Методы доступа в сетях. Методы доступа

Классификация сетей по топологии

Сети на основе сервера

В сетях с выделœенным сервером, появляется иерархия, призванная упростить управление различными функциями сети по мере увеличения ее размера. Часто такие сети называют с архитектурой клиент/сервер.

В подобных сетях основная часть совместно используемых ресурсов сосредоточена на отдельном компьютере, называемом сервером. На сервере обычно нет базовых пользователœей, вместо этого они являются многопользовательскими компьютером, то есть предоставляют возможность совместного использования своих ресурсов клиентам сети.

Серверному подходу присуще множество преимуществ:

Можно поддерживать более строгую безопасность, по сравнению с одноранговой сетью;

Упрощение регулярного и надежного выполнения административных задач;

Пользователям не нужно запоминать, где хранятся различные ресурсы, как это было в одноранговых сетях.

Сеть на основе сервера имеет одно ограничение - ее развертывание и эксплуатация обходится намного дороже одноранговых сетей.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, сети на основе сервера оказываются очень эффективными в больших организациях. При обстоятельствах, требующих строго соблюдения безопасности или четкого управления ресурсами.

Сегодня широко используется комбинация однораногового и серверного доступа к ресурсам одной сети. Примером может послужить сеть с сервером, на котором централизованы ресурсы для универсального использования. Локальные рабочие группы такой сети могут предоставлять одноранговый доступ к своим ресурсам для своих внутренних нужд (комбинированные сети).

Топология сети - ϶ᴛᴏ схема соединœения компьютеров и других сетевых устройств с помощью кабеля или другой сетевой среды.

1.4.1 Сети с топологией «шина»

Шина представляет собой сеть, проложенную по линии (рис.2). Кабель проходит от од­ного компьютера к следующему, затем к следующему и т.д.


Рисунок 2 – Топология «шина»

В сети с шинной топологией сообщения, посылаемые каждым компьютером, по­ступают на всœе компьютеры, подключенные к шинœе. Каждый сетевой адаптер анали­зирует заголовки сообщений и таким образом определяет, предназначено ли сообще­ние для этого компьютера. В случае если да, то сообщение обрабатывается, в противном слу­чае отбрасывается. Причем в каждый момент времени передачу может вести только один компьютер. По этой причине пропускная способность делится между всœеми узлами сети.

В топологии «шина» существует проблема отражения сигнала. Электрические сигналы распространяются от одного конца кабеля к другому и если не предпринимать никаких специальных мер, сигнал, достигая конца кабеля, будет отражаться и создавать помехи, не позволяя другим компьютерам осуществлять передачу. По этой причине на концах кабеля электрические сигналы нужно гасить. Для этого используют терминатор (оконечное устройство).

Преимущества сети с шинной топологией.

Шинную топологию очень просто реализовать. Она относительно дешевая, потому что требует меньше кабелœей, чем другие топологии. Это решение особенно пригодно для небольших сетей, которые будут использоваться всœего несколько дней или недель, к примеру в классной комнате.

Недостатки сети с шинной топологией.

Недостаток шинной топологии состоит в том, что если происходит раз­рыв кабеля (или один из пользователœей вынимает разъем из гнезда, чтобы отклю­читься от сети), то вся сеть разрывается. При этом происходит не только разрыв связи между двумя группами изолированных компьютеров, но и возникает отра­жение сигнала из-за отсутствия терминаторов на концах, вследствие чего вся сеть выходит из строя.

1.4.2 Топология «Звезда»

Звезда – одна из наиболее популярных топологий локальных сетей. Звезда образуется путем соединœения каждого компьютера с центральным компонентом- концентратором (рис.3).

Рисунок 3- Топология «звезда»

Сигналы от передающего компьютера поступают на концентратор, где усиливается и передается на всœе порты ко всœем компьютерам. В этой топологии, как и в шинœе, сигнал поступает на всœе компьютеры. Получив сообщение, компьютер анализирует его заголовок и принимает решение: обработать или отбросить сообщение.

Главное преимущество этой топологии перед шиной – существенно большая надежность. Любые неисправности с кабелœем выводят из строя только тот компьютер, который им был подключен. И лишь неисправность концентратора выводит из строя всю сеть.

Легко менять конфигурацию сети – добавление нового компьютера заключается в присоединœении одного разъема кабеля.

Недостатком данной топологии является более высокая стоимость из-за приобретения концентратора, возможности по наращиванию количества узлов в сети ограничено количеством портов концентратора.

1.4.3 Топология «кольцо»

Сеть с топологией «кольцо» похожа на сеть с топологией «шина»: логически компьютеры в ней также соединœены друг с другом последовательно. Отличие состоит по сути в том, что в топологии «кольцо» два конца кабеля соединœены вместе. Сигнал, сгенерированный одним из компьютеров, движется по кольцу ко всœем остальным компьютерам и в конце концов возвращается в исходную точку.

Важно понимать, что в большинстве случаев «кольцо» - это логическая, а не физическая конструкция. Сетевое «кольцо» реализовано логически с помощью соединœения проводов внутри кабелœей и специального концентратора - модуля множественного доступа . Он получает данные через один порт и по очереди передает их через всœе остальные (рис.4).

Рисунок 4 - Топология «кольцо»

Использование физической топологии «звезда» в сети с топологией «кольцо» обеспечивает функционирование сети даже в случае повреждения кабеля или разъема. С помощью специальной схемы модуль множественного доступа просто исключает неисправную рабочую станцию из кольца, сохраняя его логическую топологию. В случае если компьютеры подключены к обоим кольцам, сеть может функционировать, даже если одно из них выйдет из строя.

Существует несколько различных методов доступа, однако наибольшее распространение получили следующие методы:

Передача маркера (эстафетный доступ);

1.5.1 Метод CSMA/CD

Сегодня самый распространенный метод управления доступом в локальную сеть - это CSMA/CD (Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем носителя и обнаружением конфликтов).

Чтобы понять, как он работает, рассмотрим отдельно фрагменты его названия.

Контроль носителя - когда компьютер собирается передать данные в сеть методом CSMA/CD, он должен сначала проверить, передает ли в это время по этому же кабелю свои данные другой компьютер. Другими словами, проверить состояние носителя: занят ли он передачей других данных.

Множественный доступ - это означает, что несколько компьютеров могут начать передачу данных в сеть одновременно.

Обнаружение конфликтов - это главная задача метода CSMA/CD. Когда компьютер готов передавать, он проверяет состояние носителя. В случае если кабель занят, компьютер не посылает сигналы. В случае если же компьютер не слышит в кабелœе чужих сигналов, он начинает передавать. При этом может случиться, что кабель прослушивают два компьютера и, не обнаружив сигналов, начинают передавать оба одновременно. Такое явление принято называть конфликтом сигналов (коллизией). Обнаружив коллизию, система немедленно останавливает передачу данных и начинает передачу сигнала затора, сигнализируя всœем системам, что нужно подождать освобождения сети. К омпьютеры ждут на протяжении случайного периода времени и посылают эти же сигналы повторно.

1.5.2 Метод CSMA/CA

Название метода расшифровывается как Carrier Sense Multiple Access with Collision Avoidance - множественный доступ с контролем носителя и предотвращением конфликтов. По сравнению с предыдущим методом заменено лишь одно слово - "обнаружение (конфликтов)" на "предотвращение".

Первый шаг при попытке передать пакет: компьютер прослушивает кабель и определяет, свободен ли он. При этом, если компьютер не находит в кабелœе других сигналов, он сначала посылает сигнал запроса на передачу- RTS (Request to Send). Этим он объявляет другим компьютерам, что намерен начать передачу данных. В случае если другой компьютер сделает то же самое в тот же момент времени, то произойдет конфликт сигналов RTS, а не пакетов данных. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, пакеты данных никогда не смогут конфликтовать. Это принято называть предотвращением конфликтов

На первый взгляд, метод с предотвращением конфликтов значительно совершеннее, чем с обнаружением. При этом его производительность ниже из-за того, что дополнительно к данным приходится посылать сигналы RTS, подавляющее большинство которых не нужны. Фактически количество поступающих на кабель сигналов почти удваивается.

В 1980 году в Международном институте инженеров по электротехнике и радиоэлектронике (Institute of Electronics Engineers–IEEE) был организован комитет 802 по стандартизации локальных сетей. Комитет 802 разработал семейство стандартов IЕЕЕ802. x, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Стандарты семейства IЕЕЕ802.x охватывают только два нижних уровня семиуровневой модели OSI – физический и канальный, так как именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты, как для локальных, так и глобальных сетей. К наиболее распространенным методам доступа относятся: Ethernet, ArcNet и Token Ring, которые реализованы соответственно в стандартах IЕЕЕ802.3, IЕЕЕ802.4 и IЕЕЕ802.5. Кроме того, для сетей, работающих на оптическом волокне, американским институтом по стандартизации ASNI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мбит/с. В этих стандартах канальный уровень разделяется на два подуровня, которые называются уровнями:

 управление логическим каналом (LCC - Logical Link Control)

 управление доступом к среде (MAC - Media Access Control) Уровень управления доступом к среде передачи данных (MAC) появился, так как в локальных сетях используется разделяемая среда передачи данных. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих разные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI. После того, как доступ к среде получен, ею может воспользоваться более высокий канальный уровень – уровень LCC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг.

Методы доступа к среде передачи данных (методы доступа к каналам связи)

Для ЛВС, использующих разделяемую среду передачи данных (например, ЛВС с топологией шина и физическая звезда), актуальным является доступ рабочих станций к этой среде, так как если два ПК начинают одновременно передавать данные, то в сети происходит столкновение. Для того чтобы избежать этих столкновений необходим специальный механизм, способный решить эту проблему. Шинный арбитраж - это механизм призванный решить проблему столкновений. Он устанавливает правила, по которым рабочие станции определяют, когда среда свободна, и можно передавать данные. Существуют два метода шинного арбитража:

 обнаружение столкновений

 передача маркера

Обнаружение столкновений. Когда в сети работает метод обнаружения столкновений, компьютер сначала слушает, а потом передает. Если компьютер слышит, что передачу ведет кто-то другой, он должен подождать окончания передачи данных и затем предпринять повторную попытку. В этой ситуации (два компьютера, передающие в одно и то же время) система обнаружения столкновений требует, чтобы передающий компьютер продолжал прослушивать канал и, обнаружив на нем чужие данные, прекращал передачу, пытаясь возобновить ее через небольшой (случайный) промежуток времени. Прослушивание канала до передачи называется “прослушивание несущей” (carrier sense), а прослушивание во время передачи - обнаружение столкновений (collision detection). Компьютер, поступающий таким образом, использует метод, называющийся “обнаружение столкновений с прослушиванием несущей”, сокращенно CSCD.

Передача маркера.

Системы с передачей маркера работают иначе. Для того чтобы передать данные, компьютер сначала должен получить разрешение. Это значит, он должен “поймать” циркулирующий в сети пакет данных специального вида, называемый маркером. Маркер перемещается по замкнутому кругу, минуя поочередно каждый сетевой компьютер. Каждый раз, когда компьютер должен послать сообщение, он ловит и держит маркер у себя. Как только передача закончилась, он посылает новый маркер в путешествие дальше по сети. Такой подход дает гарантию, что любой компьютер рано или поздно получит право поймать и удерживать маркер до тех пор, пока его собственная передача не закончится.

Для управления обменом в сети существует ряд правил, определяющих способы доступа к среде передачи. Эти правила регламентированы в методе управления обменом (или методе доступа к среде передачи) – одном из важнейших параметров сети, который определяется особенностями топологии, архитектурой и т.д. От эффективности выбранного метода зависит скорость обмена информацией между узлами, нагрузочная способность сети, время реакции сети на внешние события и т.д.

Существует следующая классификация методов управления:

· централизованные методы , при которых управление сосредоточено в одном месте. Недостатками являются: малая гибкость управления и неустойчивость к отказам центра. Достоинство – отсутствие конфликтов;

· децентрализованные методы , при которых отсутствует центр управления. Высокая устойчивость к отказам и большая гибкость – достоинства таких методов, однако здесь возможны конфликты, которые необходимо разрешать.

Можно привести другую классификацию методов:

· детерминированные методы , которые функционируют по четким правилам, по которым происходит захват сети узлами. При этом существует система приоритетов, в общем случае различных для разных узлов. Конфликты здесь практически исключены;

· случайные методы , которые подразумевают случайное чередование передающих узлов. Конфликты, неизбежно возникающие в этом случае, разрешаются с помощью заранее определенного алгоритма.

Рассмотрим некоторые конкретные реализации методов доступа.

Метод CSMA / CD (множественный доступ с контролем носителя и обнаружением коллизий) в настоящее время является одним из наиболее распространенных. Используется этот метод в архитектуре Ethernet. Отличительные особенности этого метода следующие:

· контроль носителя – перед передачей в сеть данных узел сначала проверяет состояние линии связи (носителя) на предмет занятости передачей других данных;

· множественный доступ – несколько узлов одновременно могут начать передачу данных в сеть;

· обнаружение конфликтов – если линия занята, то узел ждет ее освобождения. Может так случиться, что два узла, одновременно опросив линию, убеждаются в том, что она свободна и начинают передачу, и, как следствие, возникает конфликт сигналов. В этом случае оба передающих узла прекращают передачу и ожидают некоторое время (выбранное случайным образом для каждого), а затем повторяют запрос линии. В силу случайности вероятность того, что выбранные периоды времени одинаковы, практически мала. Также после посылки кадров каждый узел ожидает некоторое время, а затем, в случае отсутствия ошибок в сети, вновь начинает посылать данные.


Это необходимо для того, чтобы ни один узел не мог захватить линию связи монопольно.

Метод CSMA / CA (множественный доступ с контролем носителя и предотвращением конфликтов) работает вначале аналогично CSMA/CD. Однако, если узел не находит в линии чужих сигналов, он посылает запрос на передачу (RTS), тем самым объявляя всем, что он намерен выполнить передачу. Поэтому здесь возможен только конфликт запросов RTS, а не пакетов данных, т.е. конфликты исключены. Производительность этого метода меньше, чем CSMA/CD практически вдвое. Используется этот метод в сетях AppleTalk.

Методы CSMA/CD и CSMA/CА еще называют конкурентными методами (в них узлы как бы конкурируют за право передачи).

Метод с передачей маркера неконкурентный. Сигнал, называемый маркером, передается по сети от одного узла к другому, пока не достигнет того, который хочет начать передачу данных. Как правило, такой метод используется в кольцевой топологии, но может применяться и в шине. Пример сети с методом передачи маркера – Token Ring. В ней при попадании маркера на компьютер, который готов передавать данные, этот компьютер захватывает управление маркером, добавляет данные к сигналу маркера и передает его в сеть. При прохождении пакета по сети все компьютеры последовательно передают его дальше до тех пор, пока он не достигнет того, кому он предназначен. После этого компьютер-получатель добавляет в маркер данные об успешном приеме и передает маркер дальше по кругу. Компьютер-передатчик опять добавляет данные к маркеру и передает его по кругу или, если передавать нечего, вместо данных вставляет отметку о том, что маркер свободен. В некоторых архитектурах с передачей маркера, например, FDDI, по сети могут циркулировать несколько маркеров.

Метод доступа с приоритетами запросов был разработан для локальной сетевой архитектуры 100VG-AnyLAN (высокоскоростная, гибкая и эффективная архитектура, призванная заменить Ethernet). В этих сетях используется древовидная топология, аналогичная звезде (рис.2.15).

Рис.2.15. Топология 100VG-AnyLAN

Концентраторы выполняют карусельный обзор подключенных узлов для обнаружения запросов на передачу данных. Определенным типам данных может быть присвоен приоритет для их обработки концентратором в первую очередь, что гарантирует необходимую пропускную способность для высокоскоростных приложений в реальном времени.

Этот метод запросов более эффективен, нежели CSMA/CD, потому что здесь используются пары кабелей (четыре кабеля к одному компьютеру, т.е. можно одновременно и передавать, и принимать), и сигналы передаются только тому концентратору, к которому подключен узел, а не всей сети. Это также повышает безопасность передаваемых данных.

Метод доступа – это способ определения того, какая из рабочих станций сможет следующей использовать ЛВС. То, как сеть управляет доступом к каналу связи (кабелю), существенно влияет на ее характеристики. Примерами методов доступа являются:

- множественный доступ с прослушиванием несущей и разрешением коллизий (Carrier Sense Multiple Access with Collision Detection – CSMA/CD);

- множественный доступ с передачей полномочия (Token Passing Multiple Access – TPMA) или метод с передачей маркера;

- множественный доступ с разделением во времени (Time Division Multiple Access – TDMA);

- множественный доступ с разделением частоты (Frequency Division Multiple Access – FDMA) или множественный доступ с разделением длины волны (Wavelength Division Multiple Access – WDMA).

CSMA/CD

Алгоритм множественного доступа с прослушиванием несущей и разрешением коллизий приведен на рис. 4.1.

Рис. 4 .1 Алгоритм CSMA/CD

Метод множественного доступа с прослушиванием несущей и разрешением коллизий (CSMA/CD) устанавливает следующий порядок: если рабочая станция хочет воспользоваться сетью для передачи данных, она сначала должна проверить состояние канала: начинать передачу станция может, если канал свободен. В процессе передачи станция продолжает прослушивание сети для обнаружения возможных конфликтов. Если возникает конфликт из-за того, что два узла попытаются занять канал, то обнаружившая конфликт интерфейсная плата, выдает в сеть специальный сигнал, и обе станции одновременно прекращают передачу. Принимающая станция отбрасывает частично принятое сообщение, а все рабочие станции, желающие передать сообщение, в течение некоторого, случайно выбранного промежутка времени выжидают, прежде чем начать сообщение.

Все сетевые интерфейсные платы запрограммированы на разные псевдослучайные промежутки времени. Если конфликт возникнет во время повторной передачи сообщения, этот промежуток времени будет увеличен. Стандарт типа Ethernet определяет сеть с конкуренцией, в которой несколько рабочих станций должны конкурировать друг с другом за право доступа к сети.

TPMA

Алгоритм множественного доступа с передачей полномочия, или маркера, приведен на рис. 4.2.

Рис. 4 .2 Алгоритм TPMA

Метод с передачей маркера – это метод доступа к среде, в котором от рабочей станции к рабочей станции передается маркер, дающий разрешение на передачу сообщения. При получении маркера рабочая станция может передавать сообщение, присоединяя его к маркеру, который переносит это сообщение по сети. Каждая станция между передающей станцией и принимающей видит это сообщение, но только станция – адресат принимает его. При этом она создает новый маркер.

Маркер (token ), или полномочие, – уникальная комбинация битов, позволяющая начать передачу данных.

Каждый узел принимает пакет от предыдущего, восстанавливает уровни сигналов до номинального уровня и передает дальше. Передаваемый пакет может содержать данные или являться маркером. Когда рабочей станции необходимо передать пакет, ее адаптер дожидается поступления маркера, а затем преобразует его в пакет, содержащий данные, отформатированные по протоколу соответствующего уровня, и передает результат далее по ЛВС .

Пакет распространяется по ЛВС от адаптера к адаптеру, пока не найдет своего адресата, который установит в нем определенные биты для подтверждения того, что данные достигли адресата, и ретранслирует его вновь в ЛВС . После чего пакет возвращается в узел из которого был отправлен. Здесь после проверки безошибочной передачи пакета, узел освобождает ЛВС , выпуская новый маркер. Таким образом, в ЛВС с передачей маркера невозможны коллизии (конфликты). Метод с передачей маркера в основном используется в кольцевой топологии.

Данный метод характеризуется следующими достоинствами:

- гарантирует определенное время доставки блоков данных в сети;

- дает возможность предоставления различных приоритетов передачи данных.

Вместе с тем он имеет существенные недостатки:

- в сети возможны потеря маркера, а также появление нескольких маркеров, при этом сеть прекращает работу;

- включение новой рабочей станции и отключение связаны с изменением адресов всей системы.

TDMA

Множественный доступ с разделением во времени основан на распределении времени работы канала между системами (рис.4.7).

Доступ TDMA основан на использовании специального устройства, называемого тактовым генератором. Этот генератор делит время канала на повторяющиеся циклы. Каждый из циклов начинается сигналом Разграничителем . Цикл включает n пронумерованных временных интервалов, называемых ячейками. Интервалы предоставляются для загрузки в них блоков данных.

Рис. 4 .3 Структура множественного доступа с разделением во времени

Данный способ позволяет организовать передачу данных с коммутацией пакетов и с коммутацией каналов.

Первый (простейший) вариант использования интервалов заключается в том, что их число (n) делается равным количеству абонентских систем, подключенных к рассматриваемому каналу. Тогда во время цикла каждой системе предоставляется один интервал, в течение которого она может передавать данные. При использовании рассмотренного метода доступа часто оказывается, что в одном и том же цикле одним системам нечего передавать, а другим не хватает выделенного времени. В результате – неэффективное использование пропускной способности канала.

Второй, более сложный, но высокоэкономичный вариант заключается в том, что система получает интервал только тогда, когда у нее возникает необходимость в передаче данных, например при асинхронном способе передачи. Для передачи данных система может в каждом цикле получать интервал с одним и тем же номером. В этом случае передаваемые системой блоки данных появляются через одинаковые промежутки времени и приходят с одним и тем же временем запаздывания. Это режим передачи данных с имитацией коммутации каналов. Способ особенно удобен при передаче речи.

FDMA

Доступ FDMA основан на разделении полосы пропускания канала на группу полос частот (Рис. 4.8), образующих логические каналы .

Широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. Размеры узких полос могут быть различными.

При использовании FDMA, именуемого также множественным доступом с разделением волны WDMA, широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. В каждой узкой полосе создается логический канал. Размеры узких полос могут быть различными. Передаваемые по логическим каналам сигналы накладываются на разные несущие и поэтому в частотной области не должны пересекаться. Вместе с этим, иногда, несмотря на наличие защитных полос, спектральные составляющие сигнала могут выходить за границы логического канала и вызывать шум в соседнем логическом канале.

Рис. 4 .4 Схема выделения логических каналов

В оптических каналах разделение частоты осуществляется направлением в каждый из них лучей света с различными частотами. Благодаря этому пропускная способность физического канала увеличивается в несколько раз. При осуществлении этого мультиплексирования в один световод излучает свет большое число лазеров (на различных частотах). Через световод излучение каждого из них проходит независимо от другого. На приемном конце разделение частот сигналов, прошедших физический канал, осуществляется путем фильтрации выходных сигналов.

Метод доступа FDMA относительно прост, но для его реализации необходимы передатчики и приемники, работающие на различных частотах.

Наименование параметра Значение
Тема статьи: Методы доступа
Рубрика (тематическая категория) Технологии

Эффективность взаимодействия рабочих станций в рамках локальной компьютерной сети во многом определяется используемым правилом доступа к общей передающей среде в сетях с шинной и кольцевой топологии. Правило, с помощью которого организуется доступ рабочих станций к передающей среде, получило название метода доступа. Т.е., метод доступа - ϶ᴛᴏ способ ʼʼзахватаʼʼ передающей среды, способ определœения того, какая из рабочих станций может следующей использовать ресурсы сети. Но, кроме того, так же принято называть набор правил (алгоритм), используемых сетевым оборудованием, чтобы направлять поток сообщений через сеть, а также один из базовых признаков, по которым различают сетевое оборудование.

В силу большого разнообразия локальных сетей и требований к ним, нельзя назвать какой–либо универсальный метод доступа, эффективный во всœех случаях. Каждый из известных методов доступа имеет определœенные преимущества и недостатки.

Классификация методов доступа:

Рисунок 6.1 Методы доступа.

Учитывая зависимость отиспользуемого метода доступа локальные сети делятся на две группы. К первой группе относятся сети, в которых используются методы детерминированного доступа, ко второй – методы случайного доступа.

Методы доступа - понятие и виды. Классификация и особенности категории "Методы доступа" 2017, 2018.

  • - Методы доступа и протоколы передачи данных в локальных сетях

    В различных сетях существуют различные процедуры обмена данными между рабочими станциями. Эти процедуры называют протоколами передачи данных. Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electronics Engineers-IEEE) разработал стандарты для... .


  • - Методы доступа к передающей среде

    Передающая среда является общим ресурсом для всех узлов сети. Чтобы получить возможность доступа к этому ресурсу из узла сети, необходимы специальные механизмы - методы доступа. Метод доступа к передающей среде- метод, обеспечивающий выполнение совокупности правил, по... .



  • - Методы доступа к среде в беспроводных сетях

    Пропускная способность канала Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них - помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи... .


  • - Тема 19. Методы доступа

    Звезда Кольцо Рис. 4.1 Топология Кольцо Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис.4.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает... .


  • - Методы доступа к шине

    Интерфейс RS-485 Интерфейс RS-422 Интерфейс RS-232C Передача данных Основными достоинствами промышленных сетей являются недорогие линии и надежность передачи данных. Данные передаются последовательно бит за битом, как правило, по...