См. также ИЗОБРАЖЕНИЙ ЗАПИСЬ И ВОСПРОИЗВЕДЕНИЕ; КОМПЬЮТЕР.

ЛИТЕРАТУРА

Кинг Г. Руководство по звукотехнике . Л., 1980
Бугров В.А. Теория фонограмм . М., 1984
Щербина В.И. Цифровая звукозапись . М., 1989
Колесников В.М. Лазерная звукозапись и цифровое радиовещание . М., 1991
Оптические дисковые системы . М., 1991
Бродский М.А. Аудио- и видеомагнитофоны . Минск, 1995

звуковых частот?

3. Как формируется тембр звука?

    Чем отличается квадрафоническое звучание от монофонического?

    Каковы сходство и отличия стереофонического звучания и псевдоквадрофонического?

1.2. Способы записи и воспроизведения звука

Звукозапись основана на изменении физического состояния или формы различных участков носителя записи. В аудиотехнике на­шли применение следующие электроакустические способы запи­си и воспроизведения звука: механический, магнитный, оптиче­ский, магнитооптический, с помощью электронных компонен­тов памяти, например флэш-карт.

1.2.1. Механический способ записи и воспроизведения звука

Исторически сложилось так, что самая первая фонограмма была выполнена механическим способом. В августе 1877 г. был запатен­тован первый фонограф, созданный американским изобретате­лем Томасом Алва Эдисоном.

Основные элементы фонографа: раструб, служащий для при­ема звуковых волн, и мембрана, жестко соединенная с иглой. Зву­ковые волны раскачивали мембрану с иглой, которая прочерчи­вала бороздку на диске из мягкого материала (воск, олово). Изви­лины бороздки соответствовали амплитуде и частоте звуковых волн. При повторном проигрывании записанной бороздки игла, сколь­зя по ее извилинам, возбуждала мембрану, вызывая колебания воздуха, т. е. звук.

Для грамзаписи свойствен ряд недостатков: громоздкость, не­обходимость питания от сети, невысокое качество звучания, не­возможность перезаписи в домашних условиях. В настоящее время грамзапись почти полностью вытеснена более прогрессивным, магнитным способом записи.

1.2.2. Магнитный способ записи и воспроизведения звука

Первый магнитофон, предложенный в 1889 г. Вольдемаром Паульсеном, напоминал фонограф Эдисона, только вместо оло­вянной фольги в нем использовалась стальная проволока. Звуко­вые колебания с помощью микрофона превращались в колебания электрического тока и подавались на электромагнит, который перемещался вдоль стальной проволоки и намагничивал ее соот­ветственно звуковым колебаниям.

При воспроизведении фонограммы намагниченная проволока наводила электродвижущую силу в катушке электромагнита, а возникающий в ней ток подавался на телефон, который воспро­изводил записанный ранее звук.

В современных магнитофонах вместо стальной проволоки в ка­честве звуконосителя используется тонкая лавсановая лента, по­крытая ферромагнитным порошком. Вместо электромагнита ис­пользуется более эффективная кольцевая магнитная головка. Элек­трические сигналы, снимаемые головкой, подвергаются усиле­нию до необходимой мощности.

Особенности магнитного способа записи. Магнитный способ за­писи и воспроизведения звука основан на свойстве некоторых ме­таллов (железо, никель, кобальт, хром) намагничиваться в магнит­ном поле и сохранять остаточную намагниченность продолжитель­ное время. Такие материалы получили название ферромагнетиков.

Способность ферромагнетиков к намагничиванию обусловле­на особенностями строения электронных оболочек их атомов. Так, в атоме железа на предпоследней оболочке один из шести элект­ронов имеет положительный спин, а пять - отрицательные. Че­тыре электрона с нескомпенсированными спинами обусловлива­ют магнитные свойства железа.

При внесении ферромагнетика в магнитное поле спины всех электронов принимают упорядоченное положение (в соответствии с направлением магнитных силовых линий), при этом металл намагничивается.

Все ферромагнетики подразделяют на магнитотвердые и магнитомягкие. Первые обладают свойством сохранять намагничен­ность длительное время после вынесения их из магнитного поля, поэтому их применяют при изготовлении звуконосителя (магнит­ной ленты). Вторые после воздействия внешнего магнитного поля намагниченность не сохраняют (пермаллой, феррит и др.) - их используют для изготовления магнитных головок.

Запись и воспроизведение звуковой информации магнитным способом включает следующие физические процессы:

– преобразование с помощью микрофона звуковых (механиче­ских) колебаний в электрические колебания звуковой частоты;

– преобразование электрических колебаний в переменное маг­нитное поле с помощью катушки индуктивности, находящейся в магнитной головке;

– фиксация магнитного поля на звуконосителе. Используемая в качестве носителя записи тонкая лавсановая лента с нанесенным на нее ферромагнитным покрытием движется с постоянной ско­ростью перед полюсами магнитной головки и фиксирует колеба­ния магнитного поля головок;

– воспроизведение записи путем преобразования магнитного поля ленты в электрические, а затем в звуковые колебания. Для воспроизведения записанной информации ленту пропускают перед воспроизводящей магнитной головкой с той же скорос­тью, как и при записи. Намагниченные участки ленты, проходя мимо головки, наводят в ее обмотке изменяющееся электричес­кое напряжение, соответствующее колебаниям записанного сиг­нала. Восстановленный сигнал усиливают и направляют на гром­коговоритель.

Магнитный способ записи и воспроизведения звука имеет ряд преимуществ перед механическим способом записи:

– высококачественная магнитная запись звука может быть осу­ществлена вне студии на несложной аппаратуре;

– мгновенная готовность записи к воспроизведению; возможность многократного копирования (размножения) за­писей;

– возможность удаления ненужной записи магнитным стирани­ем практически мгновенно и многократное использование ленты;

– возможность звукового монтажа с помощью второго магнито­фона или двухкассетной деки;

– получение различных звуковых эффектов, наложение одной записи на другую и т.д.

Виды магнитофонов. Перечисленные особенности магнитного способа записи и воспроизведения звука характерны для аналого­вых магнитофонов. Недостатком аналоговых магнитофонов является резкая потеря качества фонограммы при перезаписи, транс­ляции и хранении.

От этого недостатка свободны цифровые магнитофоны, или ДАТ-магнитофоны (digital audio tape). Они способны обеспечить необходимое качество записи и воспроизведения звука и имеют высокие сервисные возможности.

Для осуществления цифровой записи звуковые колебания вна­чале с помощью микрофона преобразуются в аналоговые колеба­ния электрического тока. Затем амплитуда напряжения аналого­вого сигнала через очень короткие промежутки времени, напри­мер 44100 раз в секунду, измеряется. Этот этап называется дис­кретизацией. Полученные значения амплитуды округляются с за­данным шагом до ближайшего целого числа. Этот этап называется квантованием. Все уровни квантования кодируются (в двоичном счислении) в виде 1 и 0. Полученные импульсы фиксируются в виде магнитных импульсов на ленте или микроуглублений на ла­зерных дисках.

Процесс преобразования аудиосигналов из аналоговой формы в цифровую осуществляет специальная микросхема, которая на­зывается амплитудно-цифровой преобразователь (АЦП). Обрат­ную функцию - преобразование цифровых кодов в эквивалент­ные им аналоговые значения - выполняют цифроаналоговые пре­образователи (ЦАП).

Для цифровой записи характерны высокие точность и надеж­ность, так как от воспроизводящего оборудования требуется лишь распознать наличие или отсутствие магнитного импульса. Поэто­му цифровые сигналы можно многократно записывать, усиливать и транслировать, не опасаясь ухудшения их качества.

Недостатком цифровой записи является то, что ее нельзя не­посредственно воспроизводить громкоговорителем. Для этого ее вначале нужно снова перевести в аналоговую форму с помощью ЦАП.

Носителем магнитной записи может быть не только лента, но и диски с ферромагнитным покрытием. Запись информации на магнитные диски получила широкое распространение в компью­терной технике. Диски могут быть гибкие - на основе лавсановой пленки и жесткие - на твердых носителях (алюминий, керамика, стекло). Жесткие диски в быту часто называют винчестерами.

Последние достижения в области компьютерных винчестеров огромны. Достаточно сказать, что современные винчестеры мас­сой менее 100 г, питающиеся от миниатюрных батареек напряже­нием 3 В, обладают памятью емкостью 10 Гбайт и более. Это об­стоятельство не могло остаться без внимания конструкторов му­зыкальных плейеров-рекордеров.

К статье ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ Запись и воспроизведение звука - это область, в которой наука сочетается с искусством (звукорежиссера). Здесь есть две важные стороны: верность воспроизведения (как отсутствие нежелательных искажений) и пространственно-временная организация звучаний, поскольку задача воспроизведения звука электромеханическими средствами состоит не только в том, чтобы воссоздать звук, максимально приближенный к воспринимаемому в студии или концертном зале, но и в том, чтобы преобразовать его с учетом той акустической обстановки, в которой он будет прослушиваться. В графическом представлении простейшую форму имеют звуковых колебания чистых тонов типа создаваемых камертоном. Им соответствуют синусоидальные кривые. Но большинство реальных звучаний имеет неправильную форму, которая однозначно характеризует звучание, так же, как отпечатки пальцев - человека. Всякое звучание может быть разложено на чистые тона разных частот (рис.1). Эти тона состоят из основного тона и обертонов (гармоник). Основным тоном (с низшей частотой) определяется высота ноты. По обертонам мы различаем музыкальные инструменты, даже когда на них берется одна и та же нота. Обертоны особенно важны тем, что они создают тембр инструмента и определяют характер его звучания. Диапазон основных тонов большинства источников звука довольно узок, благодаря чему можно легко понимать речь и улавливать мотив, даже если у воспроизводящей аппаратуры ограниченная частотная полоса. Полнота же звучания обеспечивается лишь при наличии всех обертонов, а для их воспроизведения необходимо, чтобы не искажались соотношения между уровнями основного тона и обертонов, т.е. частотная характеристика воспроизводящей системы должна быть линейной во всем диапазоне слышимых частот. Именно такую характеристику (наряду с отсутствием искажений) и имеют в виду, когда говорят о высокой точности звуковоспроизведения (системы hi-fi). Громкость. Восприятие громкости звука зависит не только от его интенсивности, но и от многих других факторов, в число которых входят и субъективные, не поддающиеся количественной оценке. Важное значение имеет обстановка, окружающая слушателя, уровень внешнего шума, высота и гармоническая структура звучания, громкость предыдущего звучания, эффект "маскирования" (под впечатлением предыдущего звучания ухо становится менее чувствительным к другим звучаниям близкой частоты) и даже эстетическое отношение слушателя к музыкальному материалу. Нежелательные звуки (шумы) могут казаться более громкими, чем желательные той же интенсивности. Даже восприятие высоты звучания может зависеть от интенсивности звука. Восприятие различий в высоте музыкальных тонов определяется не абсолютной величиной частотных интервалов, а их отношением. Например, отношение двух частот, различающихся на октаву, в любой части звукоряда равно 2:1. Точно так же наша оценка изменений громкости определяется отношением (а не разностью) интенсивностей, так что изменения громкости воспринимаются как одинаковые, если одинаковы изменения логарифма интенсивности звука. Поэтому уровень громкости звука измеряется по логарифмической шкале (на практике - в децибелах). Уши человека способны воспринимать звук в колоссальном диапазоне мощности от порога слышимости (0 дБ) до порога болевого ощущения (120 дБ), соответствующего отношению интенсивностей 1012. Современное оборудование способно воспроизводить изменения громкости в пределах порядка 90 дБ. Но воспроизводить весь диапазон слышимости практически и не требуется. Большинство слушает музыку примерно на уровне негромкой речи, и вряд ли кому-нибудь было бы по себе в домашних условиях при нормальной громкости оркестра или рок-группы. Поэтому необходимо регулировать диапазон громкости, особенно при воспроизведении классической музыки. Это можно делать, постепенно понижая громкость перед крещендо (по партитуре) при сохранении нужного динамического диапазона. Для других музыкальных материалов, таких, как рок- и поп-музыка, широко применяются компрессоры, автоматически сужающие динамический диапазон усиливаемых сигналов. Но в дискотеках уровень звука нередко превышает 120 дБ, что может вызвать повреждение слуха и привести к полной глухоте. В этом отношении группа повышенного риска - поп-музыканты и звукооператоры. Особенно опасны наушники, так как они концентрируют звук. Большинство слушателей широковещательных программ предпочитают, чтобы все программы озвучивались примерно на одном и том же уровне громкости и им самим не нужно было регулировать громкость. Но громкость - субъективное восприятие. Некоторым громкая музыка способна досаждать больше, чем речь, хотя неразборчивая речь иногда сильнее раздражает, чем музыка той же громкости. Балансировка звука. В основе хорошего звуковоспроизведения лежит сбалансированность разных источников звука. Проще говоря, в случае одного источника звука суть хорошего звуковоспроизведения в том, чтобы сбалансировать прямой звук, приходящий к микрофону, с влиянием окружающей акустики и обеспечить правильный баланс между прозрачностью звучания и его полнотой, допускающий нужную степень подчеркивания в тех местах, где это требуется. Микрофонная техника. Первая задача звукорежиссера состоит в том, чтобы выбрать подходящее студийное помещение. Если приходится использовать неприспособленное помещение, то оно должно быть, как минимум, в 1,5 раза больше места, отводимого исполнителям. Следующий шаг - выработка общей схемы расположения микрофонов. При воспроизведении музыкальных программ это необходимо сделать, консультируясь с дирижером и исполнителями. Микрофонов должно быть как можно меньше, поскольку наложение их звуковых полей способно снизить прозрачность звука. Правда, во многих случаях нужный эффект достигается только при использовании большого числа микрофонов. Комбинации музыкальных инструментов редко бывают настолько сбалансированы, чтобы это отвечало требованиям прослушивания в домашних условиях. Акустика жилого помещения может оказаться далекой от идеала. Поэтому необходимо ознакомить руководителя оркестра с требованиями балансировки при воспроизведении с помощью микрофонов. Организация воспроизводимых звучаний определяется типом микрофона, его приближенностью к источнику и обработкой его выходного сигнала. Вопрос о близости расположения микрофона к источнику звука нужно решать, учитывая соотношение между прямым и побочными звуками (включая реверберацию) других, более мощных инструментов и качество звука. Большинство инструментов дают разные звучания на разных расстояниях и в разных направлениях. Чтобы получить резкую "атаку", которая требуется от поп-музыки, и обеспечить хорошее различение инструментов, приходится прибегать к многомикрофонной схеме. При этом предъявляются высокие требования к звукорежиссеру; он должен иметь музыкальную подготовку или хотя бы уметь читать партитуру. Бинауральный слух . Человек легко определяет направление на звука, поскольку звук обычно достигает одного уха раньше, чем другого. Мозг улавливает эту малую разницу во времени и небольшое различие в интенсивности звучания и по ним определяет направление на источник звука. Мы можем также определять, что звук пришел спереди, сзади, сверху или снизу. Это объясняется тем, что наши уши по-разному передают частотный состав звуков, приходящих в разных направлениях (а также тем, что слушатель редко держит голову абсолютно неподвижно и в вертикальном положении). Этим объясняется и то, что люди с глухотой на одно ухо сохраняют все-таки некоторую способность судить о направлении на источник звука. Бинауральный слух выработался у человека в качестве защитного механизма, но эта способность разделять звуки - важное условие понимания музыки. Если эту способность использовать при звукозаписи, то увеличивается впечатление верности и чистоты при воспроизведении. Стереофонический звук. Двухканальная стереофоническая система, рассчитанная на прослушивание через звуковые колонки, создает для бинаурального слуха раздельные звуковые потоки, которые несут информацию о направлении распространения первичного звука. В своей простейшей форме стереосистема состоит из двух микрофонов, расположенных рядом друг с другом и направленных под углом 45? к источнику звука. Сигналы микрофонов подаются на две звуковые колонки, разнесенные примерно на 2 м и одинаково удаленные от слушателя. Такая система создает "звуковую сцену" между колонками, на которой локализуются источники звука, расположенные перед микрофонами. Возможность локализации перед микрофонами источников звука, их разделения и отделения от реверберации намного повышает естественность и чистоту воспроизведения. Такой подход дает удовлетворительные результаты только тогда, когда источник звука внутренне хорошо сбалансирован и благоприятны акустические условия. На практике обычно приходится использовать более двух микрофонов и микшировать (объединять) их сигналы для улучшения музыкального баланса, увеличения акустического разделения и придания звучанию необходимой степени атаки. Типичный комплект аппаратуры для классического оркестра состоит из стереопары микрофонов (для создания общей звуковой картины оркестра) и нескольких местных микрофонов, установленных ближе к отдельным группам инструментов. Выходные сигналы местных микрофонов тщательно микшируются с сигналом стереопары так, чтобы обеспечивалось необходимое акцентирование каждой группы инструментов без нарушения общего баланса. Кроме того , их выходные сигналы панорамируются в кажущееся положение, которое при использовании основной пары микрофонов соответствовало бы их реальному расположению на сцене. (Панорамирование - это изменение углового направления на источник звука. Оно сочетается с регулировкой уровня посредством потенциометра.) Многомикрофонные схемы еще шире применяются в случае легкой, а тем более поп-музыки, где обычно обходятся без общих микрофонных систем. И действительно, нет смысла гоняться за нюансами, если результат может быть достигнут при использовании переносного оборудования со звуковыми колонками, разнесенными всего лишь на шаг. Кроме того, запись поп-музыки производится, как правило, не в натуральной форме. Каждая группа инструментов, а то и каждый музыкант обслуживается отдельным микрофоном. Все инструменты рок-ансамбля - электронные. Звук разных инструментов, в том числе и клавишных синтезаторов, можно записывать либо с помощью микрофонов, установленных перед соответствующими колонками, либо путем прямой подачи сигналов первичных микрофонов на студийный пульт микширования. Эти сигналы могут быть либо сразу микшированы, либо предварительно записаны на отдельных дорожках многодорожечного магнитофона. Добавляется искусственная реверберация, осуществляется частотная коррекция и т.д. В результате оказывается мало сходства со звуком, воспринимаемым в студии, даже если все записывалось одновременно. Выходной сигнал панорамируется и регулируется (потенциометром) для создания определенного впечатления о положении источника звука, которое может совершенно не соответствовать фактическому положению музыкантов в студии. Но, что интересно, даже если стереофонический звук не соответствует реальной ситуации, он дает эффект, намного превосходящий эффект монофонического звука. Квадрафония. Улучшенное приближение к реальности можно получить методом квадрафонии, при котором четыре канала подключаются к четырем колонкам, попарно размещенным впереди слушателей и позади них. В простейшем варианте квадрафоническую систему можно рассматривать как две стереофонические, включенные навстречу друг другу. Сложные системы с матрицированием могут воспроизводить четыре канала с одной дорожки фонограммы при сохранении совместимости с воспроизведением стереозаписи. Звуковое окружение. В телевидении важное значение имеет так называемая система звукового окружения. Стереофонический звуковой сигнал с левым (А) и правым (В) каналами матрицируется путем их суммирования (в фазе), что дает сигнал М (моносигнал), и вычитания (сложения в противофазе), что дает сигнал S (стереосигнал). Сигнал А + В соответствует средней точке источника звука и совместим с монофоническими системами воспроизведения, а сигнал А - В несет информацию направленности. Система звукового окружения формирует также разностную компоненту М - S, которая содержит "внесценический" звук, а также реверберацию, и передается на колонки, размещенные сзади слушателя. Система звукового окружения проще квадрафонической системы, но позволяет получить эффект погруженности в звуковую среду с помощью обычного стереосигнала. Стереозвук для телевидения. Стереофоническая запись звука применяется в видеокассетах и в телевещании (особенно спутниковом) для телевизоров, снабженных специальным декодером. Может показаться, что стереозвук не очень подходит для телевидения, поскольку, как отмечалось выше, для эффективной стереофонии требуются две колонки, расположенные на расстоянии примерно 2 м друг от друга. Кроме того, из-за малых размеров экрана взгляд телезрителя направлен в основном в его центр, так что требуется иллюстрация расстояния по глубине, а не по ширине. Тем не менее, когда мы смотрим телевизор, мы знаем, что видим лишь малый сегмент источника звука. Точно так же, как в реальной жизни, когда, глядя в определенном направлении, мы не можем выключить звуки нашего окружения, нет ничего неестественного в том, что звуковая картина выходит за пределы телевизионного экрана. Коррекция звука. Как это ни парадоксально, но в аппаратуре с высокой верностью воспроизведения обычно предусматриваются устройства для искажения звука. Они называются эквалайзерами и предназначены для выравнивания (путем устранения дефектов) амплитудно-частотной характеристики сигнала. Коррекцию частотной характеристики проводят также для внесения в нее искажений, обеспечивающих нужную пространственно-временную организацию звучаний. Примером может служить т.н. "фильтр присутствия", который изменяет кажущееся расстояние до источника звука. Наш слух связывает ощущение близости (присутствия) с преобладанием частот в полосе от 3 до 5 кГц, соответствующей шипящим звукам (сибилянтам). В музыке подъем характеристики в полосе от 3 до 5 кГц может создать эффект атаки, хотя и ценой огрубления звука. Другой тип частотного корректора, позволяющего создать эффект присутствия, - это параметрический эквалайзер. Такое устройство позволяет ввести на частотной характеристике подъем или провал, регулируемый в пределах 14 дБ. При этом частоту и ширину полосы можно изменять в пределах всего спектра звуковых частот. Такой вид регулирования частотной характеристики может выполняться весьма точно и использоваться, например, для коррекции акустического резонанса в студии или в зале либо для подавления грохота или шипения. Еще более сложный вид коррекции частотной характеристики осуществляется графическим эквалайзером. При таком способе весь звуковой спектр делится на узкие полосы с центральными частотами, разделенными с интервалами в октаву или треть октавы. Для каждой полосы имеется свой регулировочный движок, дающий увеличение или уменьшение примерно до 14 дБ. Название "графический" связано с тем, что при выполнении коррекции положение регулировочных движков на пульте приблизительно соответствует форме частотной характеристики. Графические эквалайзеры особенно подходят для компенсации акустического окрашивания резонансами в студии или зале для прослушивания. Колонки, дающие плоскую амплитудно-частотную характеристику в безэховой камере, в других условиях могут звучать совсем по-иному. Графические эквалайзеры позволяют улучшить озвучивание в таких случаях. Уровень звука. Звуковой материал почти любого вида - записываемый, усиливаемый или передаваемый по радио или телевидению - нуждается в регулировке громкости. Это нужно для того, чтобы 1) не выйти за пределы динамического диапазона системы;

Существуют две технологии записи и воспроизведения звука: аналоговая и цифровая. Известные всем бытовые магнитофоны и проигрыватели долгоиграющих пластинок ориентированы на аналоговую технологию. Запись и воспроизведение звука в компьютере и проигрывателях CD (лазерных дисков) основаны на цифровой технологии.

Звук по природе своей является набором волн, вызванных колебанием физических устройств (струн, мембран). Для того чтобы ввести звук в компьютер, его надо преобразовать в цифровой вид, т.е. представить в виде последовательности цифр (или нулей и единиц в двоичной системе исчисления). Для преобразования аналоговых данных в цифровые используется аналого-цифровой преобразователь (ADC - Analog-to-Digital Converter). Для воспроизведения звука необходим цифро-аналоговый преобразователь (DAC - Digital-to-Analog Converter).

При преобразовании звука в цифровой вид ADC измеряет поступающий сигнал с регулярными интервалами и присваивает цифровые значения уровню звука. Частота измерений называется скоростью выборки . Количество бит, используемых для кодирования данных, называется разрешающей способностью . Например, при записи звука разрешающая способность может быть 4, 8 или 16 бит, а скорость выборки может составлять 11 кГц, 22 кГц, 44 кГц. Чем выше скорость выборки и больше разрешающая способность, тем более качественный звук будет записываться и воспроизводиться.

Для ввода и воспроизведения звука в компьютере нужна аудио плата (карта). Обычно при покупке аудиоплаты пользователю предлагается полный набор аудио устройств компьютера: наушники и колонки, микрофон.

Звук в компьютер можно ввести с микрофона или с любого аудиоустройства, например, с магнитофона. Предварительно эти устройства нужно подключить к аудиоплате. На задней панели аудиоплаты имеется вход "Mic" для подключения микрофона, вход "Line In" для подключения аудиоустройств. Возможно, для подключения придется использовать переходники, поскольку размеры штекеров у бытовых приборов могут отличаться от стандартных размеров входов на плате. Но если вы приобрели микрофон, специально предназначенный для подключения к компьютеру, то проблем с разъемами обычно не возникает. Для того чтобы записать звук с микрофона, можно воспользоваться либо стандартными средствами Windows, либо программным обеспечением, которое поступает пользователю вместе с аудиоплатой.

Фонограф Windows"95

Этот инструмент можно вызвать с помощью кнопки "Пуск", выбрав позицию меню "Программы", и далее позицию "Стандартные". В появившемся меню следующего уровня выбирается позиция "Мультимедиа", и далее - позиция "Фонограф".

На панели инструмента имеется несколько кнопок для управления записью и воспроизведением звука, которые по изображению напоминают соответствующие кнопки на бытовом магнитофоне:

  • воспроизведение,
  • остановка (записи или воспроизведения),
  • перейти в начало,
  • перейти в конец.

Меню инструмента содержит позиции "Файл", "Правка", "Эффекты", "Справка".

Набор операций в позиции "Файл" позволяет создать новый звуковой файл, открыть уже существующий, сохранить файл, возможно, под новым именем, узнать свойства звукового файла, закончить работу с инструментом.

С помощью операций, связанных с позицией меню "Правка", можно выполнить некоторые операции редактирования: скопировать файл, вставить файл, удалить часть данных, смешать звук с другим звуковым файлом.

Звуковой файл можно изменить, добавив некоторые эффекты: увеличить или уменьшить громкость, увеличить или уменьшить скорость звучания, добавить эффект "эхо".

В окне инструмента имеются также таблички, в которых указываются длительность звучания файла в секундах, и длительность звучания до выполнения операции остановки.

Операция записи звука выполняется весьма просто: "нажимается" кнопка "Запись" (на ней изображен красный кружок), и в микрофон произносится фраза. Для завершения записи нажимается кнопка "Стоп" (на кнопке изображен черный квадрат).

Для того чтобы прослушать записанный файл, нужно перейти в начало записи, нажав кнопку "В начало", затем нажать кнопку "Воспроизведение".

Если в начале и в конце записи оказались ненужные, например, пустые фрагменты, их можно вырезать с помощью операций "удалить часть файла до текущей позиции" или "удалить часть файла после текущей позиции".

Файлы, записанные с помощью фонографа, имеют расширение .wav . Характеристики файла можно узнать с помощью позиции "Свойства" (появляющейся при раскрытии меню "Файл"). В предъявляемой таблице указываются: длительность звучания, объем данных в байтах, скорость выборки и разрешающая способность, установленные при записи файла.

Настройка устройств при записи звука в фонографе

Прежде чем начать записывать звук c помощью фонографа, обычно приходится выполнять предварительные установки и настройки параметров устройств мультимедиа. Для этого после раскрытия позиции системного меню "Мультимедиа" нужно выбрать позицию "Регулятор уровня" (до позиции меню "Мультимедиа" добираемся с помощью кнопки "Пуск", выбрав позицию "Программы" и далее позицию "Стандартные").

Если пользователь собирается выполнять операцию записи звука, нужно раскрыть позицию меню "Параметры" и выбрать позицию "Свойства". В появившемся окне "Настройка уровня" нужно установить режим "Запись", при этом в нижней части окна появится список устройств, с которых можно будет вводить звук в компьютер.

Допустим, что мы будем вводить звук с микрофона. Тогда нужно проследить, чтобы в соответствующей позиции окна "Отображать регулятор громкости" была проставлена "галочка". После нажатия кнопки "ОК" вид панели для регулирования громкости изменится, поскольку панель будет настроена на выполнение операции записи звука с соответствующих устройств.

Громкость для всех устройств регулируется с помощью ползунков, очень напоминающих по виду ползунки регуляторов на бытовых аудиоприборах. Ползунок "Баланс" выполняет балансировку звука между двумя динамиками. Ползунок "Громкость" управляет уровнем громкости. Для установки нужного уровня можно регулировать общий уровень записи и уровень записи в колонке "Микрофон". Например, оба ползунка можно установить в верхнее положение. Для того чтобы не было случайных помех от других устройств, можно для всех устройств, кроме микрофона, в окне "Выбрать" убрать "галочку". Аналогично, в случае записи, например, с компакт диска, нужно отключить позицию "Выбрать" для других устройств.

Универсальный проигрыватель Windows"95

Для прослушивания звуковых файлов в наборе стандартных мультимедиа устройств имеется инструмент "Универсальный проигрыватель" (напомним, что он вызывается с помощью кнопки "Пуск", через позиции "Программы", "Стандартные", "Мультимедиа"). После вызова этого инструмента на экране появляется панель для управления воспроизведением звука.

Вначале пользователь должен выбрать устройство, инициировав в главном меню инструмента позицию "Устройство":

  • Видео
  • Секвенсер MIDI
  • Аудио компакт-диск

С помощью этой же позиции можно установить нужную громкость звучания инструмента: в появившемся окне регулировки громкости с помощью позиции "Параметры" нужно раскрыть окно "Свойства", установить режим воспроизведения, отметить "галочкой" нужное устройство в списке, и, возвратившись в окно для регулировки громкости, установить с помощью ползунка нужный уровень звука у выбранного устройства.

Проигрыватель лазерных дисков Windows"95

Компакт-диски, известные также под названием CD/DA (Compact Disk/Digital Audio), появились в 1980 году, когда фирмы Phillips и Sony ввели стандарт для цифрового аудио под названием "Красная книга". Звук на компакт-дисках помещается на нескольких дорожках, причем одна дорожка обычно содержит одну песню. В соответствии со стандартом "Красной книги" компакт диск может иметь до 99 дорожек, что составляет 74 минуты звучания. Каждая дорожка делится на сектора, рассчитанные на 1/75 секунды звучания, и состоящие из 2352 байтов цифровой информации. Компакт-диск имеет также дополнительные зоны, содержащие так называемый перекрестный чередующийся код Рида-Соломона (CIRC), который управляет защитой данных. Если компакт-диск поцарапан или загрязнен, CIRC позволяет создать музыку. Если восстановить звуковую информацию не удается, то музыка не звучит.

Устройство CD-ROM компьютера может проигрывать обычные музыкальные компакт-диски, причем воспроизведение музыки идет в фоновом режиме, позволяя параллельно выполнять на компьютере любую другую работу. Для прослушивания компакт-диском можно использовать инструмент Windows "Лазерный проигрыватель" из набора стандартных мультимедиа устройств. На панели инструмента имеется набор кнопок для управления проигрываем музыки. Инструмент можно настроить на непрерывное проигрывание, проигрывание дорожек в произвольном порядке или в режиме ознакомления.

Если одновременно активизировать инструменты "Лазерный проигрыватель" и "Фонограф", то можно записать музыкальный фрагмент с компакт диска в WAVE-файл. При этом нужно не забыть предварительно настроить уровень звучания инструмента "Лазерный проигрыватель" с помощью инструмента "Регулятор уровня". Сам "Регулятор уровня" нужно перевести в состояние "Запись" (эта процедура описана выше в разделе "Настройка устройств при записи звука"). Следует также иметь в виду, что полученные таким образом WAVE-файлы могут быть большими по размеру. Чтобы уменьшить размер звуковых файлов нужно в фонографе (Файл-Свойства) установить для записи формат звукового файла, соответствующий пониженному качеству звука.

Инструменты для работы со звуком в Windows Millennium

Некоторые инструменты для работы со звуком в операционной среде Windows Me практически не претерпели изменений: звукозапись и регулятор громкости остались в старой редакции. Несколько иначе теперь до них нужно добираться по кнопке "Пуск": выбираются позиции меню "Программы" – "Стандартные" – "Развлечения". Запись и прослушивание записанных файлов выполняется так же, как описано в предыдущих разделах.

Так, например, если вы собираетесь записывать звук с внешнего устройства (микрофона, компакт-диска, подключенного через линейный вход магнитофона или радиоприемника), то нужно вначале настроить параметры устройств мультимедиа. В инструменте "Регулятор уровня" нужно раскрыть позицию меню "Параметры" и выбрать позицию "Свойства". В появившемся окне "Настройка уровня" нужно установить режим "Запись", при этом в появившемся в нижней части окна списке нужно поставить "галочку" в позиции, соответствующей устройству.

В более поздних версиях Windows появился инструмент Проигрыватель Windows Media с весьма развитыми сервисами. С помощью этого проигрывателя можно принимать радиостанции, ведущие вещание через Интернет, воспроизводить и копировать компакт-диски, искать посвященные музыке страницы в Интернете и создавать списки мультимедийных материалов, имеющихся на компьютере. В русифицированной версии есть подробная справка по этому инструменту с описанием всех заложенных возможностей. Мы же рассмотрим те из них, которые нам пригодятся для озвучивания мультимедиа проектов.

Следует заметить, что проигрыватель Windows Media ориентирован на широкий набор форматов медиа файлов, включая как старые форматы Windows .wav, .avi, так и современные форматы с возможностями сжатия данных и передачи их в Интернете.

В частности, разработан формат, используемый технологиями Microsoft Windows Media (или продуктами сторонних фирм, построенными на базе лицензированной технологии Windows Media) для создания, хранения, редактирования, рассылки, потоковой передачи и воспроизведения мультимедийного содержимого, имеющего временную структуру. Файл Windows Media может содержать аудио-, видеоданные или сценарий. Файл обычно имеет расширение имени.asf или.wma. Файлы Windows Media оптимизированы для потоковой передачи и при этом обеспечивают динамическую настройку звука при загрузке и воспроизведении проигрывателем Windows Media.

Проигрыватель поддерживает набор стандартов сжатия звука и видео MPEG, введенных объединенным техническим комитетом ISO/IEC по информационным технологиям. Стандарт MPEG имеет несколько вариантов, предназначенных для использования в различных ситуациях. Поддерживается также формат MP3, который обеспечивает гораздо более сильное сжатие звуковых данных, чем требовалось раньше для записи цифрового качества. Минута музыки или несколько минут речи, преобразованные в формат MP3, займут на диске около одного мегабайта – почти в десять раз меньше, чем в старом формате WAV. С введением стандарта MP3 стала реальностью передача через Интернет музыки с цифровым качеством.

Мы рассмотрим те возможности проигрывателя, которые нам пригодятся для озвучивания мультимедиа проектов. В первую очередь - возможность копирования музыкальный произведений с компакт-диска в файл. Таким образом можно создать музыкальное сопровождение для презентации или для Web-страницы в Интернете.

Копировать музыку с компакт-диска на жесткий диск очень просто, а во время копирования можно даже слушать этот диск (если позволяют свойства аппаратуры). На качество копии влияют такие параметры, как качество самого компакт-диска и скорость дисковода для компакт-дисков. Во время копирования могут иметь место незначительные дефекты звучания – слабый скрип и потрескивание. Это обычное явление, связанное со спецификой метода считывания дисководом информации с диска. Проигрыватель Windows Media пытается исправить эти дефекты, но они могут все же остаться.

В начале копирования нужно убедиться, что установлен режим цифрового копирования, в противном случае компьютер будет выполнять аналоговое копирование. Чтобы проверить, установлен ли флажок "Цифровое копирование", нужно выбрать в меню "Сервис" команду "Параметры" и затем перейдите на вкладку "Компакт-диск".

Последовательность шагов при копировании записей с аудио компакт-диска:

  • Вызовите проигрыватель Windows Media.
  • Вставьте компакт-диск в дисковод – проигрыватель начнет автоматически воспроизводить музыку. Остановите воспроизведение кнопкой "Остановить".
  • Нажмите в левой части панели инструмента кнопку "Компакт-диск". Появится список, в котором выбраны все записи, если только вы раньше не копировали записи с этого компакт-диска. Если какие-то записи копировать не нужно, снимите стоящие рядом с ними флажки.
  • Установите режим цифрового копирования и требуемое качество звука (которое влияет на размер получаемого файла), выбрав в меню "Сервис" команду "Параметры" и затем перейдя на вкладку "Компакт-диск".
  • На этой же вкладке "Компакт-диск" с помощью кнопки "Изменить" задайте папку, в которую будут копироваться звуковые файлы.
  • Нажмите кнопку "Копировать музыку".

Копирование будет сопровождаться показом объема скопированной информации (в процентах) в позиции копируемой записи, сообщениями "Ожидание обработки" или "Выполнено копирование в библиотеку" для записей, которые, соответственно, ожидают своей очереди или скопированы в файл. Все выбранные записи будут скопированы в заданную папку в виде отдельных файлов в формате.wma.

MIDI-файлы

MIDI (Musical Instrument Digital Interface) - это еще один способ представления звука в компьютере. В отличие от WAVE-файлов, которые хранят цифровое представление звуковых волн, MIDI-файлы хранят только описание звука, представленного как сумма звучания нескольких стандартизованных музыкальных инструментов. Данные в MIDI-файлах представляют собой последовательность записей, содержащих номера нот, их длительность, номера инструментов, а также команды, управляющие звучанием этих музыкальных инструментов.

Аудиокарты, поддерживающие MIDI-формат, имеют встроенные синтезаторы нескольких десятков музыкальных инструментов. Некоторые карты предоставляют возможность создавать собственные инструменты. Качество воспроизведения файлов MIDI зависит от звуковой платы, установленной в компьютере: на разных компьютерах MIDI-файлы могут звучать по разному.

Как правило, звуковые карты обеспечивают Общий MIDI-стандарт:

  • 128 инструментов,
  • 47 барабанных звуков.

Звуковые карты с MIDI-синтезатором отличаются по количеству воспроизводимых инструментов и качеству звучания инструментов, по возможностям совмещения нескольких инструментов, по количеству нот, хранящихся в памяти, по размерам волновых таблиц.

Для создания MIDI-файлов используется специальное программное обеспечение. Программная среда, имитирующая на компьютере музыкальные инструменты, показывает на экране устройство, внешне похожее на магнитофон с несколькими дорожками. Такие магнитофоны обычно используются в профессиональных студиях записи. Данное устройство хранит музыкальный фрагмент, например, партию скрипки, виолончели или тромбона. При воспроизведении дорожек записанная на них информация собирается вместе в единую последовательность для создания необходимого звука.

В плане практического применения отличия звуковых форматов MIDI и Wave состоят в следующем:

  • файлы MIDI значительно меньше по объему, чем файлы Wave при той же длительности звучания музыкального фрагмента;
  • мелодии в формате MIDI явно относятся к жанру "электронной музыки", в формате Wave записываются "живой" голос и звучание "живых" инструментов;
  • мелодии, записанные в виде MIDI-файла, можно изменять путем несложного редактирования записи на нотном стане, в то время как мелодию в файле Wave изменять гораздо сложнее;
  • файлы Wave часто используются в приложениях (при их звуковом оформлении) в виде непродолжительных "аудио-эффектов", файлы MIDI могут использоваться в качестве длительного фонового музыкального сопровождения.

Музыка в Интернет

Поскольку музыка является очень популярным видом искусства, она широко представлена в Интернете. Существует большое число специализированных серверов, посвященных музыкантам, современным композиторам, отдельным музыкальным направлениям. В Интернет можное найти много архивов с музыкальными произведениями.

Http://www.silver.ru). Для прослушивания радиостанции на компьютере пользователя должна быть установлена программа RealAudio Player. Программа проверяет скорость соединения с узлом Интернета, где находятся файлы RealAudio. Затем программа рассчитывает время задержки, после которого начинает воспроизведение еще не полностью полученного файла. Особенностью этих форматов является то, что сам файл с записью не может быть сохранен при получении с сервера, что обеспечивает его защиту от незаконного копирования.

Подготовленные для Интернета музыкальные файлы должны отвечать определенным требованиям. В частности, здесь критичным является объем файлов. В этом отношении Midi-файлы отвечают жестким требованиям к размерам - они очень компактны, а потому многие разработчики Интернет-страниц используют их для музыкального оформления. В Интернете есть немало архивов с Midi-музыкой. И даже сформировались целые сообщества любителей такой электронной музыки.

"Живой" звук в Интернете записывается в специальных сжатых форматах, например, в формате MP3. Имеются программы для записи звука в сжатом формате или для преобразования обычного формата Wave в формат MP3. Эти программы (распространяемые свободно, условно свободные или платные) можно найти в Интернет на сайтах с программным обеспечением для создания и прослушивания музыки. Один из таких сайтов расположен по адресу

Как происходит магнитная запись и воспроизведение звука?
В бытовых магнитофонах используется способ продольной записи, при котором направление записи совпадает с направлением движения носителя записи. При магнитной записи длина волны зависит от скорости движения носителя записи. Связь между длиной волны записи, частотой сигналограммы f и поступательной скоростью носителя записи V выражается отношением, = V/f. Если в этой формуле скорость носителя записи выразить в микрометрах в секунду, частоту записи в герцах, то длина волны записи будет выражена в микрометрах.
Теперь в самых общих чертах представим процесс магнитной записи, основанный на способности некоторых материалов намагничиваться, проходя через внешнее магнитное поле, и сохранять свое намагниченное состояние, называемое остаточным намагничиванием, после выхода из этого поля.
Процесс записи звука представляет собой фиксацию его в форме некоторого следа на носителе записи. Этот след называется дорожкой записи, а носитель записи, на котором уже образовалась дорожка записи звука,- фонограммой. При магнитной записи звука изменяется остаточное намагничивание носителя записи, соответствующее уровню записываемых звуковых колебаний.
В магнитофоне – устройстве, предназначенном для магнитной записи и воспроизведения звука, записываемые звуковые колебания, преобразованные в электрический ток звуковой частоты, усиливаются усилителем записи (УЗ) и поступают в специальное устройство, называемое магнитной головкой записи (ГЗ). В сердечнике и около рабочего зазора ГЗ возникает магнитное поле, пропорциональное току, протекающему через обмотку головки. Напряженность и направление магнитного поля при записи изменяются в такт со звуковыми колебаниями. Поэтому различные участки носителя записимагнитной ленты, равномерно движущейся перед рабочим зазором ГЗ, будут намагничиваться поразному.
При воспроизведении фонограмма с той же скоростью носителя записи перемещается перед рабочим зазором другой головки, называемой магнитной головкой воспроизведения (ГВ). Так как на разных участках фонограммы остаточная намагниченность имеет различное значение, около рабочего зазора ГВ образуется переменное магнитное поле, которое изменяет магнитный поток в сердечнике ГВ. В результате в обмотке ГВ индуцируется электродвижущая сила (э.д.с.), соответствующая изменениям магнитного потока. Это э.д.с. после усиления теперь уже усилителем воспроизведения (УВ) и усилителем мощности (УМ) подводится к громкоговорителю и преобразуется им в звук, являющийся копией записанного.

Как происходит стирание фонограммы?
Когда производится новая запись, старую фонограмму нужно стереть. Для этого по ходу носителя записи перед ГЗ помещают еще одну головку- магнитную головку стирания (ГС). Она питается током ультразвуковой частоты от специального высокочастотного генератора. Около рабочего зазора ГС образуется сильное магнитное поле высокой частоты, спадающее до нуля при удалении от рабочего зазора по ходу движения ленты, которое сначала намагничивает её рабочий слой до насыщения, а затем размагничивает его.

Почему ток высокочастотного подмагничивания улучшает качество записи?
Когда около рабочего зазора ГЗ движется предварительно размагниченная лента и по обмотке ГЗ протекает только ток звуковой частоты (ток записи), зависимость намагниченности рабочего слоя от напряженности магнитного поля около рабочего зазора магнитной головки имеет нелинейный характер. На рис. 1 (кривая I) показана получаемая в таких случаях зависимость между остаточной намагниченностью рабочего слоя Jr от действующего на него напряженности магнитного поля Н. Результат записи подводимого к обмотке ГЗ синусоидального сигнала проиллюстрирован на рис. 1 эпюрой остаточной намагниченности Jr, имеющей искажения.
Когда же по обмотке ГЗ протекают одновременно синусоидальные токи записываемого сигнала и высокочастотного подмагничивания и ток подмагничивания имеет надлежащие значение, характеристика остаточной намагниченности рабочего слоя приобретает вид кривой II. При этом характеристика намагничивания имеет практически прямолинейный участок, используемый при записи звука, с крутизной, значительно превышающий крутизну соответствующего начального участка кривой намагниченности рабочего слоя при отсутствии тока подмагничивания. В результате не только уменьшаются искажения записываемого сигнала, но и увеличивается отдача магнитной фонограммы (э.д.с. ГВ). Следовательно, при записи звука с высокочастотным подмагничиванием запись низкочастотных колебаний осуществляется на прямолинейном участке динамической характеристики, полученной в результате воздействия высокочастотного подмагничивания на ферромагнитный материал рабочего слоя; сами же высокочастотные колебания при существующих скоростях движения магнитной ленты практически не регистрируются.

Обязательно ли колебания тока подмагничивания должны быть синусоидальными?
Нет, не обязательно. Вырабатываемые высокочастотным генератором колебания могут, например, иметь форму треугольных и прямоугольных импульсов, но обязательно должны быть симметричными, ибо асимметрия высокочастотного тока подмагничивания всего в 1 % вызывает увеличение шума фонограммы примерно на 4 дБ. Поскольку асимметрия формы сигнала создается только четными гармониками основного колебания, всегда надо стремиться к построению высокочастотного генератора по двухтактной схеме и принять меры к симметрии катушки генератора.

Как в кассетных стереофонических магнитофонах обеспечивается совместимость с монофоническими фонограммами?
В стереофонических кассетных магнитофонах совместимость с монофоническими фонограммами обеспечивается за счет синфазности стереофонических каналов магнитофона от магнитной головки до громкоговорителя. Тогда для принятого расположения дорожек записи (рис.2), где дорожка монофонической записи перекрывает обе стереофонические дорожки, записанные в одном направлении монофонические фонограммы возможно прослушивать на стереофоническом магнитофоне, а стереофонические – но монофоническом, конечно, и в том и в другом случае только в монофоническом воспроизведении.

От чего зависит время звучания кассетного магнитофона?
При использовании магнитофонной кассеты, габаритные размеры которой ограничены и регламентируются стандартом, время звучания магнитофона зависит от количества ленты в кассете. В свою очередь, количество ленты зависит от её толщины. В настоящее время получили распространение кассеты с общим временем звучания 60, 90 и 120 минут, в которых используется магнитная лента толщиной соответственно 18, 12 и 9 мкм.

Можно ли ленту с рабочим слоем из двуокиси хрома использовать в магнитофонах, рассчитанных на работу с лентой, рабочий слой которой из гаммаокисла железа?
Хромдиоксидная лента требует больших токов подмагничивания и стирания, а также увеличенного тока записи и измененной коррекции АЧХ в высокочастотной части рабочего диапазона по сравнению с лентой с рабочим слоем из гаммаокисла железа. Чтобы магнитофон мог работать с лентами, рабочие слои которых выполнены из разных магнитных порошков, в схему вводят переключатель, изменяющий при переходе с одной ленты на другую токи записи, подмагничивания и стирания, а также изменяющий коррекцию АЧХ. В некоторых простых магнитофонах такой переключатель изменяет только токи подмагничивания и стирания, что не позволяет использовать все положительные свойства хромдиоксидной ленты. В магнитофонах, не имеющих такого переключателя, пользоваться хромоксидной лентой нецелесообразно.

Влияет ли скорость движения магнитной ленты на качество записи (воспроизведения)?
Да, влияет. Чтобы объяснить это, надо вспомнить, что длина волны записи прямо пропорциональна поступательной скорости V носителя записи ленты и обратно пропорциональна частоте записи f (см. с. 4). Следует также напомнить, что э.д.с. головки воспроизведение зависит от длины волны записанных колебаний и уменьшается по мере приближения длины волны к эффективной ширине рабочего зазора головки, а когда длина волны записи станет равна ширине рабочего зазора – э.д.с. головки воспроизведения будет равна нулю. Это явление носит название “щелевых потерь” и описывается так называемой “щелевой функцией”.
Практически установлено, что минимальная длина волны эффективно воспроизводимых колебаний должна быть в два раза больше эффективной ширины рабочего зазора ГВ. Поясним это примером. Допустим, мы имеем магнитофон со скоростью движения ленты 9,53см/с, в котором установлена ГВ с геометрической шириной рабочего зазора 3мкм. Так как эффективная ширина рабочего зазора l обычно на 20-25% больше геометрической ширины, то l=3*1,25=3,75мкм. Заменяя длину волны записи удвоенной эффективности шириной рабочего зазора, определим верхнюю частоту рабочего диапазона f=V / 2l =95 300 / 7,5 =12 707Гц. Такой примерно верхний предел рабочего диапазона частот (12 500Гц) установлен нормативными документами. При тех же условиях на скорости 19,05 см/с возможна запись и воспроизведение частот до 25 400Гц, а на скорости 4,76см/с – до 6347Гц. Надо учитывать и то обстоятельство, что по мере улучшения качественных показателей лент и магнитных головок рабочий диапазон записываемых и воспроизводимых частот непрерывно расширяется.

Что должен показывать индикатор уровня сигнала?
В бытовой аппаратуре магнитной записи звука с помощью встроенного индикатора осуществляется постоянный контроль за уровнем сигнала, подаваемого на запись. Так как большинство магнитофонов имеют универсальный усилитель, индикатор уровня сигнала включают на его выходе. При раздельных усилителях записи и воспроизведения и раздельных головках встроенные индикаторы позволяют контролировать как сигнал, подаваемый на запись, так и уже записанный сигнал, осуществляя тем самым контроль сквозного канала. При этих условиях индикатор должен показывать средние значения контролируемых сигналов, причем максимально допустимый сигнал должен соответствовать номинальному уровню записи.
Следует, однако, отметить, что транзисторные устройства (особенно при низком напряжении питания) и магнитная лента чувствительны к превышению номинального уровня сигнала. Так, превышение номинального уровня записи и сигнала в УЗ приводит к увеличению нелинейных искажений. Это заставляет к индикатору средних значений добавлять еще и пиковый индикатор, реагирующий на кратковременные превышения уровня сигнала.

Какие основные параметры характеризуют работу индикатора уровня сигнала?
Таких параметров два: время интеграции и время обратного хода. За время интеграции принимают длительность одиночного радиоимпульса, при котором сектора электронного индикатора устанавливаются в номинальное положение или указатель стрелочного прибора доходит до 80% шкалы, показывая уровень на 2 дБ ниже значения на непрерывном гармоническом сигнале той же частоты и амплитуды.
В соответствии с ГОСТ 24863-81 время интеграции стрелочного индикатора средних значений может быть от 60 до 350 мс. Для магнитофонов высшей и I групп сложности предпочтительно применение индикатора средних значений с временем интеграции 150-250 мс. Использование такого индикатора предполагает применение и индикатора перегрузки (пикового индикатора) с временем интеграции не более 10 мс или квазипикового индикатора с временем интеграции до 20 мс.
За время обратного хода принимают длительность возврата в первоначальное положение секторов или стрелки индикатора при снятии сигнала.
По тому же ГОСТу время обратного хода указателя индикатора средних значений должно быть 1-2,5 с, причем для магнитофонов высшего и I классов предпочтение должно быть отдано индикатору с временем обратного хода 150-250 мс. Для индикатора квазипиковых значений уровня сигнала время обратного хода может быть 1-5 с.

Почему для стрелочного индикатора в качестве номинального значения показаний принято отклонение стрелки на 80% (-2 дБ) от уровня сигнала (0 дБ)?
Работа стрелочного прибора характеризуется параметром, называемым временем установления. Он показывает, за какой отрезок времени стрелка прибора преодолевает свою инертность и достигает отклонения, соответствующего определенной части уровня сигнала. Иначе говоря, время установления определяет запаздывание, с которым сигнал отображается на индикаторе. Это время должно быть в пределах 100-200 мс и установлено исходя из субъективного восприятия движения стрелки. Оно учитывает требование к отклонению стрелки на 80% (– 2 дБ) от номинального значение сигнала.

Что означает выражение “взвешенное напряжение шумов”?
Взвешенным напряжением шумов называют эффективное значение выходного напряжения, измеренного на линейном выходе магнитофона при отсутствии полезного сигнала с фильтром субъективного восприятия (кривая А, рекомендуемая МЭК). Взвешиваюший фильтр с АЧХ вида А имеет минимальное ослабление (0 дБ) на частоте 1000 Гц; на частоте 20 Гц ослабление достигает – 50,5 дБ, а на частоте 20 000 Гц – 9,3 дБ.

Какие еще требования предъявляют к индикатору уровня сигнала?
Помимо динамических характеристик важным требованием, предъявляемым к индикатору уровня сигнала, является равномерность его АЧХ во всем рабочем диапазоне частот.
Немаловажное значение имеет и шкала прибора. Дело в том, что современные магнитофоны имеют достаточно большой динамический диапазон записываемых сигналов не менее 40 дБ) и этот диапазон должна отображать шкала индикатора. Для этого она должна иметь логарифмический масштаб и быть проградуирована в децибелах. Только при этом условии будут индуцироваться как слабые, так и сильные сигналы. Так как шкала индикатора показывает и превышение номинального уровня сигнала, то общи динамический диапазон, отображаемый шкалой индикатора, составляет около 43-46дБ.
Еще одно требование заключается в отображении кратковременных пиков сигнала с большими амплитудами, т.е. индикатор должен точно следовать за всеми быстрыми изменениями сигнала. Для этого необходимо дополнить индикатор средних значений квазипиковым индикатором либо использовать электроннооптический индикатор, например люминесцентный.
В современных магнитофонах применяют индикаторы не только для контроля сигнала, подаваемого на запись, но и для контроля сигнала в канале воспроизведения. В последнем случае на индикатор должны влиять разница в чувствительности лент, смена головки записи и изменение подмагничивания, Здесь также важны индикация кратковременных пиков с большой амплитудой и изменение показаний индикатора при переходе потока короткого замыкания с 320 на 250 нВб/м при изменении скорости движения ленты в катушечном магнитофоне.
И, наконец, последнее требование. Так как в некоторых кассетных магнитофонах предусмотрена возможность использования лент с рабочим слоем из гаммаокисла железа и двуокиси хрома, то переключатель, изменяющий токи записи и подмагничивания при переходе с одной ленты на другую, должен изменять и показания индикатора, ибо при записи на хромдиоксидную ленту допустим более высокий уровень сигнала и он не должен отображаться как перегрузка (перемодуляция).

Источник Бердский электромеханический техникум: http://www.mini-soft.ru/bemt/osn_mag.php