Кто придумал арифмометр. Что такое арифмометр. Важнейшие события истории развития

(от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.
Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).
Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).
Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.
Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).
Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.
Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

История

Примерно V - VI век до н.э.
Появление абака (Египет, Вавилон)

Примерно VI век н.э.
Появляются китайские счёты.

1623 г.
Первая счётная машина (Германия, Вильгельм Шиккард). Состоит из отдельных устройств - суммирующего, множительного и записывающего. Об этом устройстве почти ничего не было известно до 1957 года, поэтому существенного влияния на развитие счётного машиностроения оно не оказало.

1642 г.
Восьмиразрядная суммирующая машина Блеза Паскаля. В отличие от машины Шиккарда, машина Паскаля получила относительно широкую известность в Европе и до недавнего времени считалась первой счётной машиной в мире. Всего было выпущено несколько десятков машин.

1672 - 1694 гг.
Создан первый арифмометр (Готфрид Лейбниц, Германия). В 1672 году появилась двухразрядная, а в 1694 г. - двенадцатиразрядная машина. Изобретение Лейбница чрезвычайно важно с теоретической точки зрения (во-первых, он создал стандартную архитектура арифмометра, использовавшуюся вплоть до 1970-х годов; во-вторых, создал "валик Лейбница", на основе которого сделан арифмометр Томаса), однако практического распространения оно не получило, так как было слишком сложно и дорого для своего времени.

1820 г.
Первый серийный коммерческий арифмометр, то есть использовавшийся не для демонстрации научному сообществу, а для продажи и последующего применения на практике. (выпускался К. Ш. К. Томасом). В общем, этот арифмометр был сходен с арифмометром Лейбница, но имел ряд конструктивных отличий. Аналогичные машины выпускались до 1920-х, а сходная конструкция, снабжённая клавиатурой - до 1970-х годов.
Типичным примером рычажного арифмометра Томаса является представленный на сайте Bunzel-Delton.

1846 г.
Счислитель Куммера (Российская империя, Польша). Он сходен с машиной Слонимского (1842, Российская Империя), но компактнее. Был широко распространён во всём мире вплоть до 1970-х годов в качестве дешёвого карманного аналога счёт.

1873 - 1890 гг.
Арифмометр Однера (1873 - экспериментальная модель, 1890 - начало серийного производства). Арифмометры Однера практически без изменений выпускались вплоть до 1970-х (возможно, даже до 1980-х) годов.
Типичным арифмометром Однера является Феликс - самый распространенный советский арифмометр.

1876 - 1881 гг.
Арифмометр Чебышева (1876 - суммирующая машина, 1881 - множительно-делительная приставка). В арифмометре Чебышева впервые было реализовано автоматическое умножение методом последовательного сложения и перемещения каретки, а также высоконадёжный способ передачи десятков с помощью планетарного механизма. Однако этот арифмометр не получил практического распространения, так как был неудобен в использовании.

1885 г.
Burroughs (США, У. Бэрроуз) Первая двухпериодная суммирующая машина с полноклавишным вводом и печатающим устройством.

1887 г.
Comptometr (США, Дорра Фельт) - первая серийная однопериодная суммирующая полноклавишная машина. Комптометры с небольшими изменениями выпускались вплоть до 1960-х (1970-х?) годов. Они были мало приспособлены для вычитания, умножения и деления, но сложение не очень длинных чисел на них производилось быстрее, чем на любых других машинах (включая, вероятно, и современные калькуляторы).

1893 г.
Millionaire (Миллионер) - первая (и, возможно, единственная) серийная множительная машина. Для умножения использовала пластины "таблицы умножения", умножение на любую цифру производилась одним поворотом ручки. Множительные машины выпускались до 1930-х годов, затем были вытеснены более удобными и универсальными (хотя и работающими медленнее) вычислительными автоматами.

1910 г. (по некоторым данным - 1905 год)
Mercedes-Euklid (Мерседес-Евклид), модель I, Германия - первый арифмометр с устройством переноса на принципе "пропорциональных реек". Машины на пропорциональных рейках отличаются надёжностью переноса, возможностью работы с высокой скоростью и низким уровнем шума при функционировании (в случае, если остальные устройства также работают тихо). Именно на этом принципе построены самые быстрые арифмометры - Marchant Silent Speed (Мерчент).
Одновременно Mercedes-Euklid (Мерседес-Евклид), модель I" является первым (или, по крайней мере, одним из первых) арифмометров с полуавтоматическим делением (машина способна автоматически вычислять текущую цифру частного).

1913 г.
Mercedes-Euklid (Мерседес-Евклид), модель IV, Германия - видимо, первый распространённый арифмометр с полноклавишной клавиатурой. Первый полноклавишный арифмометр выпустила Monroe (1911), но практически он поступил на рынок только в 1914.
MADAS (Аббревиатура: Multiplication, Automatic Division, Addition, and Subtraction) - первый арифмометр с полностью автоматическим делением. Возможно, он выпущен не в 1913, а в 1908 году.

1919 г.
Mercedes-Euklid (Мерседес-Евклид), модель VII, Германия - видимо, первый в мире вычислительный автомат.

1925 г.
Hamann Manus, мод. A (Гаманн Манус, Германия) - появление арифмометров на основе колеса с переключающей защелкой. Эти арифмометры были сложны, но масса вращающихся частей в них была невелика, поэтому они могли работать со сравнительно большой скоростью.

1932 г.
Facit T (Фацит Т, Швеция) - первый в мире арифмометр с десятиклавишной клавиатурой. Десятиклавишная клавиатура меньше полноклавишной, однако она сложнее конструктивно и медленнее работает. Впоследствии на основе модели Facit TK был выпущен распространённый советский арифмометр ВК-1.

1950-е гг.
Расцвет вычислительных автоматов и полуавтоматических арифмометров. Именно в это время выпущена большая часть моделей электрических вычислительных машин.

1962 - 1964 гг.
Появление первых электронных калькуляторов (1962 - опытная серия ANITA MK VII (Англия), к концу 1964 электронные калькуляторы выпускаются многими развитыми странами, в т.ч. в СССР (ВЕГА КЗСМ)). Начинается жестокая конкурентная борьба между электронными калькуляторами и мощнейшими вычислительными автоматами. Но на производстве маленьких и дешёвых арифмометров (в основном - неавтоматических и с ручным приводом) появление калькуляторов почти не сказалось.

1968 г.
Начато производство Contex-55 - вероятно, самой поздней модели арифмометров с высокой степенью автоматизации.

1969 г.
Пик производства арифмометров в СССР. Выпущено около 300 тысяч "Феликсов" и ВК-1.

1978 г.
Примерно в это время прекращён выпуск арифмометров "Феликс-М". Возможно, это был последний в мире выпускавшийся тип арифмометров.

Арифмометр (от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели. Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1,Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

Разностная машина Чарльза Бэббиджа

Рисунок 9. Ра́зностная маши́на Чарльза Бэббиджа

История создания

Чарльз Бэббидж, находясь во Франции, познакомился с работами Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год. Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени) навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась - разностная . Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Рисунок 10. Разностная машина № 2

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины , но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ.Difference Engine No . 2 ).

Основываясь на работах и советах Бэббиджа, шведский издатель, изобретатель и переводчик Георг Шутц(швед Georg Scheutz ) начиная с 1854 года сумел построить несколько разностных машин и даже сумел продать одну из них канцелярии английского правительства в 1859 году. В 1855 году разностная машина Шутца получила золотую медаль Всемирной выставки в Париже. Спустя некоторое время другой изобретатель, Мартин Вибрег (швед Martin Wiberg ), улучшил конструкцию машины Шутца и использовал её для расчёта и публикации печатных логарифмических таблиц.

В период 1989 по 1991 год к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2 . В 2000 году в том же музее заработал принтер, также придуманный Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструктивных неточностей, обе конструкции заработали безупречно. Эти эксперименты подвели черту под долгими дебатами о принципиальной работоспособности конструкций Чарльза Бэббиджа (некоторые исследователи полагают, что Бэббидж умышленно вносил неточности в свои чертежи, пытаясь таким образом защитить свои творения от несанкционированного копирования).

Предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1 , Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную .

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

Исторический обзор

Модели арифмометров

Счётная машинка Феликс (Музей Воды, Санкт-Петербург)

Арифмометр Facit CA 1-13

Арифмометр Mercedes R38SM

Модели арифмометров различались в основном по степени автоматизации (от неавтоматических, способных самостоятельно выполнять только сложение и вычитание, до полностью автоматических, снабженных механизмами автоматического умножения, деления и некоторыми другими) и по конструкции (наиболее распространены были модели на основе колеса Однера и валика Лейбница). Следует сразу же отметить, что неавтоматические и автоматические машины выпускались в одно и то же время - автоматические, конечно, были гораздо удобнее, но они стоили примерно на два порядка дороже неавтоматических .

Неавтоматические арифмометры на колесе Однера

  • «Ариθмометръ системы В. Т. Однеръ» - первые арифмометры этого типа. Выпускались при жизни изобретателя (примерно 1880-1905 гг.) на заводе в Петербурге.
  • «Союз» - выпускался с 1920 г. на Московском заводе счётных и пишущих машин.
  • «ОригиналДинамо» выпускался с 1920 г. на заводе «Динамо» в Харькове .
  • «Феликс » - самый распространённый арифмометр в СССР. Выпускался с 1929 по конец 1970-х.

Автоматические арифмометры на колесе Однера

  • Facit CA 1-13 - один из самых маленьких автоматических арифмометров
  • ВК-3 - его советский клон.

Неавтоматические арифмометры на валике Лейбница

  • Арифмометры Томаса и ряд похожих рычажных моделей, выпускавшихся до начала XX века.
  • Клавишные машины, например, Rheinmetall Ie или Nisa K2

Автоматические арифмометры на валике Лейбница

  • Rheinmetall SAR - Один из двух лучших вычислительных автоматов Германии. Его отличительная особенность - маленькая десятиклавишная (как на калькуляторе) клавиатура слева от основной - использовалась для ввода множителя при умножении.
  • ВМА, ВММ - его советские клоны.
  • Friden SRW - один из немногих арифмометров, способных автоматически извлекать квадратные корни.

Другие арифмометры

Mercedes Euklid 37MS, 38MS, R37MS, R38MS, R44MS - эти вычислительные автоматы были основными конкурентами Rheinmetall SAR в Германии. Они работали чуть медленнее, но обладали большим числом функций.

Использование

Сложение

  1. Выставьте на рычажках первое слагаемое .
  2. Поверните ручку от себя (по часовой стрелке). При этом число на рычажках вводится в счётчик суммирования.
  3. Выставьте на рычажках второе слагаемое.
  4. Поверните ручку от себя. При этом число на рычажках прибавится к числу в счётчике суммирования.
  5. Результат сложения - на счётчике суммирования.

Вычитание

  1. Выставьте на рычажках уменьшаемое .
  2. Поверните ручку от себя. При этом число на рычажках вводится в счётчик суммирования.
  3. Выставьте на рычажках вычитаемое.
  4. Поверните ручку на себя. При этом число на рычажках вычитается из числа на счётчике суммирования.
  5. Результат вычитания на счётчике суммирования.

Если при вычитании получается отрицательное число, в арифмометре звенит звоночек. Так как арифмометр не оперирует с отрицательными числами, надо «отменить» последнюю операцию: не изменяя положения рычажков и консоли, проверните ручку в обратном направлении.

Умножение

Умножение на небольшое число

  1. Выставьте на рычажках первый множитель.
  2. Крутите ручку от себя, пока на счётчике прокруток не появится второй множитель.

Умножение при помощи консоли

По аналогии с умножением столбиком - умножают на каждый разряд, записывая результаты со смещением. Смещение определяется тем, в каком разряде стоит второй множитель.

Для перемещения консоли используйте ручку спереди арифмометра (Феликс) или клавиши со стрелками (ВК-1, Rheinmetall).

Разберём пример: 1234x5678:

  1. Переместите консоль влево до упора.
  2. Выставьте на рычажках множитель с большей (на глаз) суммой цифр (5678).
  3. Крутите ручку от себя, пока на счётчике прокруток не появится первая цифра (справа) второго множителя (4).
  4. Переместите консоль на один шаг вправо.
  5. Аналогично проделывайте пункты 3 и 4 для остальных цифр (2-й, 3-ей и 4-й). В итоге на счётчике прокруток должен быть второй множитель (1234).
  6. Результат умножения - на счётчике суммирования.

Деление

Рассмотрим случай деления 8765 на 432:

  1. Выставьте на рычажках делимое (8765).
  2. Переместите консоль на пятый разряд (на четыре шага вправо).
  3. Отметьте конец целой части делимого металлическими «запятыми» на всех счётчиках (запятые должны стоять в столбик перед цифрой 5).
  4. Поверните ручку от себя. При этом делимое вводится в счётчик суммирования.
  5. Сбросьте счётчик прокруток.
  6. Выставьте на рычажках делитель (432).
  7. Переместите консоль так, чтобы старший разряд делимого совместился со старшим разрядом делителя, то есть на один шаг вправо.
  8. Крутите ручку на себя, пока не получите отрицательное число (перебор, отмечаемый звуком колокольчика). Верните ручку на один оборот обратно.
  9. Переместите консоль на один шаг влево.
  10. Проделывайте пункты 8 и 9 до крайнего положения консоли.
  11. Результат - модуль числа на счётчике прокруток, целая и дробная части разделены запятой. Остаток - на счётчике суммирования.

Примечания

См. также

Литература

  1. Организация и техника механизации учёта; Б. Дроздов, Г. Евстигнеев, В. Исаков; 1952
  2. Счётные машины; И. С. Евдокимов, Г. П. Евстигнеев, В. Н. Криушин; 1955
  3. Вычислительные машины, В. Н. Рязанкин, Г. П. Евстигнеев, Н. Н. Тресвятский. Часть 1.
  4. Каталог центрального бюро технической информации приборостроения и средств автоматизации; 1958

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Фотографии Арифмометра ВК-1 (Счетмаш), в том числе и изнутри (увеличение по клику мышью)
  • Arif-ru.narod.ru - Большой руссоязычный сайт, посвящённый арифмометрам (рус.)
  • Фотографии советских арифмометров на сайте Сергея Фролова (рус.)
  • rechenmaschinen-illustrated.com: Фотографии и краткие описания многих сотен моделей арифмометров (англ.)
  • (англ.)
Настольная или портативная Чаще всего арифмометры были настольные или "наколенные" (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, машина Бэббиджа).

Механическая Числа вводится в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в "Феликс"-е) или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например "Facit CA1-13" , почти при любой операции используют электромотор).

Точное вычисление Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Сложение и вычитание Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на "Феликсе") эти операции выполняются очень медленно (быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную).

Не программируемый При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

Обзор определений из литературных источников.

В отечественной специальной литературе сложно найти определение арифмометра. Обычно под ним подразумевается арифмометр (в общем смысле) с ручным приводом и рычажным вводом; иногда термин "арифмометр" использовали для обозначения конкретной модели - арифмометра "Феликс" . Приведённому выше общему определению арифмометра соответствует вторая подгруппа первой группы машин по классификации, приведённой в книге Евстигнеева, Рязанкина и Тресвятского .

Однако, как это ни странно, определение арифмометра можно легко найти почти в любом неспециализированном словаре или энциклопедии.

В книге "Советский Энциклопедический словарь" [М., "Советская энциклопедия", 1980] приводится следующее определение:
Арифмометр - настольная механическая вычислительная машина для выполнения сложения, вычитания, умножения и деления, в которой установка чисел и приведение счётного механизма в действие осуществляется вручную.

В Большой Советской Энциклопедии (М., 1969 - 1978) дано другое определение:
АРИФМОМЕТР (от греч. arithmos- число и... метр) - настольная вычислительная машина для выполнения арифметических действий. Машина для арифметических вычислений была изобретена Б. Паскалем (1641), однако первую практическую машину, выполняющую 4 арифметических действия, построил немецкий часовой мастер Ган (1790). В 1890 петербургский механик В. Т. Однер наладил производство русских счётных машин, послуживших прототипом последующих моделей арифмометров.

Следующее определение взято из "Словаря русского языка" С. И. Ожегова [М., "Русский язык", 1984. Пятнадцатое стереотипное издание]:
Арифмометр - настольный ручной вычислительный прибор для механического выполнения арифметических действий

Словарь иностранных слов М.Е.Левберга [М., 1924, II изд., под ред. С.А.Адрианова] ограничивается кратким:
Арифмометр - счётный аппарат

Дореволюционный словарь [выходные данные утрачены вместе с обложкой] предлагает такое определения арифмометра (арифмографа):
Ариθмографъ, Ариθмометръ - счётная машина, механически производящая ариθметическiя дйствiя.

Впервые термин "Арифмометр" введён К.Ш.К. Тома - как название созданной им в 1820 году машины, похожей на приведённую на сайте Bunzel-Delton . Наверное, уже ясно, что устоявшегося определения термина "арифмометр" не существовало. На сайте принято именно определение по нескольким причинам:

  1. Существует ряд моделей арифмометров (например, клавишный КСМ-1 или рычажный Hamann Elma) с гибридным приводом - то есть способных работать как от ручного привода, так и от электромотора.
  2. Существует много пар моделей арифмометров (например, "Mercedes-Euklid IV" и "Mercedes-Euklid I"), отличающихся друг от друга только типом устройства ввода - клавишным и рычажным.
  3. Модельных рядов вычислительных машин, включающих в себя устройства как подходящие, так и не подходящие под данное определение арифмометра, почти не было (Исключение - наиболее автоматизированные суммирующие машины некоторых линий, например, Precisa 166-12, близкие к вычислительным автоматам).
  4. Понятие "арифметические действия" несколько расплывчато. Поэтому целесообразно перечислить эти действия в определении.
  5. Это определение наиболее точно соответствует как принятому в специальной и общей литературе, так и встречающемуся на территории Рунета.
  6. Машины, соответствующие этому определению арифмометра, составляют группу, включающую в себя устройства очень разной конструкции и сложности, но весьма сходные функционально и по алгоритму использования.
  7. Эти устройства также существенно отличаются по функциям и алгоритму использования от остальных типов вычислительных машин.

Когда и кем был придуман первый арифмометр? June 14th, 2014


Все началось со сказки. Ведь «Путешествия Гулливера» - все же сказка? Сказка, которую рассказал злой и остроумный Джонатан Свифт (Jonathan Swift) (1667 — 1745) . Сказка, в которой он осмеял многие глупости и благоглупости современного ему мира. Да что там осмеял - бесстыдно помочился на все, что возможно. Как герой его произведения, который залил мочой королевский дворец в Лилипутии, когда тот загорелся.

В третьей книге о путешествиях Гулливера сей здравомыслящий корабельный врач попадает на летающий остров Лапуту, где проживают гениальные ученые. Ну, от гениальности до сумасшествия один шаг и, по мнению Джонатана Свифта, лапутянские ученые этот шаг сделали. Их изобретения должны бы сулить выгоды всему человечеству. Между тем, выглядят они смешно и жалко.

Среди прочих лапутянских ученых был один, который придумал машину для написания гениальных изобретений, романов, научных трактатов. Все это должно было возникнуть совершенно случайным образом на машине, состоящей из множества кубиков, похожих на игральные кости. Сорок учеников крутили ручки, приводившие в движения все эти кубики, которые в результате поворачивались различными гранями, образовывая всякие слова и сочетания слов, из которых рано или поздно должны были сложиться гениальные творения.

Известно, что Дж.Свифт в виде этого ученого спародировал своего старшего современника Готфрида Вильгельма Лейбница (Gottfried Wilhelm von Leibniz) (1646 — 1716) . Честно говоря, Лейбниц такого осмеяния не был достоин. На его научном счету множество открытий и изобретений, в том числе - математический анализ, дифференциальное и интегральное исчисления, комбинаторика и математическая логика. Царь Петр I (о нем было написано 25.04.2014) во время своего пребывания в Германии в 1712 году встречался с Лейбницем. Лейбниц смог внушить российскому императору две важных идеи, которые повлияли на дальнейшее развитие Российской империи. Это идея о создании Императорской Академии наук и идея «Табели о рангах»

Среди изобретений Лейбница - первый в мире арифмометр, изобретенный им в 1672 году. Этот арифмометр должен был автоматизировать арифметические вычисления, которые до этого считались прерогативой человеческого разума. В общем, Лейбниц на вопрос «может ли машина мыслить?» ответил положительно, и Свифт его за это осмеял.

Собственно говоря, Г.В.Лейбница нельзя считать настоящим изобретателем арифмометра. Он придумал идею, он изготовил прототип. Но по-настоящему арифмометр был придуман в 1874 году Вильгодом Однером. В.Однер был шведом, но жил в Санкт-Петербурге. Изобретение свое он запатентовал сначала в России, а потом в Германии. И производство арифмометров Однера началось в 1890 году в Петербурге, а в 1891 году - в Германии. Так что Россия не только родина слонов, но также родина арифмометров.

После революции производство арифмометров в СССР сохранилось. Арифмометры первоначально производили в Москве, на заводе имени Дзержинского. Поэтому и назвали его «Феликсом». Вплоть до 1960-х годов арифмометры производили заводы в Курске и в Пензе.

«Изюминкой» конструкции арифмометра В.Однера было особенное зубчатое колесо с переменным количеством зубцов. Колесо это называлось «Колесом Однера» и в зависимости от положения специального рычажка могло иметь от одного до девяти зубцов.

На панели арифмометра было 9 разрядов. Соответственно на оси арифмометра были закреплены 9 колес Однера. Числа в разрядах устанавливались перемещением рычажка по панели в одну из 10 позиций, от 0 до 9. При этом на каждом из колес выдвигалось соответствующее количество зубцов. После набора числа можно было провернуть рукоятку в одну сторону (для сложения) или в другую сторону (для вычитания). При этом зубцы каждого колеса входили в зацепление с одной из 9 промежуточных шестерен и проворачивали их на соответствующее количество зубцов. На результирующем счетчике появлялось соответствующее число. После этого набиралось второе число и производилось сложение или вычитание двух чисел. На каретке арифмометра находился счетчик оборотов ручки, который при необходимости обнулялся.

Умножение производилось многократным сложением, а деление - многократным вычитанием. Но умножать многозначные числа, например, 15 на 25, выставив сначала число 15, а затем прокрутив ручку арифмометра 25 раз в одну сторону, было утомительно. При подобном подходе в вычисления легко могла вкрасться ошибка.

Для умножения или деления многозначных чисел каретка делалась подвижной. При этом умножение, например на 25 сводилось к сдвигу каретки вправо на один разряд, двум поворотам ручки в сторону «+». После этого каретка сдвигалась влево и ручка проворачивалась еще 5 раз. Точно так же производилось деление, только ручку следовало вращать в сторону «-»

Арифмометр был простым, но очень эффективным устройством. Пока не появились электронные вычислительные машины и калькуляторы, он широко применялся во всех отраслях народного хозяйства СССР.

И в научных учреждениях тоже. Расчеты по атомному проекту велись на арифмометрах. А вот расчет вывода на орбиту спутников и расчеты водородной бомбы были очень сложными. Произвести их вручную уже не представлялось возможным. Так в Советском Союзе было дано добро на производство и использование электронных вычислительных машин. Хотя кибернетика, как известно, была публичной девкой на ложе американского империализма.