Максимальное количество оперативной памяти на материнской плате. Как узнать максимальный объем оперативной памяти на компьютере

Наверное многие помнят, или слышали про первые, на сегодняшний день уже древние компьютеры, такие как к примеру ZX Spectrum? Кто не помнит или забыл, то напомним, что оперативная память для этих динозавров измерялась в килобайтах. Да-да, именно в килобайтах, даже не в мегабайтах. Сейчас любой мобильник в разы мощнее древних Спектрумов Технология продвигается, время бежит, и оперативной памяти уже требуется не килобайты, а Гигабайты. В будущем и этого конечно будет мало, и наши сегодняшние самые мощные компьютеры, тоже будут называть динозаврами прошлого. Но вернемся в наше время.

Речь сегодня пойдет о том — Сколько оперативной памяти поддерживает Windows XP, 7, 8.1 и 10?
Допустим вы захотели в свой компьютер установить дополнительные линейки оперативки. Предположим было у вас 4 Гб, воткнули еще 4 Гб. Включаем комп, а в свойствах все те-же 4Гб (Да и то это округленный показатель, на деле максимум 3.750 Гб). Почему так? О ужас!!!

Почему остались те-же 4 Гб оперативы? Давайте разберемся с этими вопросами, раз и навсегда.

Все операционные системы Windows с разрядностью x86 (32 bit) не важно какая версия, все они видят только до 4 Гб. памяти. Вы хоть истыкайте памятью весь компьютер, как ежика с иголками, он будет видеть только до 4 гигабайта. Связано это с внутренними архитектурными ограничениями.

Если вы установите на компьютере 64 битную операционную систему, то все ваши линейки памяти система и увидит.

Сколько оперативной памяти максимально видит разная версия Windows

Windows XP
Windows XP x86 (32 bit): 4 гб
Windows XP x64 (64 bit): 128 Гб

Windows 7
Windows 7 Starter x86 (32 bit): 2 Гб
Windows 7 Home Basic x86 (32 bit): 4 Гб
Windows 7 Home Premium x86 (32 bit): 4 Гб
Windows 7 Professional x86 (32 bit): 4 Гб
Windows 7 Enterprise x86 (32 bit): 4 Гб
Windows 7 Ultimate x86 (32 bit): 4 Гб
Windows 7 Home Basic x64 (64 bit): 8 Гб
Windows 7 Home Premium x64 (64 bit): 16 Гб
Windows 7 Professional x64 (64 bit): 192 Гб
Windows 7 Enterprise x64 (64 bit): 192 Гб
Windows 7 Ultimate x64 (64 bit): 192 Гб

Windows 8 / 8.1
Windows 8 x86 (32 bit): 4 Гб
Windows 8 Professional x86 (32 bit): 4 Гб
Windows 8 Enterprise x86 (32 bit): 4 Гб
Windows 8 x64 (64 bit): 128 Гб
Windows 8 Professional x64 (64 bit): 512 Гб
Windows 8 Enterprise x64 (64 bit): 512 Гб

Windows 10
Windows 10 Home x86 (32 bit): 4 Гб
Windows 10 Home x64 (64 bit): 128 Гб
Windows 10 Pro x86 (32 bit): 4 Гб
Windows 10 Pro x64 (64 bit): 512 Гб

Как видите, 64-битные редакции поддерживает огромный объем оперативной памяти, а вот в случае с 32-битной версией нужно быть внимательным с выбором: зачастую система не поддерживает даже указанные 4 Гб.

Итог: Максимальное количество оперативной памяти, которые способны «увидеть» 32 разрядные версии Windows - это 4 Гб. Таким образом, если у вас больший объем RAM, следует установить 64-разрядную версию, чтобы воспользоваться этой памятью. Для того, чтобы узнать, какая версия Windows установлена на вашем компьютере, откройте пункт «Система» в панели управления (или кликните по «Мой компьютер» правой кнопкой мыши и выберите «Свойства»).

Оперативная память — это компонент компьютера. Важнейшая характеристика измеряется в гигабайтах: чем больше, тем лучше. Прочие характеристики важны значительно меньше — тайминги и количество планок, двухканальность… У этого устройства множество других названий:

  • «мозги»
  • память
  • оперативка
  • ОЗУ (оперативное запоминающее устройство)
  • SDRAM

Как выглядит оперативная память

В этой статье подробно объясняется предназначение оперативной памяти, способы самостоятельной установки (не сложнее, чем заменить лампочку!), тонкости выбора. Главное: после прочтения пары страниц этого текста неопытный пользователь легко разберётся в маркетинговых заклинаниях про частоты с мегагерцами и будет знать – пригодится ли ещё гигабайт памяти, или продавец впаривает ненужный товар.

Что делает оперативная память: понятное объяснение

Временно хранит операционную информацию. Не ту, которая нужна для сохранения фильмов с музыкой, а ту которая используется самой Windows, программами, играми и т.д. Такая информация храниться только во включённом состоянии ПК. Компьютер включается, стартует система – и во время старта запускаются программы и модули, которые записывают нужные данные с HDD в ОЗУ. Так, чтобы комп мог «общаться» с этими данными очень быстро – т.е., оперативно оперировать (отсюда и термин – «оперативная»).

Если говорить вкратце, то – это сверхбыстрая память, которая раз в 300 шустрее жёсткого диска. Быстрый отклик работающей программы (мгновенное появление меню при правой мышиной кнопке, скажем) – заслуга высоких скоростей «оперативки».

Аналог оперативной памяти в реальном мире – то, что хранится в мозгу человека короткое время. Эти данные готовы к мозговой обработке в любую секунду. С оперативкой в мозгу можно сравнить, например, информацию которую мы запоминаем на короткое время, во время выполнения какой-либо работы. Например, считаем, 9 + 3 = 1 и 2 в уме… Или другой пример, официант запоминает что ему заказал столик — эту информацию он скорее всего забудет через пару часов, заменив её другой. Разумеется, сравнивать память человека и память компьютера не очень правильно, потому что мозг работает по-другому и все что попало в оперативку, может запомниться и попасть в долгую память (в HDD), чего не может быть с компьютером… С HDD, можно сравнить память долгосрочную, например мы прочитали книгу и что-то запомнили. Но доступ к таким данным порой не быстрый, потому что, чтобы вспомнить, нужно взять книжку с полки и освежить память — такую память можно сравнить с памятью жесткого диска в компьютере — не быстрая но фундаментальная.

Наконец, есть ещё и совсем уж молниеносные виды памяти. В компьютере это процессорный кэш, который намертво вшит в CPU, а в человеческой голове – то, что намертво и накрепко вызубрено ещё со школьной парты: таблица умножения, «жи- ши — пиши с буквой и», «дважды два» и т.п.

Сколько нужно Гб оперативной памяти

Чем больше, тем лучше? Да, но лишь до определённого предела. Современные компьютеры (от 2012-14 года начиная) крайне редко оснащаются одним гигабайтом ОЗУ – это уже позавчерашний день и экспонат музея, а не реальный товар в 2017 году.

2 гигабайта оперативной памяти – типичная ёмкость откровенно бюджетных машинок. Пожалуй, этого достаточно – но крайне некомфортно в плане скорости и отзывчивости уже при открытом браузере, Word’е, Скайпе и антивирусе. Нет, на 2017 год двух гигабайт невероятно мало — но кое-как жить с ними можно.

4 гигабайта ОЗУ – некое «пороговое» значение ёмкости оперативной памяти. Четырьмя гигабайтами оснащаются и достаточно бюджетные модели ноутбуков, и более-менее дорогие аналоги. Достаточно? Откровенно говоря, да; но запаса при этом нет. «Прожорливость» программ и самой операционки способна загрузить все 4 гига под завязку, пусть и не всегда.

8 гигабайт DDR – зона комфорта и спокойствия. Редко, очень редко компьютер займёт хотя бы 5-6 гигабайт оперативки (это в 2016 году, а вот в 2018 аппетиты кода смогут забить и не такой громадный объём!).

16, 32 (или 128!) гигабайт ОЗУ вряд ли нужны рядовому пользователю — это уже из территории космоса. Что толку в многотонном кузове грузовика, когда автомобиль не перевозит ничего объёмнее стиральной машинки? В 2017 году вряд ли стоит покупать дополнительные гигабайты оперативной памяти для того, чтобы они просто «были».

В таблице перечислены основные «пожиратели» оперативной памяти. Числа лишь примерные – у кого-то Windows занимает больше мегабайт, у кого-то меньше. Вкладки с сайтами могут содержать коротенькую страницу без рисунков, а могут – монструозные полотнища социальных сетей со всеми контактами, моргалками и напоминаниями. Игры требуют много, но перед их запуском принято отключать ненужные браузеры и текстовые документы.

Итак, таблица: кто сколько «жрёт» оперативной памяти. Типичное потребление ОЗУ современными программами. 2016-2017 годы; дальше – только больше.

Программы и их компоненты Занимаемый объём ОЗУ, мегабайт (не гб!)
ОС Windows 7 500-1500
ОС Windows 8 (или 10) 500-1800
Браузер с 5-7 открытыми вкладками 400-800
Word 200
Скайп 100
Многочисленные служебные процессы, обновлялки, драйверы По 10-20 мб в каждой из 20-50 таких микропрограмм = 200-1000 мегабайт
Download-менеджер 20-30
Современная игра 2000-3000
Игра образца 2010-2012 г 1000-2000
Антивирус в обычном состоянии 300-500
Антивирус в режиме полной проверки 2000-2500

Так сколько нужно оперативной памяти для Windows 7, к примеру? Постарайтесь не покупать компьютеры с 2 гигабайтами на борту – этого откровенно мало. 4 гигабайта – просто хорошо, 8 – супер. Больше – не стоит, как правило. 16 гигабайт и выше нужны для:

  • продвинутых «компьютерщиков», для которых вполне стандартная задача – запустить в Винде 2-3 виртуальные системы;
  • заядлых геймеров со сверхвысокими разрешениями мониторов и дорогущими видеокартами;
  • программистов с необходимостью отлаживания-тестирования настольных программ;
  • видеодизайнеров и их фотоколлег – да и то далеко не всегда;
  • просто потому, что хочется больше, чем у других. Без прицела на практичность.

Типы оперативной памяти, частота и другие характеристики

С момента внедрения первого стандарта DDR прошло уже лет 18-20. Сменилось несколько поколений компьютеров, их производительность выросла в разы. В любой момент времени актуальны не более двух поколений памяти. В 2017 году это стремительно устаревающая DDR3, которая царствовала на рынке лет 7, и уже привычная DDR4. Если вы приобретаете новый компьютер, то, скорее всего, он будет оснащён именно четвёртым поколением ОЗУ. Если речь идёт об апгрейде старого (5-8 летней давности), то внутри работает DDR3. Поколения не совместимы между собой: плашку DDR4 физически невозможно засунуть в разъём от «тройки», и наоборот.

Оперативная память для ноутбуков отличается от обычной «десктопной» физическими размерами. Ноутбучная ОЗУ раза в два меньше в длину, чем стандартная. Частоты, объём и поколение DDR соответствуют друг другу для лэптопов и PC. Правда, память для ноутбуков подразделяется ещё на 2 подкатегории, физически несовместимыми между собой:

  • стандартная SO- DIMM (префикс SO указывает именно на ноутбучный размер оперативки) – самый распространённый вариант;
  • память с низким энергопотреблением SO- DDR3 L (или просто DDR3 L , либо новейшая DDR4 L ): чаще всего встречается в недорогих моделях ноутбуков.

Вторая после объёма важная характеристика ОЗУ: частота. Чем больше, тем, в принципе, лучше – но DDR4 на 2100 мГц совсем на копейку медленнее DDR4 на 2800 мГц. Разница едва ли не в 1-2 процентах, да и то лишь в некоторых приложениях. Переплачивать за мегагерцы не следует – разве что 2-3 доллара. Есть ещё и другие характеристики памяти: задержки, они же – тайминги. Чем меньше тайминги, тем быстрее работает память (всё верно – тайминг 10 предпочтительнее, чем 12). На эту характеристику ориентироваться уж точно не следует, хотя в эпоху DDR/DDR2 лет 15 назад тайминги значили больше, чем сегодня. Впрочем, это уже история.

Цены на ОЗУ: ориентируемся в предложениях

Примерно с 2010 года оперативная память стоит неприлично дёшево по сравнению с более старыми временами. Сколько именно? Просим прощения за цены в баксах, но… их не зря называют «вечнозелёными». Цены даны не самые дешёвые, по данным интернет-магазина Байон.ру – зато с запасом.

Таблица: стоимость оперативной памяти (для ноутбука и для ПК), 2017 год. Представлены модели DDR3 и DDR4, а также «ноутбучные» форм-факторы SO-DIMM.

Тип памяти Частота, мГц Цена, $ Примечание
DDR3, 2 Гб 1600 19,85 Самый дешёвый приличный вариант
DDR3, 4 Гб 1600 26,00
DDR3, 4 Гб 2400 32,15 Дорогая, «оверклокерская» ОЗУ
DDR3, 8 Гб 1600 38,60
SO-DIMM DDR3, 2 Гб 1600 19,85 Самая дешёвая планка ОЗУ для ноута
SO-DIMM DDR3, 4 Гб 1600 27,50 Самый популярный тип ОЗУ для ноутбука
SO-DIMM DDR3, 4 Гб 1833 29,30 Популярный объём, увеличенная частота
SO-DIMM DDR3, 8 Гб 1600 34,50 Большой объём, стандартная частота
DDR4, 4 Гб 2133 26,00 Среднестатистическая DDR3 на 4 Гб
DDR4, 8 Гб 2133 42,90 Популярная планка большого объёма
DDR4, 8 Гб 2400 55,60 Большой объём, увеличенная частота
SO-DIMM DDR4, 4 Гб 2133 27,50 Стандартная планка современного ноута
SO-DIMM DDR4, 8 Гб 2133 43,50 Объёмная планка современного ноута

Стоит ли апгредить (добавлять) оперативную память?

Однозначно да, если объём оперативки составляет менее 2-3 гигабайт: прирост производительности будет виден невооружённым взглядом. «Критическая точка» производительности находится где-то посредине между 2 и 4 Гб ОЗУ. Меньше оперативки – значительно меньше скорость. Больше – всё работает так, как надо, одним словом – «летает».

Скорее, да, чем нет, если имеющийся объём равен 4 гигабайтам. Скорость компьютера вряд ли вырастет, но будет значительно меньше подвисаний и лагов. Неплохое вложение.

Незачем, если «на борту» уже имеется 6-8 гигабайт.

Незачем, если смысл обновлений – в покупке DDR с более высокой тактовой частотой. Польза от такого апгрейда если и ненулевая, то стремится к таковой.

Как добавить ОЗУ в компьютер? А в ноутбук? Апгрейд оперативной памяти своими руками

ПК-десктопы – более габаритные «создания». Внутри корпуса можно разместить хоть 10 ноутбуков (по размеру!). Слотов и разъёмов на настольных материнских платах много, не в пример ультракомпактным лэптопам, где экономится каждый миллиметр. Типичное количество слотов в компьютере для ОЗУ – 2 или 4. Как правило, заняты лишь 1-2 из них. Добавить планку оперативной памяти к уже работающей – дело пары минут. Достаточно выключить компьютер, открыть системный блок и вставить планку DDR в соответствующий разъём. Не нужны ни инструменты, ни даже отвёртка.

Главное требование – ОЗУ должно быть соответствующего поколения. Современную DDR4 никак не вставить в разъём для DDR3: даже размеры у них разные. А вот объём дополнительной планки может быть любым. Частота – также любой, но при разных частотах нескольких планок «оперативки» компьютер работает на наименьшей из них.

В ноутбуках всё чуть сложнее. У них встречаются три типа слотов для ОЗУ:

  1. Двухслотовые конфигурации : как правило, в 2 разъёма уже вставлено по «оперативке». В этом случае следует прикупить один более ёмкий модуль, и заменить существующий на новый. Классика жанра: 4 Гб ОЗУ, 2 планки по 2 Гб в каждой. Других разъёмов нет. Придётся купить 4-гигабайтный модуль памяти (либо 8-Гб, если это нужно), и вставить его вместо старого. В итоге получим 6 Гб оперативной памяти. Старый модуль, кстати, можно продать.

Реже встречаются два слота, один из которых занят, другой – свободен. Всё идеально просто: докупаем ОЗУ любого объёма, вставляем в пустующий разъём. К примеру, было 4 Гб (одна планка), докупаем ещё 4 Гб в одной планке, вставляем… итог – 8 Гб.

  1. Однослотовые конфигурации (обычно недорогие модели ноутбуков). Разъём там лишь один, и он, разумеется, уже заполнен планкой оперативной памяти. Единственный вариант – снять старый модуль, поставить новый – большего объёма.
  2. Ноутбуки с распаянной оперативкой . Апгрейд почти невозможен: выпаивать старый модуль и вновь впаивать новый – нетривиальная и очень рискованная задача. Впрочем, оперативка намертво распаивается лишь в недорогих машинках, и бывает это не слишком часто.

Как узнать количество слотов и тип памяти в ноутбуке или компьютере

Подойдёт любая диагностическая программа, наподобие CPU-Z. Скачиваем, устанавливаем, смотрим в разделе про память (memory).

Базовая информация про оперативную память: сколько гб и прочее, находится во вкладке Memory. Сразу видны такие характеристики:

  • Тип памяти: DDR3
  • Объём ОЗУ: 6 Гб
  • Количество каналов: 2 (Dual)
  • Менее интересные показатели – тайминги и частота: 665,1 мГц (стандарт DDR подразумевает двусторонний обмен информации с памятью, потому истинная частота — 1333 мГц).

Выводы можно сделать такие: у компьютера (в данном случае – ноутбука) явно 2 слота, оба – занятые. На это указывает двухканальный режим работы, который возможен лишь при наличии чётного количества планок. Другой вывод – явно нестандартная конфигурация: 4+2 Гб ОЗУ. Обычно производители устанавливают объём оперативной памяти, кратный числу 2: 2, 4, 8, или 16 гигабайт. Значит, владелец уже делал апгрейд ОЗУ.

Гораздо более подробная информация описана на следующей вкладке утилиты CPU-Z: SPD (скорость «мозгов»). В левой верхней части окна действительно видно, что здесь 2 слота, оба – заняты. В первом разъёме примостилась плашка на 2 гига (2048 Мбайт) с частотой 667 (1333 мГц). Во втором – 4 гигабайта (4096 Мб) с той же частотой 1333.

Пара информационных бонусов: видна дата производства одной из оперативок (9 неделя 2011 года), и производители обеих планок: Nanya и PNY.

Как можно проапгрейдить оперативную память в примере выше? 6 гигабайт – вполне достаточный объём на 2016 год, но если есть сильное желание – можно купить одну планку DDR3 на 4 Гб (цена – около 26 долларов), и вставить её вместо старой 2-гиговой (кстати, можно продать её долларов за 5-8). Итогом станет 8 гигабайт ОЗУ.

Производители оперативной памяти: какой лучше. И – заключительные советы

Кто только не производит ОЗУ: и процессорный гигант AMD, и Samsung с LG, и многочисленные Kingston, Corsair и т.п. В наиболее многочисленном сегменте оперативной памяти разницы между производителями толком нет. Все они выпускают надёжную и быструю DDR, которая способна на некоторый разгон.

Задумываться о производителе следует лишь в случаях, когда требуется более серьёзный оверклокинг, особые требования к надёжности, и, пожалуй, к художественной красоте оперативной памяти. Всё верно, более дорогие модели выпускаются с необязательными, но потрясающие симпатичными радиаторами охлаждения модулей.

И ещё. Оперативная память – замечательно надёжная штука. Её вполне безопасно брать с рук, «б/у» – скорее всего, отработает она ещё много лет, с теми же характеристиками и энергопотреблением.

Не секрет, что наличие большого объема оперативной памяти благотворно сказывается на скорости работы многих приложений. В этом материале мы поговорим о взаимодействии ОЗУ и системы Windows, а так же ответим на многие распространенные вопросы по этой теме.

Вступление

Технологический прогресс не стоит на месте и с каждым годом компьютеры становятся все совершеннее и совершеннее. При этом с ростом технических характеристик, неумолимо снижается цена на комплектующие и сегодня ПК, которые еще три года назад стоили несколько тысяч долларов, продаются за несколько сотен.

Не обошла эта тенденция и оперативную память, которая в последнее время очень сильно подешевела. Лет 15 назад, модуль памяти объемом четыре мегабайта (только вдумайтесь!) стоил около 100 долларов, а на сегодняшний день стоимость четырех гигабайт ОЗУ (ОЗУ - оперативное запоминающее устройство или оперативная память) составляет всего около 700 рублей. Не секрет, что наличие большого объема оперативной памяти благотворно сказывается на скорости работы многих приложений, поэтому именно этот объем является минимальным для большинства современных компьютеров даже начального уровня. Более же продвинутые системы содержат 8, 16 и более гигабайт «оперативки».

И все бы хорошо, но наверняка многие пользователи сталкивались с одной неприятностью, в том случае, если в компьютере установлено четыре и более гигабайт оперативной памяти, 32-разрядная операционная система Windows их попросту не видит.

В этой статье вы узнаете, как операционная система работает с оперативной памятью, какие объемы ОЗУ поддерживают различные редакции Windows, почему в некоторых случаях ОС не видит всю установленную память, из-за чего это происходит и можно ли что-то сделать в этой ситуации, что такое файл подкачки, а так же многое другое. Но для начала давайте сделаем небольшой экскурс в теорию организации физической памяти компьютера, а так же разберемся, как вообще ОЗУ влияет на производительность системы.

Адресное пространство

Базовой единицей измерения количества информации является бит , который может принимать только два значения - ноль и один. В современных вычислительных архитектурах минимальной единицей обработки и хранения информации является байт , равный восьми битам. По сути, память компьютера является огромным массивом байт.

Один байт может хранить одно из 256 значений (2 8), которые в зависимости от их интерпретации могут быть как числами, так символами или буквами. Например, значение 56, может обозначать как обычное число, так и букву «V» в кодировке ASCII. В нескольких байтах, можно хранить гораздо большие значения. Например, три байта могут принимать уже 16 777 216 значений (256 3), в которых может быть закодировано целиком короткое слово.

Что бы какое-либо устройство или программа могли иметь возможность обратиться к конкретному байту в памяти (адресовать его) для того, что бы записать туда или получить оттуда данные, ему присваивается уникальный индекс, называемый адресом . Диапазон адресов от нуля до максимума получил название адресного пространства .

Физическая и виртуальная память

В первых ЭВМ, размер адресного пространства был тождественно равен размеру установленной оперативной памяти. То есть, если в компьютере было установлено 128 Кб памяти, то и максимальный объем памяти, который могла использовать программа при работе, равнялся 128 Кб. При этом адрес какого-либо объекта приложения равнялся адресу физической ячейки запоминающего устройства.

Такой способ адресации был весьма простым, но имел пару существенных недостатков. Во-первых, память выполняемого приложения была ограничена оперативной памятью, которая на тот момент была сильно дорогой и устанавливалась на компьютер в очень маленьких количествах. Во-вторых, все запущенные программы выполнялись в одном адресном пространстве, что приводило к вероятности ошибочной записи данных несколькими приложениями в одну и ту же ячейку. В случае возникновения такой ситуации, о последствиях догадаться несложно.

В современных компьютерах устройства и программы работают не с реальной (физической ) памятью, а виртуальной , которая ее имитирует. Это дает возможность приложению считать, что на машине установлено максимальное теоритически возможное количество ОЗУ, а так же то, что оно является единственной программой, запущенной на компьютере.

Таким образом, адресное пространство ЭВМ наших дней, больше не ограничено размером ее физической (оперативной) памяти и имеет свой максимальный возможный размер, зависящий от рабочей среды, которой является операционная система.

На сегодняшний день операционная система Windows имеет как 32-разрядную, так и 64-разрядную версии. В первой, исходя из названия, для адресации используется 32-битное адресное пространство, максимальный размер которого равен 2 32 = 4 294 967 296 байт или 4 Гб (гигабайт). 64-битная версия операционной системы увеличивает размер адресного пространства до невероятных 2 64 = 18 446 744 073 709 551 616 байт - более 18 квинтиллионов байт или 16 Эб (эксабайт). Правда стоит отметить, что современные клиентские операционные системы Windows 7 x64 в силу объективных причин поддерживают максимальное адресное пространство размером 16 Тб (2 44).

При этом объемы в 4 Гб и 16 Тб, в зависимости от системы, выделяются каждому работающему приложению! То есть любая запущенная программа получает свое собственное адресное пространство, которое не пересекается с другими.

Влияние объема оперативной памяти на скорость работы системы

А что же происходит, когда записи в адресном пространстве по размеру начинают превышать реально установленный объем физической памяти? В этом случае, часть временно не использующихся данных переносится из ОЗУ на жесткий диск в так называемый файл подкачки или «своп» (swap). Если программам вновь понадобятся эти данные, то система по первому требованию, вернет их обратно с диска в оперативную память.

Если в компьютере установлен небольшой объем оперативной памяти, то ОС возможно довольно часто придется перемещать данные из ОЗУ в файл подкачки и обратно, вследствие чего сильно возрастает нагрузка на жесткий диск, что в свою очередь приводит к замедлению работы всей системы. В случае запуска сразу нескольких приложений, может получиться так, что все свое время система начнет тратить на обмен информацией между памятью и диском, вместо того чтобы выполнять программы. Визуально, в этот момент, система «зависает», то есть перестает отвечать на команды пользователя.

Чем больше реальный объем оперативной памяти, тем реже идет обращение к винчестеру, а вследствие этого возрастает и общая производительность компьютера. Именно поэтому, увеличение размера ОЗУ практически всегда положительно сказывается на скорости работы системы, а с учетом нынешних цен на память, многим пользователям вполне доступна установка 8, 16 или даже 32 Гб «оперативки». Особенно благоприятно большой объем памяти сказывается при работе с графическими приложениями (включая современные трехмерные игры) и программами видеомонтажа.

Стоит знать, что разные версии 64-битной операционной системы Windows могут поддерживать разный максимальный объем оперативной памяти. И если пользователям старших редакций Vista или 7 (Professional, Enterprise, Ultimate), поддерживающих до 192 Гб памяти, волноваться особо нечего, так как на домашних компьютерах такой объем практически не достижим, то тем, у кого установлены версии Home Basic и Home Premium есть над чем задуматься. Возможности этих редакций сильно урезаны, и если Premium поддерживает до 16 Гб «оперативки», то Basic только 8 Гб. Максимально доступный объем оперативной памяти, поддерживаемый уже устаревшей Windows XP (64-битной версии) составляет 16 Гб.

Почему 32-битная система Windows не видит 4 Гб ОЗУ

Наверняка, многие пользователи хотят воспользоваться падением цен на память и нарастить ее объем в собственных компьютерах. Процедура эта нехитрая - вынуть старые планки из системной платы и вставить новые можно за считанные минуты без каких-либо специальных инструментов. Далее включаем компьютер, тихо радуемся, когда при загрузке программа самотестирования отображает новый объем установленной ОЗУ (хотя и здесь могут быть проблемы, но об этом чуть ниже). Затем, дожидаемся загрузки Windows, заходим в свойства компьютера и… видим, что в разделе «Установленная память» красуется цифра в три с лишним гигабайта, вместо, например, реально установленных четырех. Так что же произошло и можно ли это исправить?

Как мы уже знаем, чисто теоретически 32-х разрядной системе без каких-либо дополнительных ухищрений доступны до 4 гигабайт оперативной памяти (2 32), но Windows не может использовать весь этот объем, так как часть его отводится под устройства компьютера.

Теперь, самое время сделать небольшой экскурс в историю. В первых настольных ПК, выпущенных в начале 80-ых годов, адресное пространство их физической памяти было поделено на две части в соотношении пять к трем. Первая часть отводилось под оперативную память (ОЗУ), а вторая предназначалась для размещения программы самотестирования (POST), базовой системы ввода-вывода (BIOS) и памяти устройств. При этом та часть адресного пространства, которая отводилась под устройства, не могла быть одновременно использована под оперативную память компьютера.

Все изменилось, когда в 1985 году компания Intel выпустила на рынок процессор 80386. Тогда были приняты сразу два решения об изменении распределения физической памяти в компьютерах, основанных на новых чипах. Распределение адресов в первом мегабайте памяти было принято оставить неизменным для совместимости со старым программным обеспечением и предыдущими моделями ЭВМ. Для компьютерных же устройств, нуждающихся в использовании памяти, теперь выделялся четвертый гигабайт. Все остальное пространство отводилось под ОЗУ.

Возможно, сегодня это решение многим покажется не совсем верным, но в то время несколько гигабайт оперативной памяти казалось просто фантастикой! Да и вряд ли кто предполагал, что сама архитектура и такой порядок распределения адресов проживет столько лет. Но и посей день, во всех современных компьютерах оперативная память начинает занимать адреса, начиная с нулевого, а оборудование - начиная с отметки 4 Гб в обратном направлении.

Теперь давайте более наглядно рассмотрим, как же распределяется память с момента начала загрузки компьютера. Здесь важно помнить, что все программы и компьютерные устройства работают не с физической памятью напрямую, а с адресным пространством, размер которого никак не зависит от реального объема установленной ОЗУ. То есть если убрать из компьютера всю установленную в него оперативную память, то размер адресного пространства ни капли не изменится. Напомним, что для 32-битных систем он равен 4 Гб.

Сразу же после включения машины, специальная программа, называемая БИОС (BIOS), начинает обращаться к установленным устройствам. Ее задача, сначала собрать сведения о том, какие диапазоны адресов то или иное устройство может использовать, а потом распределить память так, что бы они не мешали друг другу при работе. После того, как необходимые виртуальные адреса под оборудование становятся зарезервированными в адресном пространстве (от четвертого гигабайта сверху вниз), начинается загрузка операционной системы.

Как мы уже говорили ранее, под установленную оперативную память адресное пространство выделяется снизу вверх - от нуля и далее. Таким образом, после загрузки системы физическая память «проецируется» на адресное пространство (от 0 до 2 Гб) и Windows не видя никаких конфликтов с адресами, зарезервированными под устройства, показывает вам весь установленный объем оперативной памяти.

Таким образом, пока объем оперативной памяти не превышает двух-трех гигабайт, в большинстве случаев никаких проблем не возникает, но как только этот рубеж превышается, возможны появления конфликтов. В четвертом гигабайте вполне вероятно возникновение ситуации, когда на один и тот же адрес будут претендовать как ячейка оперативной памяти, так и ячейка памяти устройства, например видеокарты. Если туда будут записаны данные ОЗУ, то это приведет к искажению изображения на экране, в случае же смены картинки на мониторе - исказится содержимое памяти. Чтобы не допустить таких конфликтов, операционная система не использует под ОЗУ ту часть физической памяти, которая отведена под адреса устройств.

После установки 4 Гб физической памяти, теоретически ее адреса займут все доступное адресное пространство для 32-битных систем. Но доступными останутся только те, которые попадут в незарезервированную устройствами область. В нашем примере, Windows будет считать, что объем установленной оперативной памяти равен 3,5 Гб.

Довольно долгое время никого особенно проблема четвертого гигабайта не волновала. Под нужды устройств использовалось совсем немного места - десятки килобайт для контроллеров дисков и сетевого адаптера, плюс несколько мегабайт под память видеокарты. Сами же объемы оперативной памяти были тоже небольшими, а значит, пересечение адресов используемых ОЗУ и устройствами в доступном адресном пространстве было практически невозможным.

Первый тревожный звонок прозвенел с появлением технологии AGP. На тот момент, видеоадаптеры с аппаратным ускорением трехмерной графики резко увеличили свою потребность в использовании собственной оперативной памяти. А AGP дала возможность графическим адаптерам использовать для собственных нужд часть памяти компьютера, в случае нехватки собственной. При этом вне зависимости от типа адаптера и количества у него собственной памяти, резервируется 256 Мбайт адресов, так как этот размер задается не самой видеоплатой, а оборудованием шины AGP. С приходом технологии PCI-Express ситуация принципиально не изменилась и размер резервируемого места остался тем же.

Помимо увеличившихся аппетитов графических подсистем, постоянно росло и количество интегрированных устройств в системную плату. К ним добавились высокоскоростные сетевые интерфейсы, многоканальные звуковые карты и различные виды контроллеров. Ко всему прочему под устройства адресное пространство отводится не в точном необходимом количестве, а блоками, определяемыми их характеристиками, заданными изготовителями. Из-за этого между адресами различных устройств появляются свободные промежутки, которые еще больше увеличивают зарезервированное пространство памяти.

В некоторых случаях, правда, довольно редких, объем адресного пространства, отведённого под устройства, может достигать и двух гигабайт. В большинстве же случаев, заблокированным оказывается пространство от 500 Мб до 1 Гб.

Технология PAE

Так можно все-таки увидеть все 4 Гб памяти в 32-разрядной Windows? Да, если у вас установлена серверная ОС, например Windows Server 2003 или Server 2008.

В середине 90-х годов была разработана технология расширения доступного объема ОЗУ, получившая название PAE (Physical Address Extension). Впервые она была воплощена в процессорах Intel Pentium Pro, в результате чего они смогли использовать не 32-х, а 36-битную шину адреса, что теоретически позволяло использовать максимально не 4, а 64 Гб оперативной памяти.

Но что самое примечательное, некоторые особенности использования этой технологии в контроллерах памяти, предоставляют возможность не только использовать ее по прямому назначению, но и перебрасывать некоторые участки памяти в другие адреса. Таким образом, появляется возможность переместить в область выше 4 Гб, например, в пятый гигабайт адресного пространства, ту часть ОЗУ, которая была заблокирована из-за возможности возникновения конфликтов с устройствами, после чего она вновь становится доступной. Правда, для этого необходимо соблюсти два условия.

Первое - процессор должен быть установлен в системную плату, оснащенную специальным диспетчером памяти, осуществляющим поддержку расширения физических адресов. Как правило, в микропрограмме BIOS Setup (БИОС), запускающейся сразу же после включения компьютера, существует специальная настройка, запрещающая или разрешающая переадресацию. В разных моделях материнских плат ее наименование может быть различным, например: Memory Remap, 64-bit OS, Memory Hole и другое. Точное название этой опции можно выяснить из руководства конкретной системной платы. Кстати, старые материнские платы могут вообще не поддерживать режим расширения адресов (это так же можно выяснить из инструкции).

Второе - в операционной системе должен быть включен режим PAE. Так вот в серверных системах он задействован по умолчанию. Поэтому, если у вас установлена 32-битная Windows подобного типа и не слишком старый компьютер (нет вышеуказанных ограничений по железу), то благодаря использованию технологии PAE, будут доступны все 4 Гб оперативной памяти.

Вполне логично, что данную технологию можно было бы применить в клиентских системах и ее применяют, но с некоторыми ограничениями.

Изначально, в первой версии Windows XP данный режим был отключен, так как в 2001 году средний объем ОЗУ в персональных компьютерах составлял 128 - 256 Мб, и никакой необходимости в его включении не было. Возможно, положение дел оставалось бы таким еще довольно долго, но в 2003 году компания Microsoftприступила к разработке второго пакета исправлений для XP, призванного существенно снизить количество уязвимостей в системе. Одним из нововведений, принесенным вторым сервис паком, стало использование аппаратных и программных технологий, предотвращающих запуск вредоносного кода путем дополнительной проверки содержимого памяти. На аппаратном уровне эту проверку выполняет процессор. При этом в компании Intel данная функция носит названия Execute Disable bit (запрет на выполнение), а в AMD - No-execute page-protection (защита страниц от выполнения).

Однако, что бы такая аппаратная защита стала возможна, необходим перевод процессора в режим PAE. Именно поэтому, начиная с Windows XP SP2, данный режим, при наличии подходящего процессора, включается автоматически. Но самое основное, что в 32-разрядных Windows XP с пакетами обновлений SP2 и SP3, а так же последующих Windows Vista и Windows 7, расширение физических адресов реализовано только частично. Эти системы не поддерживают 36-битную адресацию памяти и включенный режим PAE, не добавляет в их распоряжение ни байта адресного пространства, что делает невозможным переброску в верхние участки заблокированных адресов ОЗУ. Причина такой реализации - обеспечение совместимости с драйверами устройств.

Как мы помним, операционная система и все программы используют виртуальные адресные пространства и соответственно виртуальные адреса, которые впоследствии пересчитывается в физические. Процедура эта происходит в два этапа при выключенном режиме PAE и в три, при включенном расширении физических адресов. Драйверы, в отличие от обычных программ, работают напрямую с реальными адресами и для корректной работы в режиме PAE должны понимать усложненную процедуру трансляции адресов. Ведь сформированный драйвером 32-битный адрес после дополнительного (третьего) этапа трансляции может измениться и чтобы выданная им команда достигла цели, необходимо это учитывать.

Разработчики драйверов, предназначенных для серверных систем это принимали в расчет, а вот драйвера для клиентских Windows, устанавливаемых на обычные домашние ПК, во многих случаях были написаны без учета алгоритма работы с включенным PAE. Ведь так было проще - меньше времени уходило на программирование и тестирование, да и сам драйвер занимал меньше места. Тем более к тому моменту, до выхода Windows XP SP2, режим PAE в настольных системах не использовался, а оборудование, которое выпускалось для «персоналок», во многих случаев не было предназначено для серверов (например, звуковые платы). Так что никакой острой необходимости усложнять драйвера, и выпускать их серверные версии у производителей не было.

Именно с такими, неадаптированными драйверами, и возникли серьезные проблемы в Windows со вторым пакетом обновлений. Не смотря на то, что, общее количество драйверов, вызывавших сбои или крах системы, было не таким уж и большим, количество устройств их использующих исчислялось миллионами. В результате огромное количество пользователей после установки второго сервис-пака могли столкнуться с неприятностями и в дальнейшем отказаться от его использования. Поэтому Microsoft пришлось идти на компромисс.

Для обеспечения совместимости с некорректно написанными драйверами функционал PAE в Windows XP SP2 было решено обрезать. Выразилось это в том, что на третьем этапе трансляции адресов на выход передавались те же адреса, которые были поданы на вход. Таким образом, никакого расширения адресного пространства не происходило, и система продолжала оперировать теми же четырьмя гигабайтами.

Как уже упоминалось выше, такой обрезанный режим PAE унаследовали все современные 32-разрядные системы, включая Windows 7 и Windows 8. А вот если вы установите ради эксперимента на свой компьютер оригинальную Windows XP или XP SP1 и включите режим PAE (там он по умолчанию отключен), то увидите собственными глазами, что системе будет доступно все 4 Гб ОЗУ.

ОЗУ и 64-битные системы Windows

Казалось бы, что у 64-разрядных систем никаких проблем с установкой больших объемов памяти быть недолжно. Сколько ОЗУ установили, столько «операционка» и будет видеть. И все же здесь есть свои подводные камни.

Не смотря на то, что 64-битная Windows может использовать адресное пространство и оперативную память, объемы которых далеко превышают четыре гигабайта, правило размещения адресов устройств, здесь точно такое же, как и в 32-битных системах, то есть устройства занимают ячейки в четвертом гигабайте сверху вниз. Сохранение этого принципа опять же обеспечивает нормальную работоспособность любого оборудования, предназначенного для обычных ПК, которое должно с одинаковым успехом работать, как в 32-разрядной системе, так и в 64-разрядной.

Получается, что все ограничения, накладываемые на физическую память в 32-битной системе, должны остаться и в 64-битной, а значит, видимый объем оперативной памяти будет опять неполным, если ваша материнская плата не поддерживает переадресацию или она отключена в настройках. Конечно, такие системные платы уже не выпускаются, но все еще используются во многих компьютерах.

Еще один «сюрприз» вас может ожидать, если в материнскую плату будет установлен максимальный поддерживаемый объем памяти. Например, еще недавно популярный чипсет для бюджетных решений Intel G41 позволяет устанавливать до 8 Гб оперативной памяти. Как правило, в этом случае, на системной плате разведены 33 адресные линии (2 33 = 8 589 934 592 байт = 8 Гб). С точки зрения производителя это вполне объяснимо - зачем делать шину более высокой разрядности, если набор системной логики все равно не поддерживает большие объемы памяти? Но из-за этого, даже если контроллер памяти и может перекинуть заблокированный участок ОЗУ в девятый гигабайт, сделать это у него не получиться, так как для этого потребуется 34-разрядная шина, а не 33-х, как в нашем случае. В итоге пользователю будет доступно только семь с небольшим гигабайт ОЗУ. Тоже самое касается плат поддерживающих 16 и 32 Гб.

В некоторых случаях, даже при работающей переадресации в 64-битной системе несколько десяткой или сотен мегабайт могут все равно оказаться заблокированы системой под оборудование. Виной тому могут стать технологические особенности системной платы, которая в любой ситуации будет резервировать какой-то объем памяти, например, для нужд встроенного видеоадаптера или RAID-контроллера.

Заключение

В заключение давайте сделаем несколько основополагающих выводов, исходя из всего вышесказанного.

Хотя 32-битные системы Windows чисто теоретически могут использовать до 4 Гб оперативной памяти, некоторый ее объем всегда оказывается зарезервированным под нужды устройств, после чего в доступности оказывается обычно не более 3-3,5 Гб.

Однако эта проблема решена в 32-разрядных серверных ОС. Благодаря использованию технологии расширения физических адресов (PAE), в системе может быть виден весь максимальный установленный объем ОЗУ (4 Гб).

В клиентских 32-разрядных версиях Windowsрежим PAE был урезан для обеспечения совместимости с драйверами устройств из-за чего в WindowsXP SP2/SP3, Windows Vista, Windows 7, а так же Windows 8 увидеть все максимально допустимые четыре гигабайта ОЗУ невозможно и исправить это нельзя.

Таким образом, если вы собираетесь установить в компьютер более трех гигабайт оперативной памяти, то необходимо использовать 64-битные версии операционных систем, которые позволяют видеть до 192 Гб ОЗУ и имеют неурезанный режим PAE. В противном случае весь остальной объем памяти будет недоступен для использования.

Так же следует помнить, что для работы PAE, либо процессор, либо системная плата должны иметь специальный контроллер памяти, поддерживающий технологию расширения физических адресов.

Мое почтенье дорогие посетители сайта. В прошлой статье я писал о том, . Теперь, узнав что это такое и для чего и как оно служит, многие из Вас наверно подумываете о том, чтобы приобрести для своего компьютера более мощную и производительную оперативку. Ведь увеличение производительности компьютера с помощью дополнительного объёма памяти ОЗУ является самым простым и дешевым (в отличии например от видеокарты) методом модернизации вашего любимца.

И… Вот вы стоите у витрины с упаковками оперативок. Их много и все они разные. Встают вопросы: А какую оперативную память выбрать? Как правильно выбрать ОЗУ и не прогадать? А вдруг я куплю оперативку, а она потом не будет работать? Это вполне резонные вопросы. В этой статье я попробую ответить на все эти вопросы. Как вы уже поняли, эта статья займет свое достойное место в цикле статей, в которых я писал о том, как правильно выбирать отдельные компоненты компьютера т.е. железо. Если вы не забыли, туда входили статьи:



Этот цикл будет и дальше продолжен, и в конце вы сможете уже собрать для себя совершенный во всех смыслах супер компьютер 🙂 (если конечно финансы позволят:))
А пока учимся правильно выбирать для компьютера оперативную память .
Поехали!

Оперативная память и её основные характеристики.

При выборе оперативной памяти для своего компьютера нужно обязательно отталкиваться от вашей материнской платы и процессора потому что модули оперативки устанавливаются на материнку и она же поддерживает определенные типы оперативной памяти. Таким образом получается взаимосвязь между материнской платой, процессором и оперативной памятью.

Узнать о том, какую оперативную память поддерживает ваша материнка и процессор можно на сайте производителя, где необходимо найти модель своей материнской платы, а также узнать какие процессоры и оперативную память для них она поддерживает. Если этого не сделать, то получится, что вы купили супер современную оперативку, а она не совместима с вашей материнской платой и будет пылиться где нибудь у вас в шкафу. Теперь давайте перейдем непосредственно к основным техническим характеристикам ОЗУ, которые будут служить своеобразными критериями при выборе оперативной памяти. К ним относятся:

Вот я перечислил основные характеристики ОЗУ, на которые стоит обращать внимание в первую очередь при её покупке. Теперь раскроем каждый из ни по очереди.

Тип оперативной памяти.

На сегодняшний день в мире наиболее предпочтительным типом памяти являются модули памяти DDR (double data rate). Они различаются по времени выпуска и конечно же техническими параметрами.

  • DDR или DDR SDRAM (в переводе с англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Модули данного типа имеют на планке 184 контакта, питаются напряжением в 2,5 В и имеют тактовую частоту работы до 400 мегагерц. Данный тип оперативной памяти уже морально устарел и используется только в стареньких материнских платах.
  • DDR2 — широко распространенный на данное время тип памяти. Имеет на печатной плате 240 контактов (по 120 на каждой стороне). Потребление в отличие от DDR1 снижено до 1,8 В. Тактовая частота колеблется от 400 МГц до 800 МГц.
  • DDR3 — лидер по производительности на момент написания данной статьи. Распространен не менее чем DDR2 и потребляет напряжение на 30-40% меньше в отличии от своего предшественника (1,5 В). Имеет тактовую частоту до 1800 МГц.
  • DDR4 — новый, супер современный тип оперативной памяти, опережающий своих собратьев как по производительности (тактовой частоте) так и потреблением напряжения (а значит отличающийся меньшим тепловыделением). Анонсируется поддержка частот от 2133 до 4266 Мгц. На данный момент в массовое производство данные модули ещё не поступили (обещают выпустить в массовое производство в середине 2012 года). Официально, модули четвертого поколения, работающие в режиме DDR4-2133 при напряжении 1,2 В были представлены на выставке CES, компанией Samsung 04 января 2011 года.

Объём оперативной памяти.

Про объём памяти много писать не буду. Скажу лишь, что именно в этом случае размер имеет значение 🙂
Все несколько лет назад оперативная память объёмом в 256-512 МБ удовлетворяла все нужды даже крутых геймерских компьютеров. В настоящее же время для нормального функционирования отдельно лишь операционной системы windows 7 требуется 1 Гб памяти, не говоря уже о приложениях и играх. Лишней оперативка никогда не будет, но скажу Вам по секрету, что 32-х разрядная windows использует лишь 3,25 Гб ОЗУ, если даже вы установите все 8 Гб ОЗУ. Подробнее об этом вы можете прочитать .

Габариты планок или так называемый Форм — фактор.

Form — factor — это стандартные размеры модулей оперативки, тип конструкции самих планок ОЗУ.
DIMM (Dual InLine Memory Module — двухсторонний тип модулей с контактами на обоих сторонах) — в основном предназначены для настольных стационарных компьютеров, а SO-DIMM используются в ноутбуках.

Тактовая частота.

Это довольно таки важный технический параметр оперативной памяти. Но тактовая частота есть и у материнской платы и важно знать рабочую частоту шины этой платы, так как если вы купили например модуль ОЗУ DDR3-1800 , а слот (разъём) материнской платы поддерживает максимальную тактовую частоту DDR3-1600 , то и модуль оперативной памяти в результате будет работать на тактовой частоте в 1600 МГц . При этом возможны всяческие сбои, ошибки в работе системы и .

Примечание: Частота шины памяти и частота процессора — совершенно разные понятия.

Из приведенных таблиц можно понять, что частота шины, умноженная на 2, дает эффективную частоту памяти (указанную в графе «чип»), т.е. выдает нам скорость передачи данных. Об этом же нам говорит и название DDR (Double Data Rate) — что означает удвоенная скорость передачи данных.
Приведу для наглядности пример расшифровки в названии модуля оперативной памяти — Kingston/PC2-9600/DDR3(DIMM)/2Gb/1200MHz , где:
— Kingston — производитель;
— PC2-9600 — название модуля и его пропускная способность;
— DDR3(DIMM) — тип памяти (форм фактор в котором выполнен модуль);
— 2Gb — объем модуля;
— 1200MHz — эффективная частота, 1200 МГц.

Пропускная способность.

Пропускная способность — характеристика памяти, от которой зависит производительность системы. Выражается она как произведение частоты системной шины на объём данных передаваемых за один такт. Пропускная способность (пиковый показатель скорости передачи данных) – это комплексный показатель возможности RAM , в нем учитывается частота передачи данных , разрядность шины и количество каналов памяти. Частота указывает потенциал шины памяти за такт – при большей частоте можно передать больше данных.
Пиковый показатель вычисляется по формуле: B = f * c , где:
В — пропускная способность, f — частота передачи, с — разрядность шины. Если Вы используете два канала для передачи данных, все полученное умножаем на 2. Чтобы получить цифру в байтах/c, Вам необходимо полученный результат поделить на 8 (т.к. в 1 байте 8 бит).
Для лучшей производительности пропускная способность шины оперативной памяти и пропускная способность шины процессора должны совпадать. К примеру, для процессора Intel core 2 duo E6850 с системной шиной 1333 MHz и пропускной способностью 10600 Mb/s , можно установить два модуля с пропускной способностью 5300 Mb/s каждый (PC2-5300 ), в сумме они будут иметь пропускную способность системной шины (FSB ) равную 10600 Mb/s .
Частоту шины и пропускную способность обозначают следующим образом: «DDR2-XXXX » и «PC2-YYYY «. Здесь «XXXX » обозначает эффективную частоту памяти, а «YYYY » пиковую пропускную способность.

Тайминги (латентность).

Тайминги (или латентность) — это временные задержки сигнала, которые, в технической характеристике ОЗУ записываются в виде «2-2-2 » или «3-3-3 » и т.д. Каждая цифра здесь выражает параметр. По порядку это всегда «CAS Latency » (время рабочего цикла), «RAS to CAS Delay » (время полного доступа) и «RAS Precharge Time » (время предварительного заряда).

Примечание

Чтобы вы могли лучше усвоить понятие тайминги, представьте себе книгу, она будет у нас оперативной памятью, к которой мы обращаемся. Информация (данные) в книге (оперативной памяти) распределены по главам, а главы состоят из страниц, которые в свою очередь содержат таблицы с ячейками (как например в таблицах Excel). Каждая ячейка с данными на странице имеет свои координаты по вертикали (столбцы) и горизонтали (строки). Для выбора строки используется сигнал RAS (Raw Address Strobe) , а для считывания слова (данных) из выбранной строки (т.е. для выбора столбца) — сигнал CAS (Column Address Strobe) . Полный цикл считывания начинается с открытия «страницы» и заканчивается её закрытием и перезарядкой, т.к. иначе ячейки разрядятся и данные пропадут.Вот так выглядит алгоритм считывания данных из памяти:

  1. выбранная «страница» активируется подачей сигнала RAS ;
  2. данные из выбранной строки на странице передаются в усилитель, причем на передачу данных необходима задержка (она называется RAS-to-CAS );
  3. подается сигнал CAS для выбора (столбца) слова из этой строки;
  4. данные передаются на шину (откуда идут в контроллер памяти), при этом также происходит задержка (CAS Latency );
  5. следующее слово идет уже без задержки, так как оно содержится в подготовленной строке;
  6. после завершения обращения к строке происходит закрытие страницы, данные возвращаются в ячейки и страница перезаряжается (задержка называется RAS Precharge ).

Каждая цифра в обозначении указывает, на какое количество тактов шины будет задержан сигнал. Тайминги измеряются в нано-секундах. Цифры могут иметь значения от 2 до 9 . Но иногда к трем этим параметрам добавляется и четвертый (например: 2-3-3-8 ), называющийся «DRAM Cycle Time Tras/Trc ” (характеризует быстродействие всей микросхемы памяти в целом).
Случается, что иногда хитрый производитель указывает в характеристике оперативки лишь одно значение, например «CL2 » (CAS Latency ), первый тайминг равный двум тактам. Но первый параметр не обязательно должен быть равен всем таймингам, а может быть и меньше других, так что имейте это в виду и не попадайтесь на маркетинговый ход производителя.
Пример для наглядности влияния таймингов на производительность: система с памятью на частоте 100 МГц с таймингами 2-2-2 обладает примерно такой же производительностью, как та же система на частоте 112 МГц , но с задержками 3-3-3 . Другими словами, в зависимости от задержек, разница в производительности может достигать 10 % .
Итак, при выборе лучше покупать память с наименьшими таймингами, а если Вы хотите добавить модуль к уже установленному, то тайминги у покупаемой памяти должны совпадать с таймингами установленной памяти.

Режимы работы памяти.

Оперативная память может работать в нескольких режимах, если конечно такие режимы поддерживаются материнской платой. Это одноканальный , двухканальный , трехканальный и даже четырехканальный режимы. Поэтому при выборе оперативной памяти стоит обратить внимание и на этот параметр модулей.
Теоретически скорость работы подсистемы памяти при двухканальном режиме увеличивается в 2 раза, трехканальном – в 3 раза соответственно и т.д., но на практике при двухканальном режиме прирост производительности в отличии от одноканального составляет 10-70%.
Рассмотрим подробнее типы режимов:

  • Single chanell mode (одноканальный или асимметричный) – этот режим включается, когда в системе установлен только один модуль памяти или все модули отличаются друг от друга по объему памяти, частоте работы или производителю. Здесь неважно, в какие разъемы и какую память устанавливать. Вся память будет работать со скоростью самой медленной из установленной памяти.
  • Dual Mode (двухканальный или симметричный) – в каждом канале устанавливается одинаковый объем оперативной памяти (и теоретически происходит удвоение максимальной скорости передачи данных). В двухканальном режиме модули памяти работают попарно 1-ый с 3-им и 2-ой с 4-ым.
  • Triple Mode (трехканальный) – в каждом из трех каналов устанавливается одинаковый объем оперативной памяти. Модули подбираются по скорости и объему. Для включения этого режима модули должны быть установлены в 1, 3 и 5/или 2, 4 и 6 слоты. На практике, кстати говоря, такой режим не всегда оказывается производительнее двухканального, а иногда даже и проигрывает ему в скорости передачи данных.
  • Flex Mode (гибкий) – позволяет увеличить производительность оперативной памяти при установке двух модулей различного объема, но одинаковых по частоте работы. Как и в двухканальном режиме платы памяти устанавливаются в одноименные разъемы разных каналов.

Обычно наиболее распространенным вариантом является двухканальный режим памяти.
Для работы в многоканальных режимах существуют специальные наборы модулей памяти — так называемая Kit-память (Kit-набор) — в этот набор входит два (три) модуля, одного производителя, с одинаковой частотой, таймингами и типом памяти.
Внешний вид KIT-наборов:
для двухканального режима

для трехканального режима

Но самое главное, что такие модули тщательно подобраны и протестированы, самим производителем, для работы парами (тройками) в двух-(трёх-) канальных режимах и не предполагают никаких сюрпризов в работе и настройке.

Производитель модулей.

Сейчас на рынке ОЗУ хорошо себя зарекомендовали такие производители, как: Hynix , amsung , Corsair , Kingmax , Transcend , Kingston , OCZ
У каждой фирмы к каждому продукту имеется свой маркировочный номер , по которому, если его правильно расшифровать, можно узнать для себя много полезной информации о продукте. Давайте для примера попробуем расшифровать маркировку модуля Kingston семейства ValueRAM (смотрите изображение):

Расшифровка:

  • KVR – Kingston ValueRAM т.е. производитель
  • 1066/1333 – рабочая/эффективная частота (Mhz)
  • D3 — тип памяти (DDR3 )
  • D (Dual) – rank/ранг . Двухранговый модуль – это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом (нужен для достижения максимального объёма оперативной памяти при ограниченном количестве слотов)
  • 4 – 4 чипа памяти DRAM
  • R – Registered , указывает на стабильное функционирование без сбоев и ошибок в течение как можно большего непрерывного промежутка времени
  • 7 – задержка сигнала (CAS=7 )
  • S – термодатчик на модуле
  • K2 – набор (кит) из двух модулей
  • 4G – суммарный объем кита (обеих планок) равен 4 GB.

Приведу еще один пример маркировки CM2X1024-6400C5 :
Из маркировки видно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5 .
Марки OCZ , Kingston и Corsair рекомендуют для оверклокинга, т.е. имеют потенциал для разгона. Они будут с небольшими таймингами и запасом тактовой частоты, плюс ко всему они снабжены радиаторами, а некоторые даже кулерами для отвода тепла, т.к. при разгоне количество тепла значительно увеличивается. Цена на них естественно будет гораздо выше.
Советую не забывать про подделки (их на прилавках очень много) и покупать модули оперативной памяти только в серьезных магазинах, которые дадут Вам гарантию.

Напоследок:
На этом все. С помощью данной статьи, думаю, вы уже не ошибетесь при выборе оперативной памяти для своего компьютера. Теперь вы сможете правильно выбрать оперативку для системы и повысить её производительность без каких либо проблем. Ну, а тем кто купит оперативную память (или уже купил), я посвящу следующую статью, в которой я подробно опишу как правильно устанавливать оперативную память в систему. Не пропустите…

Думаю, ни для кого не является секретом, что оперативная память — это важный компонент геймерской системы, и на быстродействие в играх влияют сразу несколько параметров ОЗУ. Например, не так давно лаборатория 3DNews выяснила, что центральные процессоры AMD Ryzen очень чувствительны к частоте DDR4. Тестирование показало: использование быстрой памяти DDR4-3200 в сравнении со стандартной DDR4-2133 при одинаковых таймингах увеличивает FPS в играх на 12-16% в зависимости от приложения. Поэтому, если вы хотите выжать максимум из своей системы, покупка быстрого комплекта ОЗУ — это один из самых действенных вариантов.

На производительность влияет не только частота, но и задержки. И все же самый важный параметр оперативной памяти — это объем. Если в случае использования медленного комплекта мы лишаемся единиц FPS, то при нехватке определенного количества гигабайтов игра либо будет тормозить, либо не запустится вовсе. Поэтому мы решили выяснить, сколько ОЗУ необходимо игровому компьютеру в 2017 году. Очевидно, что основная «баталия» развернется между комплектами объемом 8 и 16 Гбайт.

Наглядный пример — пользователь произвел апгрейд своего компьютера, дополнив имеющуюся конфигурацию видеокартой уровня GeForce GTX 1060 3 Гбайт. Теперь его системный блок полностью соответствует рекомендуемым требованиям Watch_Dogs 2, в которую так хотелось поиграть. Однако даже без применения максимальных настроек качества графики времяпрепровождение в любимой «песочнице» было омрачено то и дело появляющимися микрозависаниями. И вроде GeForce GTX 1060 отлично справляется со своей работой, так как средний показатель держится в районе 50 FPS, но все впечатление портят эти просадки! Оказывается, к возникновению визуально заметного падения частоты кадров причастна нехватка оперативной памяти, потому что добавление еще 8 Гбайт отчасти решило эту проблему — при тех же настройках и с той же видеокартой играть стало комфортнее.

Главная тема обозначена, но, на мой взгляд, не менее важно ответить еще на один вопрос: исправит ли ситуацию с нехваткой оперативной памяти в играх использование быстрого файла подкачки?

⇡ Современные игровые платформы

Под определение «игровой компьютер» попадает очень большое число конфигураций. Например, в ежемесячной рубрике « » рассматриваются десять различных систем. В состав самой недорогой входят Pentium G4560, GeForce GTX 1060 3 Гбайт и 8 Гбайт DDR4. Использование такого объема оперативной памяти — самый распространенный вариант, если верить официальной статистике игрового клиента Steam. Но современные платформы позволяют устанавливать 64 и даже 128 Гбайт ОЗУ.

Актуальные игровые платформы
Intel AMD
Сокет LGA1155 LGA2011 LGA1150 LGA2011-v3 LGA1151 AM3+ FM2/2+ AM4
Год поступления в продажу 2011 год 2011 год 2013 год 2014 год 2015 год 2011 год 2012 год 2017 год
Поддерживаемые процессоры Sandy Bridge, Ivy Bridge Sandy Bridge-E,
Ivy Bridge-E
Haswell, Haswell Refresh и Devil"s Canyon, Broadwell Haswell-E, Broadwell-E Skylake, Kaby Lake Zambezi, Vishera Trinity, Richland, Kaveri, Godavari (Kaveri Refresh) Ryzen, AMD 7th Generation A-series/Athlon
Контроллер памяти DDR3-1066/1333 DDR3-1066/1333
/1600/1866
DDR3-1333/1600 DDR4-2133/2400 DDR4-1866/2133/
2400, DDR3L-1333/1600
DDR3-1066/1333/
1600/1866
DDR3-1600/1866/
2400
DDR4-2133/2400/
2666
Встроенный, двух-канальный Встроенный, четырех-канальный Встроенный, двух-канальный Встроенный, четыре-хканальный Встроенный, двух-
канальный
Встроенный, двух-канальный Встроенный, двух-канальный Встроенный, двух-канальный
Максимальный объем оперативной памяти 32 Гбайт 64 Гбайт 32 Гбайт Haswell-E— 64 Гбайт Broadwell-E — 128 Гбайт 64 Гбайт 32 Гбайт 64 Гбайт 64 Гбайт

Даже сейчас, без тестирования, можно смело заявить: указанный максимальный объем оперативной памяти избыточен для игровых конфигураций, хотя сфера развлечений и является в последнее время наиболее активным двигателем компьютерного прогресса. Как уже было сказано, большинство пользователей устанавливают в свои системы 8 или 16 Гбайт. В таблице перечислены как самые современные (LGA1151, LGA2011-v3, AM4), так и проверенные временем платформы, которые вполне можно отнести к разряду игровых в 2017 году. В большинстве случаев центральные процессоры AMD и Intel используют двухканальные контроллеры оперативной памяти. Это значит, что на материнских платах под соответствующую платформу используется либо два слота DIMM, либо четыре. А у плат с гнездом LGA2011 и LGA2011-v3 четыре или восемь разъемов для установки ОЗУ соответственно. Для процессоров Haswell-E и Broadwell-E есть и «экзотическое» исключение из правил — ASRock X99E-ITX/ac.

Двухканальный режим встроенного в центральный процессор контроллера памяти подразумевает использование четного количества модулей. Для того чтобы со временем спокойно нарастить объем ОЗУ, лучше использовать материнскую плату с четырьмя слотами DIMM. Так, мы можем приобрести комплект памяти объемом 16 Гбайт, состоящий из двух модулей по 8 Гбайт, а со временем докупить еще два модуля с аналогичными характеристиками. Некоторые материнки располагают всего парой разъемов для установки оперативки — это либо совсем бюджетные платы (например, на базе чипсетов H110, B250 и A320 для процессоров Kaby Lake и Ryzen), либо устройства форм-фактора mini-ITX, либо эксклюзивные оверклокерские решения, такие как ASUS Maximus IX Apex. Данные устройства поддерживают вдвое меньший объем ОЗУ: 32 Гбайт для процессоров Skylake, Kaby Lake и Ryzen; 16 Гбайт для процессоров Haswell, Broadwell, Sandy Bridge, Ivy Bridge и Vishera. Учитывайте этот момент при апгрейде или при сборке системного блока с нуля.

⇡ Тестовый стенд

Во время всех испытаний использовалась платформа LGA1151 вместе с процессором Core i7-7700K, разогнанным до 4,5 ГГц. Менялись видеокарты, оперативная память и накопители. Полный перечень комплектующих представлен в таблице.

Конфигурация тестового стенда
Центральный процессор Intel Core i7-7700K @4,5 ГГц
Материнская плата ASUS MAXIMUS IX Hero
Оперативная память Kingston HyperX Predator HX430C15PB3K4/64, DDR4-3000, 4 × 16 Гбайт
Kingston HyperX Fury HX421C14FB2K2/16, DDR4-2133, 2 × 8 Гбайт
Накопители Western Digital WD1003FZEX, 1 Тбайт
Samsung 850 Pro
Видеокарты ASUS GeForce GTX 1060 (DUAL-GTX1060-3G), 3 Гбайт
ASUS Radeon RX 480 (DUAL-RX480-O4G), 4 Гбайт
Блок питания Corsair AX1500i, 1500 Вт
Процессорный кулер Noctua NH-D9DX
Корпус Lian Li PC-T60A
Монитор NEC EA244UHD
Операционная система Windows 10 Pro x64
ПО для видеокарт
AMD Crimson ReLive Edition 17.4.2
NVIDIA GeForce Game Ready Driver 381.65
Дополнительное ПО
Удаление драйверов Display Driver Uninstaller 17.0.6.1
Измерение FPS Fraps 3.5.99
FRAFS Bench Viewer
Action! 2.3.0
Разгон и мониторинг GPU-Z 1.19.0
MSI Afterburner 4.3.0
Дополнительное оборудование
Тепловизор Fluke Ti400
Шумомер Mastech MS6708
Ваттметр watts up? PRO

⇡ Потребление оперативной памяти в современных играх

Определить, сколько оперативной памяти потребляют современные игры, не так сложно. Существует большое количество диагностических утилит. Но важно понимать, что объем используемого ОЗУ зависит от нескольких параметров, а потому может заметно отличаться на разных системах. Так, вместе с запуском игр не перестает работать и различный софт.

Например, открытие всего десяти вкладок Chrome приводит к увеличению потребления оперативной памяти на 1,5 Гбайт. Аппетиты браузера Google уже давно стали «мемом», но давайте не будем забывать про постоянно активные мессенджеры, антивирусы, драйверы и прочие утилиты, которые загружаются вместе с операционной системой.

Недавно я провел сравнительное тестирование GeForce GTX 1060 3 Гбайт и Radeon RX 470 4 Гбайт. Среди пользователей бытует мнение, что дополнительный гигабайт видеопамяти — это еще один довод в пользу графического адаптера AMD. Небольшой эксперимент показал, что из двенадцати игр ровно половина потребляет больше четырех гигабайт видеопамяти в разрешении Full HD. В стенде использовался ускоритель GeForce GTX 1080 с 8 Гбайт GDDR5. Получается, что в случае нехватки видеопамяти все данные, которые не поместились в ячейки GDDR5, будут помещены в ОЗУ. Некоторые игры сразу же информируют пользователя о превышении лимита видеопамяти. Некоторые — GTA V, HITMAN, Battlefield 1 — элементарно не дадут выставить более высокое качество графики, пока пользователь сам не снимет специальный «предохранитель» в меню с настройками. Поэтому для более детального изучения вопроса необходимо использовать несколько видеокарт. Мой выбор остановился на трех ходовых моделях NVIDIA: GeForce GTX 1060 с 3 и 6 Гбайт GDDR5, а также GeForce GTX 1080.

Настройки графики в играх
API Качество Полноэкранное сглаживание
1920 × 1080 / 2560 × 1440 / 3840 × 2160
1 «Ведьмак-3: Дикая охота», Новиград и окрестности DirectX 11 Макс. качество, NVIDIA HairWorks вкл AA
2 Mass Effect Andromeda, первое задание Макс. качество Временное сглаживание
3 Ghost Recon Wildlands, встроенный бенчмарк Макс. качество SMAA + FXAA
4 GTA V, город и окрестности Макс. качество 4 × MSAA + FXAA
5 Rise of the Tomb Raider, советская база Макс. качество SMAA
6 Watch_Dogs 2, город и окрестности Ультра, HBAO+ Временное сглаживание 2 × MSAA
7 Fallout 4, Даймонд-сити и окрестности Макс. качество, текстуры высокого разрешения, осколки от пуль выкл. TAA
8 HITMAN, встроенный бенчмарк DirectX 12 Макс. качество SMAA
9 Total War: WARHAMMER, встроенный бенчмарк Макс. качество 4 × MSAA
10 Battlefield 1, миссия «Работа для молодых» Ультра TAA
11 Deus Ex: Mankind Divided, комплекс «Утулек» Макс. качество 2 × MSAA
12 Sid Meier’s Civilization VI, встроенный бенчмарк Ультра 8 × MSAA
13 Star Wars Battlefront, карта «Битва на Эндоре» Макс. качество TAA
14 Tom Clancy"s The Division, встроенный бенчмарк Макс. качество SMAA
15 DOOM, миссия OИК Vulkan Ультра TSSAA 8TX

Потребление оперативной памяти измерялось в пятнадцати приложениях. На графиках отображен максимальный показатель загрузки, который был зафиксирован после 10 минут произвольного игрового процесса. Для большей наглядности результаты округлены. Показатели загрузки ОЗУ фиксировались при помощи программы MSI Afterburner с частотой опроса 100 мс. Среди прочих программ при запуске игр активными были только клиенты Steam, Origin и Uplay, а также «Защитник Windows», FRAPS и MSI Afterburner.

Высказанное ранее предположение стало фактом — уже в разрешении Full HD мы видим, что с применением 3-гигабайтной версии GeForce GTX 1060 планку в 8 Гбайт ОЗУ преодолели девять игр из пятнадцати. То есть больше половины. Те же самые игры, запускаемые на стендах с GeForce GTX 1060 6 Гбайт и GeForce GTX 1080, оказались менее «прожорливыми» по части оперативной памяти.

При увеличении разрешения тенденция сохранилась — уже тринадцать из пятнадцати игр потребляли больше 8 Гбайт оперативной памяти в стенде с установленной GeForce GTX 1060 3 Гбайт. Стабильно больше 10 Гбайт ОЗУ потреблялось в семи проектах. Заметно возросла загрузка оперативки и в случае использования в стенде GeForce GTX 1060 6 Гбайт. Значит, играм при заданных нами настройках качества графики уже недостаточно шести гигабайт видеопамяти.

Тестирование в разрешении Ultra HD проводилось только с участием GeForce GTX 1080, потому что использовать версии GeForce GTX 1060 в таком разрешении нет никакого смысла — графические процессоры этих видеокарт элементарно не справятся с возросшей нагрузкой.

Результаты оказались вполне прогнозируемыми. Можно смело констатировать: многие современные ААА-проекты на близких к максимальным настройках качества графики потребляют больше 8 Гбайт оперативной памяти. Кроме того, замеры в Rise of the Tomb Raider, Watch_Dogs 2, Deus Ex: Mankind Divided и Mass Effect Andromeda демонстрируют отсутствие серьезного запаса прочности при наличии в системе и 16 Гбайт ОЗУ. К тому же тестирование проводилось с минимумом активных приложений в Windows 10. На мой взгляд, есть все предпосылки к тому, что в скором времени появятся проекты, которым будет недостаточно 16 Гбайт оперативной памяти при максимальных или близких к ним настройках качества графики.

Думаю, многие уже обратили внимание на тот факт, что я рассмотрел всего один сценарий — игры на максимальных (или близких к ним) настройках качества графики. Однако большинство геймеров пользуются менее производительными видеокартами, а потому используют различные режимы качества.

Компьютерные игры тем и хороши, что, как правило, обладают большим количеством настроек, которые ухудшают или улучшают качество выдаваемой картинки. Например, в Deus Ex: Mankind Divided заложено пять заранее запрограммированных режимов: «Низкие», «Средние», «Высокие», «Очень высокие» и «Ультра». Подобными категориями пользуются многие разработчики. Обратите внимание, что достаточно тяжело (иногда даже нереально) на глаз определить, где выставлено высокое качество, а где — очень высокое. Таким образом, выкручивать ползунки до максимума в ряде игр нет никакого смысла. А видеопамяти и ОЗУ при этом используется заметно меньше.

Из списка игр, которые на максимальных (или близких к ним) настройках качества потребляли больше всего оперативной памяти, я выбрал пять приложений: Watch_Dogs 2, Mass Effect Andromeda, Rise of the Tomb Raider, Deus Ex: Mankind Divided и Ghost Recon Wildlands. Используя все те же видеокарты NVIDIA, я измерял потребление оперативной памяти при активации заранее заготовленных разработчиками режимов. В некоторых играх (Watch_Dogs 2 и Ghost Recon Wildlands) при изменении общего качества графики автоматически меняется и сглаживание. В других приложениях параметр антиалиасинга необходимо задавать отдельно. Собственно говоря, в Mass Effect Andromeda, Rise of the Tomb Raider, Deus Ex: Mankind Divided для этой части эксперимента сглаживание не использовалось вообще. Результаты занесены в сводную таблицу.

Зеленым цветом выделены области, в которых зафиксирован отрадный факт — игры при активации определенного режима качества графики потребляют меньше 8 Гбайт оперативной памяти. Таблица наглядно показывает, что выставление параметров «Высокий» и «Средний» подходит для видеокарт, у которых видеопамяти 4 Гбайт и меньше, для графических адаптеров с 6+ Гбайт GDDR5 — тем более.

Заметно и резкое падение потребления ОЗУ в Rise of the Tomb Raider при использовании 3-гигабайтной версии GeForce GTX 1060. Мы видим логичное подтверждение тому факту, что при использовании режима качества картинки «Высокое» игра требует меньше видеопамяти, чем на «максималках».

Конечно же, сказывается на потреблении видеоОЗУ и системной памяти и отключение сглаживания, которое должно устранить неровности (лесенки) по краям объектов. Антиалиазинг — это один из параметров, критичный к объему видеопамяти. Поэтому в игровой системе с 8 Гбайт ОЗУ и графическим ускорителем с 2, 3 или 4 Гбайт видеопамяти есть смысл выключать сглаживание или же использовать «легкие» режимы, если такие поддерживаются приложением.

Текстуры — это второй параметр, критичный к объему видеопамяти, а следовательно, и оперативной памяти. Использование текстур низкого разрешения заметно портит изображение, но в то же время особой разницы между режимами «Высокое» и «Очень высокое» в Rise of the Tomb Raider не наблюдается (в других играх — тоже). Поэтому при нехватке видеопамяти и ОЗУ и этим параметром вполне можно пожертвовать ради достижения комфортного фреймрейта.

Максимальное потребление оперативной памяти (NVIDIA GeForce GTX 1060 3 Гбайт), Мбайт
Качество текстур
Rise of the Tomb Raider (общие настройки качества — максимальные, но без сглаживания) Watch_Dogs 2 (общие настройки качества — режим "Ультра", но без сглаживания) Deus Ex: Mankind Divided (общие настройки качества — максимальные, но без сглаживания)
Очень высокое 11600 Ультра 11000 Ультра 11000
Высокое 6900 Высокое 9700 Очень высокое 9600
Среднее 6400 Среднее 8800 Высокое 7800
Низкое 6200 Низкое 7800 Среднее 7100
Низкое 6900
Тени
Очень высокое 10700 HFTS 11600 Очень высокое 11000
Высокое 10500 PCSS 11000 Высокое 10900
Среднее 10300 Ультра 11000 Среднее 10800
Выкл. 10300 Очень высокое 11000
Высокое 10400
Среднее 10400
Низкое 10300

Настроек изображения в компьютерных играх очень много. Разработчики тесно сотрудничают с производителями железа — AMD, NVIDIA и Intel, а потому приложения изобилуют разным количеством всевозможных опций. Например, в Rise of the Tomb Raider реализован режим PureHair, который заметно преображает прически персонажей этой игры. А еще используются различные технологии преграждения окружающего света (SSAO, HBAO, HBAO+, VXAO и так далее), которые затемняют впадины и углы, добавляя им визуальной глубины.

Все эти настройки в той или иной степени влияют на потребление видеопамяти и ОЗУ. Однако не так сильно, как сглаживание, тени и размер текстур.

Вроде бы ответ на основной вопрос получен: замеры потребления оперативной памяти показывают, что 16 Гбайт — наше все, если вы планируете играть с максимальными настройками качества графики. С другой стороны, есть доказательство того, что и 8 Гбайт ОЗУ все еще достаточно для любого современного проекта — требуется лишь снизить качество изображения. Чаще всего достаточно выставить режим «Высокое» или «Среднее». По мнению автора, картинка при этом будет все равно вполне приемлемого уровня. Однако интересно узнать, как поведут себя типовые игровые системы при нехватке ОЗУ? Этому вопросу посвящена вторая часть эксперимента.