Квантовый компьютер - правда или вымысел

Человечество, как и 60 лет назад, снова стоит на пороге грандиозного прорыва в сфере вычислительных технологий. Уже очень скоро на смену сегодняшним вычислительным машинам придут квантовые компьютеры.

До чего дошёл прогресс

В далёком 1965 году Гордон Мур говорил, что за год количество транзисторов, вмещающихся в кремниевом микрочипе, увеличивается вдвое. Этот темп прогресса последнее время замедлился, и удвоение происходит реже - раз в два года. Даже такой темп в ближайшем будущем позволит достигнуть транзисторам размеров с атом. Дальше - рубеж, который переступить невозможно. С точки зрения физического строения транзистора он никак не может быть меньше атомарных величин. Увеличение размеров чипа проблему не снимает. Работа транзисторов связана с выделением тепловой энергии, и процессоры нуждаются в качественной системе охлаждения. Многоядерная архитектура также не решает вопрос дальнейшего роста. Достижение пика в развитии технологии современных процессоров произойдёт уже скоро.
Разработчики пришли к пониманию этой проблемы в то время, когда у пользователей только начали появляться персональные компьютеры. В 1980 году один из основателей квантовой информатики, советский профессор Юрий Манин, сформулировал идею квантовых вычислений. Уже через год Ричард Фейман предложил первую модель компьютера с квантовым процессором. Теоретические основы того, как должны выглядеть квантовые компьютеры, сформулировал Пол Бениофф.

Принцип работы квантового компьютера

Чтобы понимать, как работает новый процессор, необходимо иметь хотя бы поверхностные знания принципов квантовой механики. Нет смысла приводить здесь математические раскладки и выводить формулы. Обывателю достаточно ознакомиться с тремя отличительными особенностями квантовой механики:

  • Состояние или положение частицы определяется только с какой-либо долей вероятности.
  • Если частица может иметь несколько состояний, то она и находится сразу во всех возможных состояниях. Это принцип суперпозиции.
  • Процесс измерения состояния частицы приводит к исчезновению суперпозиции. Характерно, что полученное измерением знание о состоянии частицы отличается от реального состояния частицы до проведения замеров.

С точки зрения здравого смысла - полная бессмыслица. В нашем обычном мире эти принципы можно представить следующим образом: дверь в комнату закрыта, и в то же время открыта. Закрыта и открыта одновременно.

В этом и заключено разительное отличие вычислений. Обычный процессор оперирует в своих действиях бинарным кодом. Компьютерные биты могут находиться только в одном состоянии - иметь логическое значение 0 или 1. Квантовые компьютеры оперируют кубитами, которые могут иметь логическое значение 0, 1, 0 и 1 сразу. Для решения определённых задач они будут иметь многомиллионное преимущество по сравнению с традиционными вычислительными машинами. Сегодня уже есть десятки описаний алгоритмов работы. Программисты создают особый программный код, который сможет работать по новым принципам вычислений.

Где будет применяться новая вычислительная машина

Новый подход в процессе вычислений позволяет работать с огромными массивами данных и выполнять моментальные вычислительные операции. С появлением первых ЭВМ некоторые люди, включая государственных деятелей, имели большой скепсис относительно применения их в народном хозяйстве. Есть и сегодня люди, полные сомнений относительно важности компьютеров принципиально нового поколения. Весьма продолжительное время технические журналы отказывались печатать статьи о квантовых вычислениях, считая это направление обычной мошеннической уловкой для одурачивания инвесторов.

Новый способ вычислений создаст предпосылки для научных грандиозных открытий во всех отраслях. Медицина решит многие проблемные вопросы, которых накопилось в последнее время довольно много. Станет возможным диагностика раковых заболеваний на более раннем этапе заболевания, чем сейчас. Химическая промышленность сможет синтезировать продукты с уникальными свойствами.

Прорыв в космонавтике не заставит себя ждать. Полёты к другим планетам станут таким же обыденным действием, как и ежедневные поездки по городу. Потенциал, который заложен в квантовых вычислениях, безусловно, преобразит нашу планету до неузнаваемости.

Другая отличительная особенность, которой обладают квантовые компьютеры, это способность квантового вычисления быстро подобрать нужный код или шифр. Обычный компьютер выполняет решение математической оптимизации последовательно, перебирая один вариант за другим. Квантовый конкурент работает сразу со всем массивом данных, молниеносно выбирая наиболее подходящие варианты за беспрецедентно короткое время. Банковские операции будут расшифрованы в мгновение ока, что современным вычислительным машинам недоступно.

Однако банковский сектор может не переживать - его тайну спасёт метод квантового шифрования с парадоксом измерения. При попытке вскрыть код произойдёт искажение передаваемого сигнала. Полученная информация не будет иметь никакого смысла. Секретные службы, шпионаж для которых - обычное дело, заинтересованы в возможностях квантовых вычислений.

Трудности конструирования

Сложность заключается в создании условий, при которых квантовый бит сможет бесконечно долго находиться в состоянии суперпозиции.

Каждый кубит представляет собой микропроцессор, который работает на принципах сверхпроводимости и законах квантовой механики.

Вокруг микроскопических элементов логической машины создаётся целый ряд уникальных условий окружающей среды:

  • температура 0,02 градуса по Кельвину (-269,98 по Цельсию);
  • система защиты от магнитного и электрического излучения (снижает воздействие этих факторов в 50 тысяч раз);
  • система теплоотвода и гашения вибраций;
  • разрежение воздуха ниже атмосферного давления в 100 миллиардов раз.

Небольшое отклонение окружающей среды вызывает мгновенную потерю кубитами состояния суперпозиции, что приводит к сбою в работе.

Впереди планеты всей

Всё вышеописанное можно было бы отнести к творчеству воспалённого разума писателя фантастических рассказов, если бы компания Google совместно с NASA не приобрела в прошлом году у канадской исследовательской корпорации квантовый компьютер D-Wave, процессор которого содержит 512 кубитов.

С его помощью лидер на рынке компьютерных технологий будет решать вопросы машинного обучения в сортировке и анализе больших массивов данных.

Немаловажное разоблачительное заявление сделал и покинувший США Сноуден - АНБ также планирует разработать свой квантовый компьютер.

2014 -начало эры D-Wave systems

Успешный канадский спортсмен Джорди Роуз после сделки с Google и NASA приступил к построению процессора в 1000 кубитов. Будущая модель по скорости и объёмам вычислений превзойдёт первый коммерческий прототип минимум в 300 тысяч раз. Квантовый компьютер, фото которого расположено ниже, является первым в мире коммерческим вариантом принципиально новой технологии вычислений.

Заняться научными разработками его побудило знакомство в университете с трудами Колина Уильямса по квантовым вычислениям. Надо сказать, что Уильямс сегодня работает в корпорации Роуза руководителем бизнес-проектов.

Прорыв или научный обман

Что такое квантовые компьютеры, до конца не знает и сам Роуз. За десять лет его команда прошла путь от создания процессора в 2 кубита до сегодняшнего первого коммерческого детища.

С самого начала исследований Роуз стремился создать процессор с минимальным количеством кубитов в 1 тысячу. И он обязательно должен был иметь коммерческий вариант - чтобы продать и заработать денег.

Многие, зная одержимость и коммерческую хватку Роуза, пытаются обвинить его в подлоге. Якобы за квантовый выдаётся самый обычный процессор. Этому способствует и то, что феноменальное быстродействие новая техника проявляет при выполнении определённых типов вычислений. В остальном же ведёт себя как вполне заурядный компьютер, только очень дорогой.

Когда же они появятся

Ждать осталось недолго. Исследовательская группа, организованная совместными приобретателями прототипа, в скором будущем даст отчёт о результате исследований на D-Wave.
Возможно, скоро грядёт время, в котором квантовые компьютеры перевернут наше представление об окружающем мире. И всё человечество в этот момент выйдет на более высокий уровень своей эволюции.

Наука не стоит на месте и, казалось бы, то, что считалось вчера мистикой сегодня неоспоримая реальность. Так и сейчас, мифы о параллельных мирах могут стать обычным фактом в дальнейшем. Считается, что к этому утверждению помогут прийти исследования в области создания квантового компьютера. Лидерство занимает Япония , более 70% всех исследований приходится на эту страну. Сущность этого открытия больше понятна тем, кто так или иначе связан с физикой. Но большинство из нас оканчивало среднюю школу, где в учебнике 11 класса раскрываются некоторые вопросы квантовой физики.

С чего все начиналось

Напомним, что начало положили два основных открытия, за которые их авторы удостоились Нобелевской премии. В 1918 году Макс Планк открыл квант, а Альберт Эйнштейн в 1921 году фотон. Идея создания квантового компьютера зародилась в 1980 году , когда было доказано об истинности квантовой теории. А идеи начали воплощаться в практику только в 1998 году . Массовые, и при этом достаточно результативные работы, проводятся только в последние 10 лет .

Основные принципы понятны, но с каждым шагом вперед возникает все больше проблем, разрешение которых занимает достаточно много времени, хотя этой проблемой занимается очень много лабораторий во всем мире. Требования к такому компьютеру очень большие, так как точность измерений должна быть очень высокой и нужно свести к минимуму количество внешних воздействий, каждое из которых будет искажать работу квантовой системы.

ЗАЧЕМ НУЖЕН КВАНТОВЫЙ КОМПЬЮТЕР?

На чем основана работа квантового компьютера

Все, в большей или меньшей степени, имеют понятие, как работает обычный компьютер. Смысл его заключается в использование двоичного кодирования, где наличие определенного значения напряжения принимается за 1, а отсутствие 0. , выраженное 0 или 1, считается битом. Работа же квантового компьютера связана с понятием спина. Для кого физика ограничивается школьными знаниями, могут утверждать о существовании трех элементарных частицах и о наличии у них простых характеристик, как масса и заряд.

Но ученые-физики постоянно пополняют класс элементарных частиц и их характеристик, одним из которых является спин. И определенное направление спина частицы принимается за 1, а обратное ему за 0. Это схоже с устройством транзистора. Основной элемент будет уже называться квантовым битом или кубитом. В качестве него могут выступать фотоны, атомы, ионы, ядра атомов.

Главным условием здесь является наличие двух квантовых состояний. Изменение состояния определенного бита в обычном компьютере не ведет к изменению других, а вот в квантовом компьютере изменение одной введет к изменению состояния других частиц. Этим изменением можно управлять, и представьте, что таких частиц сотни.

Представьте только, во сколько раз возрастет производительность такой машины. Но создание целостного новейшего компьютера – это только гипотеза, предстоит большая работа физиков в той области квантовой механики, которая называется многочастичной. Первый мини квантовый компьютер состоял из 16 кубитов . В последнее время выпущены компьютеры с использованием 512 кубитов, но и они уже используются для повышения быстроты выполнения сложнейших операций вычисления. Quipper – язык разработанный специально для таких машин.

Последовательность выполняемых операций

В создании компьютера нового поколения выделяют четыре направления, которые отличаются тем, что выступает в роли логических кубитов:

  1. направление спинов частиц, составляющих основу атома;
  2. наличие или отсутствие куперовской пары в установленном месте пространства;
  3. в каком состоянии находится внешний электрон;
  4. различные состояния фотона.

А теперь рассмотрим схему, по которой работает компьютер. Для начала берется какой-нибудь набор кубитов и записываются их начальные параметры. Выполняются преобразования с использованием логических операций, записывается полученное значение, являющееся результатом выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования составляют логические блоки. Такой процессор был предложен Д. Дойчем , который в 1995 году смог создать цепочку способную выполнять любые вычисления на квантовом уровне. Но такая система дает небольшие погрешности, которые можно немного уменьшить, увеличив количество операций задействованных в алгоритме.

Как Работает Квантовый Компьютер?

Чего достигли

Пока разработаны только два типа квантовых компьютеров, но наука не стоит на месте. Работа обеих машин строится на квантовых явлениях:

  1. связано со сверхпроводимостью. При его нарушениях наблюдается квантование ;
  2. основано на таком свойстве как когерентность. Быстрота вычисления таких компьютеров увеличивается вдвое по сравнению с количеством кубитов.

Второй тип из рассмотренных считается приоритетным в области создания квантовых компьютеров.

Достижения различных стран.

Если вкратце, то достижения последних 10 лет значительные. Можно отметить созданный в Америке двухкубитный компьютер с программным обеспечением. Им же оказалось под силу выпуск двухкубитного компьютера с кристаллом алмаза. В роли кубитов применялось направление спина частиц азота, его составляющих: ядра и электрона. Чтобы обеспечить весомую защиту была разработана очень сложная система позволяющая давать результат с 95% точностью.

ICQT 2017. Джон Мартинис, Google: Квантовый компьютер: жизнь после закона Мура

Для чего все это нужно

Уже говорилось о создании квантовых компьютеров. Эти компьютеры не являются результатом того к чему стремились, но своего покупателя они нашли. Американская компания Lockheed Martin , специализирующаяся в области обороны заплатила 10 млн. долларов. Их приобретение способно находить ошибки сложнейшей программе, установленной на истребителе F-35 . Google с помощью своего приобретения хочет запустить программы для машинного обучения.

Будущее

В разработке квантового компьютера очень заинтересованы крупные компании и государство. Оно приведет к новым открытиям в области разработки криптографического алгоритма. Будет это на руку государству или хакерам решит время. Но работа по созданию и распознаванию криптоключей будет выполняться моментально. Решатся много проблем, связанных с банковской картой.

Сообщения будут передаваться с огромной скоростью и не будет проблем связаться с любой точкой на земном шаре, а может даже за ее пределами.

Такой компьютер поможет сделать , особенно в расшифровке генетического кода. Это приведет к разрешению многих медицинских проблем.

И, конечно же, приоткроет дверь в страну мистических тайн, параллельных миров.

Нас ждут сильнейшие потрясения. Все к чему мы привыкли, является только частью того мира, которому уже дали название Квантовой реальности. Выйти за рамки материального мира помогут , которые и составляют принцип работы квантового компьютера.

По прогнозам экспертов уже совсем скоро, лет через 10, микросхемы в компьютерах достигнут атомных измерений. Представляется логичным, что грядет эпоха квантовых компьютеров, с помощью которых скорость вычислительных систем может повыситься на несколько порядков.

Идея квантовых компьютеров сравнительно нова: в 1981 году Пол Бениофф впервые теоретически описал принципы работы квантовой машины Тьюринга.

В 1930-х Алан Тьюринг впервые описал теоретическое устройство, представляющее собой бесконечную ленту, разделенную на маленькие ячейки. Каждая ячейка может содержать в себе символ 1 или 0, или же остается пустой.

Управляющее устройство перемещается по ленте, считывая символы и записывая новые. Из набора таких символов составляется программа, которую машина должна выполнить.

В квантовой машине Тьюринга, предложенной Бениоффом, принципы работы остаются теми же, с той разницей, что как лента, так и управляющее устройство находятся в квантовом состоянии.

Это значит, что символы на ленте могут быть не только 0 и 1, но и суперпозициями обоих чисел, т. е. 0 и 1 одновременно. Таким образом, если классическая машина Тьюринга способна одновременно исполнять лишь одно вычисление, то квантовая занимается несколькими вычислениями параллельно.

Сегодняшние компьютеры работают по тому же принципу, что и нормальные машины Тьюринга – с битами, которые находятся в одном из двух состояний: 0 или 1. У квантовых компьютеров таких ограничений нет: информация в них зашифрована в квантовых битах (кубитах), которые могут содержать суперпозиции обоих состояний.

Работа над частью квантового компьютера D-Wave

©D-Wave Systems

Физическими системами, реализующими кубиты, могут быть атомы, ионы, фотоны или электроны, имеющие два квантовых состояния. Фактически, если сделать элементарные частицы носителями информации, с помощью них можно построить компьютерную память и процессоры нового поколения.

Благодаря суперпозиции кубитов квантовые компьютеры изначально рассчитаны на выполнение параллельных вычислений. Этот параллелизм, по мнению физика Дэвида Дойча, позволяет квантовым компьютерам выполнять одновременно миллионы вычислений, в то время, как современные процессоры работают лишь с одним единственным.

30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (триллион операций в секунду). Мощность современных настольных компьютеров измеряется всего лишь гигафлопсах (миллиард операций в секунду).

Другое важное квантовомеханическое явление, которое может быть задействовано в квантовых компьютерах, называется «запутанностью». Основная проблема считывания информации из квантовых частиц заключается в том, что в процессе измерения они могут изменить свое состояние, причем совершенно непредсказуемым образом.

Фактически, если считать информацию с кубита, находящегося в состоянии суперпозиции, получим лишь 0 или 1, но никогда не оба числа одновременно. А это значит, что вместо квантового, мы будем иметь дело с нормальным классическим компьютером.

Чтобы решить эту проблему, ученые должны использовать такие измерения, которые не разрушают квантовую систему. Квантовая запутанность предоставляет потенциальное решение.

В квантовой физике, если приложить внешнюю силу к двум атомам, их можно «запутать» вместе таким образом, что один из атомов будет обладать свойствами другого. Это, в свою очередь, приведет к тому, что, например, измеряя спин одного атома, его «запутанный» близнец сразу примет противоположный спин.

Такое свойство квантовых частиц позволяет физикам узнать значение кубита, не измеряя его непосредственно.

В один прекрасный день квантовые компьютеры могут заменить кремниевые чипы, подобно тому, как транзисторы пришли на смену вакуумным трубкам. Однако современные технологии пока еще не позволяют строить полноценные квантовые компьютеры.

Сборка процессора квантового компьютера D-Wave Two

©D-Wave Systems

Тем не менее, с каждым годом исследователи объявляют о новых достижениях в области квантовых технологий, и надежда, что когда-нибудь квантовые компьютеры смогут превзойти обычные, продолжает крепнуть.

1998

Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации.

2000

В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости.

2001

Демонстрация вычисления алгоритма Шора специалистами из IBM и Стэнфордского университета на 7-кубитном квантовом компьютере.

2005

В институте квантовой оптики и квантовой информации при Иннсбрукском университете впервые удалось создать кубайт (сочетание 8 кубитов) с помощью ионных ловушек.

2007

Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку.

С 2011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.

Кандидат физико-математических наук Л. ФЕДИЧКИН (Физико-технологический институт Российской академии наук.

Используя законы квантовой механики, можно создать принципиально новый тип вычислительных машин, которые позволят решать некоторые задачи, недоступные даже самым мощным современным суперкомпьютерам. Резко возрастет скорость многих сложных вычислений; сообщения, посланные по линиям квантовой связи, невозможно будет ни перехватить, ни скопировать. Сегодня уже созданы прототипы этих квантовых компьютеров будущего.

Американский математик и физик венгерского происхождения Иоганн фон Нейман (1903- 1957).

Американский физик-теоретик Ричард Филлипс Фейнман (1918-1988).

Американский математик Питер Шор, специалист в области квантовых вычислений. Предложил квантовый алгоритм быстрой факторизации больших чисел.

Квантовый бит, или кубит. Состояниям и отвечают, например, направления спина атомного ядра вверх или вниз.

Квантовый регистр - цепочка квантовых битов. Одно- или двухкубитовые квантовые вентили осуществляют логические операции над кубитами.

ВВЕДЕНИЕ, ИЛИ НЕМНОГО О ЗАЩИТЕ ИНФОРМАЦИИ

Как вы думаете, на какую программу в мире продано наибольшее количество лицензий? Не рискну настаивать, что знаю правильный ответ, но мне точно известен один неверный: это не какая-либо из версий Microsoft Windows. Самую распространенную операционную систему опережает скромный продукт фирмы RSA Data Security, Inc. - программа, реализующая алгоритм шифрования с открытым ключом RSA, названный так в честь его авторов - американских математиков Ривеста, Шамира и Адельмана.

Дело в том, что алгоритм RSA встроен в большинство продаваемых операционных систем, а также во множество других приложений, используемых в различных устройствах - от смарткарт до сотовых телефонов. В частности, имеется он и в Microsoft Windows, а значит, распространен заведомо шире этой популярной операционной системы. Чтобы обнаружить следы RSA, к примеру, в браузере Internet Explorer (программе для просмотра www-страниц в сети Интернет), достаточно открыть меню "Справка" (Help), войти в подменю "О программе" (About Internet Explorer) и просмотреть список используемых продуктов других фирм. Еще один распространенный браузер Netscape Navigator тоже использует алгоритм RSA. Вообще, трудно найти известную фирму, работающую в области высоких технологий, которая не купила бы лицензию на эту программу. На сегодняшний день фирма RSA Data Security, Inc. продала уже более 450 миллионов(!) лицензий.

Почему же алгоритм RSA оказался так важен?

Представьте, что вам необходимо быстро обменяться сообщением с человеком, находящимся далеко. Благодаря развитию Интернета такой обмен стал доступен сегодня большинству людей - надо только иметь компьютер с модемом или сетевой картой. Естественно, что, обмениваясь информацией по сети, вы бы хотели сохранить свои сообщения в тайне от посторонних. Однако полностью защитить протяженную линию связи от прослушивания невозможно. Значит, при посылке сообщений их необходимо зашифровать, а при получении - расшифровать. Но как вам и вашему собеседнику договориться о том, каким ключом вы будете пользоваться? Если послать ключ к шифру по той же линии, то подслушивающий злоумышленник легко его перехватит. Можно, конечно, передать ключ по какой-нибудь другой линии связи, например отправить его телеграммой. Но такой метод обычно неудобен и к тому же не всегда надежен: другую линию тоже могут прослушивать. Хорошо, если вы и ваш адресат заранее знали, что будете обмениваться шифровками, и потому заблаго-временно передали друг другу ключи. А как быть, например, если вы хотите послать конфиденциальное коммерческое предложение возможному деловому партнеру или купить по кредитной карточке понравившийся товар в новом Интернет-магазине?

В 1970-х годах для решения этой проблемы были предложены системы шифрования, использую щие два вида ключей для одного и того же сообщения: открытый (не требующий хранения в тайне) и закрытый (строго секретный). Открытый ключ служит для шифрования сообщения, а закрытый - для его дешифровки. Вы посылаете вашему корреспонденту открытый ключ, и он шифрует с его помощью свое послание. Все, что может сделать злоумышленник, перехвативший открытый ключ, - это зашифровать им свое письмо и направить его кому-нибудь. Но расшифровать переписку он не сумеет. Вы же, зная закрытый ключ (он изначально хранится у вас), легко прочтете адресованное вам сообщение. Для зашифровки ответных посланий вы будете пользоваться открытым ключом, присланным вашим корреспондентом (а соответствующий закрытый ключ он оставляет себе).

Как раз такая криптографическая схема и применяется в алгоритме RSA - самом распространенном методе шифрования с открытым ключом. Причем для создания пары открытого и закрытого ключей используется следующая важная гипотеза. Если имеется два больших (требующих более сотни десятичных цифр для своей записи) простых числа M и K, то найти их произведение N=MK не составит большого труда (для этого даже не обязательно иметь компьютер: достаточно аккуратный и терпеливый человек сможет перемножить такие числа с помощью ручки и бумаги). А вот решить обратную задачу, то есть, зная большое число N, разложить его на простые множители M и K (так называемая задача факторизации ) - практически невозможно! Именно с этой проблемой столкнется злоумышленник, решивший "взломать" алгоритм RSA и прочитать зашифрованную с его помощью информацию: чтобы узнать закрытый ключ, зная открытый, придется вычислить M или K.

Для проверки справедливости гипотезы о практической сложности разложения на множители больших чисел проводились и до сих пор еще проводятся специальные конкурсы. Рекордом считается разложение всего лишь 155-значного (512-битного) числа. Вычисления велись параллельно на многих компьютерах в течение семи месяцев 1999 года. Если бы эта задача выполнялась на одном современном персональном компьютере, потребовалось бы примерно 35 лет машинного времени! Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известных на сегодня вычислительных алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000-значное - за 10 25 (!) лет. (Для сравнения возраст Вселенной равен ~10 10 лет.)

Поэтому криптографические алгоритмы, подобные RSA, оперирующие достаточно длинными ключами, считались абсолютно надежными и использовались во многих приложениях. И все было хорошо до тех самых пор ...пока не появились квантовые компьютеры.

Оказывается, используя законы квантовой механики, можно построить такие компьютеры, для которых задача факторизации (и многие другие!) не составит большого труда. Согласно оценкам, квантовый компьютер с памятью объемом всего лишь около 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители в течение всего нескольких часов!

КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.

В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН 4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман, хорошо знакомый постоянным читателям "Науки и жизни". Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических. Пути решения этой проблемы наметил в 1995 году П. Шор, разработав схему кодирования квантовых состояний и коррекции в них ошибок. К сожалению, тема коррекции ошибок в квантовых компьютерах так же важна, как и сложна, чтобы изложить ее в данной статье.

УСТРОЙСТВО КВАНТОВОГО КОМПЬЮТЕРА

Прежде чем рассказать, как же устроен квантовый компьютер, вспомним основные особенности квантовых систем (см. также "Наука и жизнь" № 8, 1998 г.; № 12, 2000 г.).

Для понимания законов квантового мира не следует прямо опираться на повседневный опыт. Обычным образом (в житейском понимании) квантовые частицы ведут себя лишь в том случае, если мы постоянно "подглядываем" за ними, или, говоря более строго, постоянно измеряем, в каком состоянии они находятся. Но стоит нам "отвернуться" (прекратить наблюдение), как квантовые частицы тут же переходят из вполне определенного состояния сразу в несколько различных ипостасей. То есть электрон (или любой другой квантовый объект) частично будет находиться в одной точке, частично в другой, частично в третьей и т. д. Это не означает, что он делится на дольки, как апельсин. Тогда можно было бы надежно изолировать какую-нибудь часть электрона и измерить ее заряд или массу. Но опыт показывает, что после измерения электрон всегда оказывается "целым и невредимым" в одной единственной точке, несмотря на то, что до этого он успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называют суперпозицией квантовых состояний и описывают обычно волновой функцией, введенной в 1926 году немецким физиком Э. Шредингером. Модуль значения волновой функции в любой точке, возведенный в квадрат, определяет вероятность найти частицу в этой точке в данный момент. После измерения положения частицы ее волновая функция как бы стягивается (коллапсирует) в ту точку, где частица была обнаружена, а затем опять начинает расплываться. Свойство квантовых частиц быть одновременно во многих состояниях, называемое квантовым параллелизмом , успешно используется в квантовых вычислениях.

Квантовый бит

Основная ячейка квантового компьютера - квантовый бит, или, сокращенно, кубит (q-бит). Это квантовая частица, имеющая два базовых состояния, которые обозначаются 0 и 1 или, как принято в квантовой механике, и. Двум значениям кубита могут соответствовать, например, основное и возбужденное состояния атома, направления вверх и вниз спина атомного ядра, направление тока в сверхпроводящем кольце, два возможных положения электрона в полупроводнике и т.п.

Квантовый регистр

Квантовый регистр устроен почти так же, как и классический. Это цепочка квантовых битов, над которыми можно проводить одно- и двухбитовые логические операции (подобно применению операций НЕ, 2И-НЕ и т.п. в классическом регистре).

К базовым состояниям квантового регистра, образованного L кубитами, относятся, так же как и в классическом, все возможные последовательности нулей и единиц длиной L. Всего может быть 2 L различных комбинаций. Их можно считать записью чисел в двоичной форме от 0 до 2 L -1 и обозначать. Однако эти базовые состояния не исчерпывают всех возможных значений квантового регистра (в отличие от классического), поскольку существуют еще и состояния суперпозиции, задаваемые комплексными амплитудами, связанными условием нормировки. Классического аналога у большинства возможных значений квантового регистра (за исключением базовых) просто не существует. Состояния классического регистра - лишь жалкая тень всего богатства состояний квантового компьютера.

Представьте, что на регистр осуществляется внешнее воздействие, например, в часть пространства поданы электрические импульсы или направлены лазерные лучи. Если это классический регистр, импульс, который можно рассматривать как вычислительную операцию, изменит L переменных. Если же это квантовый регистр, то тот же импульс может одновременно преобразовать до переменных. Таким образом, квантовый регистр, в принципе, способен обрабатывать информацию в раз быстрее по сравнению со своим классическим аналогом. Отсюда сразу видно, что маленькие квантовые регистры (L<20) могут служить лишь для демонстрации отдельных узлов и принципов работы квантового компьютера, но не принесут большой практической пользы, так как не сумеют обогнать современные ЭВМ, а стоить будут заведомо дороже. В действительности квантовое ускорение обычно значительно меньше, чем приведенная грубая оценка сверху (это связано со сложностью получения большого количества амплитуд и считывания результата), поэтому практически полезный квантовый компьютер должен содержать тысячи кубитов. Но, с другой стороны, понятно, что для достижения действительного ускорения вычислений нет необходимости собирать миллионы квантовых битов. Компьютер с памятью, измеряемой всего лишь в килокубитах, будет в некоторых задачах несоизмеримо быстрее, чем классический суперкомпьютер с терабайтами памяти.

Стоит, однако, отметить, что существует класс задач, для которых квантовые алгоритмы не дают значительного ускорения по сравнению с классическими. Одним из первых это показал российский математик Ю. Ожигов, построивший ряд примеров алгоритмов, принципиально не ускоряемых на квантовом компьютере ни на один такт.

И тем не менее нет сомнения, что компьютеры, работающие по законам квантовой механики, - новый и решающий этап в эволюции вычислительных систем. Осталось только их построить.

КВАНТОВЫЕ КОМПЬЮТЕРЫ СЕГОДНЯ

Прототипы квантовых компьютеров существуют уже сегодня. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом (IBM), объявила о сборке 5-битового квантового компьютера. Несомненно, это большой успех. К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности.

Существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты.

И. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул.

Российский исследователь М. В. Фейгельман, работающий в Институте теоретической физики им. Л. Д. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводни ковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце - по часовой стрелке и против нее. Переключать такие кубиты можно магнитным полем.

В Физико-технологическом институте РАН группа под руководством академика К. А. Валиева предложила два варианта размещения кубитов в полупроводниковых структурах. В первом случае роль кубита выполняет электрон в системе из двух потенциальных ям, создаваемых напряжением, приложенным к мини-электродам на поверхности полупроводника. Состояния 0 и 1 - положения электрона в одной из этих ям. Переключается кубит изменением напряжения на одном из электродов. В другом варианте кубитом является ядро атома фосфора, внедренного в определенную точку полупровод ника. Состояния 0 и 1 - направления спина ядра вдоль либо против внешнего магнитного поля. Управление ведется с помощью совместного действия магнитных импульсов резонансной частоты и импульсов напряжения.

Таким образом, исследования активно ведутся и можно предположить, что в самом недалеком будущем - лет через десять - эффективный квантовый компьютер будет создан.

ВЗГЛЯД В БУДУЩЕЕ

Таким образом, весьма возможно, что в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор. Для того чтобы снизить уровень шумов, критически важный для нормальной работы квантового компьютера, первые модели, по всей видимости, придется охлаждать жидким гелием. Вероятно, первые квантовые компьютеры будут громоздкими и дорогими устройствами, не умещающимися на письменном столе и обслуживаемыми большим штатом системных программистов и наладчиков оборудования в белых халатах. Доступ к ним получат сначала лишь государственные структуры, затем богатые коммерческие организации. Но примерно так же начиналась и эра обычных компьютеров.

А что же станет с классическими компью-терами? Отомрут ли они? Вряд ли. И для классических, и для квантовых компьютеров найдутся свои сферы применения. Хотя, по всей видимости, соотношение на рынке будет все же постепенно смещаться в сторону последних.

Внедрение квантовых компьютеров не приведет к решению принципиально нерешаемых классических задач, а лишь ускорит некоторые вычисления. Кроме того, станет возможна квантовая связь - передача кубитов на расстояние, что приведет к возникновению своего рода квантового Интернета. Квантовая связь позволит обеспечить защищенное (законами квантовой механики) от подслушивания соединение всех желающих друг с другом. Ваша информация, хранимая в квантовых базах данных, будет надежнее защищена от копирования, чем сейчас. Фирмы, производящие программы для квантовых компьютеров, смогут уберечь их от любого, в том числе и незаконного, копирования.

Для более глубокого освоения этой темы можно прочитать обзорную статью Э. Риффеля, В. Полака "Основы квантовых вычислений", опубликованную в издаваемом в России журнале "Квантовые компьютеры и квантовые вычисления" (№ 1, 2000 г.). (Кстати, это первый и пока единственный в мире журнал, посвященный квантовым вычислениям. Дополнительную информацию о нем можно узнать в Интернете по адресу http://rcd.ru/qc .). Освоив эту работу, вы сможете читать научные статьи по квантовым вычислениям.

Несколько большая предварительная математическая подготовка потребуется при чтении книги А. Китаева, А. Шеня, М. Вялого "Классические и квантовые вычисления" (М.: МЦНМО-ЧеРо, 1999).

Ряд принципиальных аспектов квантовой механики, существенных для проведения квантовых вычислений, разобран в книге В. В. Белокурова, О. Д. Тимофеевской, О. А. Хрусталева "Квантовая телепортация - обыкновенное чудо" (Ижевск: РХД, 2000).

В издательстве РХД готовится к выходу в виде отдельной книги перевод обзора А. Стина, посвященный квантовым компьютерам.

Следующая литература будет полезна не только в познавательном, но и в историческом плане:

1) Ю. И. Манин. Вычислимое и невычислимое.

М.: Сов. радио, 1980.

2) И. фон Нейман. Математические основы квантовой механики.

М.: Наука, 1964.

3) Р. Фейнман. Моделирование физики на компьютерах // Квантовый компьютер и квантовые вычисления:

Сб. в 2-х т. - Ижевск: РХД, 1999. Т. 2, с. 96-123.

4) Р. Фейнман. Квантово-механические компьютеры

// Там же, с. 123.-156.

См. в номере на ту же тему

Передовые суперкомпьютеры уже способны выполнять десятки квадриллионов операций в секунду. Но есть целый ряд задач, которые они решить не могут. Приведем пример.

Нас всюду окружают криптографические технологии: они используются в мессенджерах или операциях с банковскими картами, криптовалютах, при безопасном хранении данных и так далее. Информация постоянно шифруется на этапе ее отправки и дешифруется после получения, чтобы ее могли прочитать только те, для кого она предназначена. Есть различные системы шифрования (AES, RSA), но все они так или иначе строятся на использовании факторизации (разложения на простые множители).

Как вы думаете, какие именно простые числа мы перемножили, чтобы получить число ниже, представляющее собой 2048-битный ключ шифрования (такими ключами, сгенерированными по алгоритму RSA, адресаты обмениваются, чтобы подписывать с их помощью секретные сообщения)?

Не трудитесь: узнать, из каких простых чисел они сделаны - сложнейшая задача. Но трудна она не только для вас, но и для классического компьютера. Если мы используем все вычислительные мощности в мире, то ее решение займет миллиард лет! А вот квантовый компьютер смог бы решить ее за 100 секунд. Сделать это позволит его бешеная скорость.

Столь серьезное увеличение в скорости решения задач, кстати, повлечет за собой перестройку всей мировой финансовой системы, ведь без надежного шифрования она просто не сможет функционировать (шутка ли - каждый, у кого будет квантовый компьютер, сможет подделать информацию о том, что владеет любой суммой денег).

Если изобретение квантового компьютера повлечет за собой такие масштабные изменения, может быть, лучше обойтись вовсе без него? Едва ли, ведь пользы от таких машин несравнимо больше, чем хлопот. Существующие двоичные суперкомпьютеры очень мощны, однако, несмотря на впечатляющие характеристики, они вряд ли будут способны решить все задачи, которые планирует поставить перед ними человек.

Сегодня, к примеру, порядка 35% времени суперкомпьютеров уходит на решение задач в области квантовой химии и материаловедения: чтобы просчитывать поведение отдельных молекул, требуются колоссальные затраты вычислительных ресурсов (и речь только о тех задачах, способ решения которых нам известен уже сейчас).

В дополнение к этому есть целый ряд задач, решение которых займет у классических компьютеров миллионы лет или которые пока невозможно решить совсем, даже теоретически. Так, чтобы точно понять, как, к примеру, пойдет та или иная химическая реакция, нужно учитывать задействованные в ней квантовые процессы, а сделать это можно только при помощи квантового компьютера. В случае успеха это даст людям возможность досконально изучить (а значит, и повторить) такие явление, как, например, фотосинтез.

Почему же квантовые компьютеры такие мощные? Главное, что отличает их от классических двоичных, - использование кубитов, которые, в отличие от битов, способны одновременно принимать два значения: 0 и 1. Такая «двойственность» обеспечивает параллельность квантовых вычислений, ведь больше не нужно перебирать все возможные состояния системы. Набор всего из 30 кубитов может сформировать 2 30 (то есть более миллиарда) двоичных последовательностей - именно такое количество битов потребуется на их одновременную обработку. Просто космическая экономия места, энергии и времени!

На квантовом компьютере мощностью 100-200 кубит мы могли бы строить точные симуляции сложных химических процессов: таких, как, например, азотная фиксация - превращение содержащегося в атмосфере азота в азотосодержащие соединения. Эта реакция широго используется для получения аммиака, необходимого для производства удобрений, критически важных для обеспечения едой постоянно растущего населения планеты. Промышленный процесс получения аммиака практически не изменился за последнее столетие и отличается большой энергоемкостью: на производство его уходит от 1% до 3% мировых запасов природного газа. На достаточно мощном квантовом компьютере путем симуляции ученые могли бы подобрать более эффективные катализаторы, которые помогут сделать реакцию менее энергозатратной.

Благодаря квантовому компьютеру могут быть решены и такие задачи, как поиск разумной жизни во Вселенной, разработка новых способов передачи энергии на основе сверхпроводников, диагностирование рака на более ранних стадиях, моделирование молекул ДНК и создание веществ, которые помогут очистить воздух от вредных загрязнений. Высокая вычислительная мощность квантовых компьютеров может серьезно помочь и в создании новых эффективных лекарств.

Обнадеживает то, что человечество все ближе подбирается к созданию полноценного квантового компьютера - мировые корпорации уже давно инвестируют в эту область. В частности, системы топологических кубитов, созданные в Microsoft, уже показали способность сохранять квантовое состояние в течение длительного времени без дополнительных ухищрений, а также масштабироваться до размеров полноценного компьютера. А в конце прошлого года компания представила язык программирования для квантового компьютера.

Идея, еще 30 лет назад казавшаяся чистой фантастикой, сегодня приобрела реальные очертания. Кто знает, может, уже в следующем десятилетии мы станем свидетелями новой эры цифровых технологий и квантовый компьютер преобразит наш мир до неузнаваемости, предоставив человеку возможности, о которых ранее он мог лишь мечтать.