Мультиплексоры и демультиплексоры. Мультиплексоры и демультиплексоры: схемы, принцип работы Что такое демультиплексор

«Графики функций и их свойства» - 7) Функция непрерывна на любом интервале вида (?k; ? + ?k). Работа устно: tg(- x) = - tg x. 2) Чётность или нечётность функции. Опишите свойства функции y = ctgx. 6) Функция не имеет ни наибольшего, ни наименьшего значений. У функции y = tg x нет ни наибольшего, ни наименьшего значений. D(f): множество всех действительных чисел, кроме чисел вида x = ?k.

«Математика графики» - Как строятся графики? Что вы можете нарисовать с помощью графиков? Итак, цель исследования. Знакомимся с более широким применениием: медицина, геодезия… Какие способы построения графиков вам известны? Интересно. Графики: сложно, Вас ожидает работа: Наиболее естественно функциональные зависимости отражаются с помощью графиков.

«График функции 7 класс» - Сравните числа: Постройте график функции, используя правила перемещения: Определите соответствие, между графиком функции и формулой: Зависимая переменная. Построим график функции по точкам: Примеры, приводящие к понятию функции. Постройте график функции: Представьте выражения в виде одночлена стандартного вида:

«График обратной пропорциональности» - Чётность, нечётность. Непрерывность. Обратная пропорциональность. Гипербола. Гипербола и космические спутники. Применение гиперболоидов. Построение графика обратной пропорциональности. Оси симметрии гиперболы. Функция «Обратная пропорциональность». Гиперболоиды вращения. Область определения. Асимптота.

«Построение графиков» - Постройте график функции. Найти все значения а, при которых уравнение. Применим обобщенный метод областей. По рисунку легко считываем ответ. Исходное уравнение равносильно совокупности: Путем сложения соответствующих координат получаем искомый график. Построим графический образ соответствий, входящих в систему.

«Построение графика функции с модулем» - Закрепили знания на ранее изученных функциях. Y = x – 2. Вопрос классу. Обобщение. Построение графиков функций. Y = sinx. Попробуйте самостоятельно построить графики. Y = lnx. Урок обобщения и систематизации знаний. Усвоенные знания. Линейная функция. Y = f(x). Проектная деятельность. Y = x2 – 2x – 3.

На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.

В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.

Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.

При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.

Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.

Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.

Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.

Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.


Линия связи мультиплексора и демультиплексора

Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.

Мультиплексирование бывает таких видов:

  • временного характера;
  • пространственного типа;
  • кодовым;

Как правило, если каналы являются проводными, то в применении актуальны первые два метода, а для беспроводных каналов применяются все четыре варианта. Обычно, если речь идет о мультиплексоре, то подразумевается проводное устройство.

По этой причине стоит более подробно ознакомиться с частотным и временным методами:

Методы мультиплексирования


Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.

Временной вариант


Временное мультиплексирование и демультиплексирование

Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.

При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.

Этот способ используют, как правило, для цифровых связных каналов.

Классификация мультиплексоров

Мультиплексоры существуют таких видов:

  1. Терминальные. Их размещают на концах связных линий.
  2. Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.

Также мультиплексоры классифицируются таким способом:

Аналоговые мультиплексоры


Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство

Цифровые мультиплексоры


Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.

Области применения

Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.

Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.


Схема применения оптического мультиплексора

Структура мультиплексора

Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.

Структуру мультиплексора можно рассмотреть на примере его общей схемы. Входные данные логического типа поступают на выходы коммутатора, и далее через него направляются на выход. На вход управления подается слова адресных каналов. Само устройство тоже может обладать специальным входом управления, который дает возможность проходить или не проходить входному каналу на выход.

Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.

Демультиплексор

Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.

Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.

Особым отличием данного типа устройства от мультиплексоров считается то, что есть возможность обледенить определенное количество входов в один, не применяя при этом дополнительных схем. Но для того, чтобы увеличить нагрузку микросхемы, на выходе устройства для увеличения входного канала рекомендуется установить специальный инвертор.

В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.

На что следует обратить внимание при выборе мультиплексора?

  1. Какие камеры используются – черно-белые, цветные?
  2. Общее количество камер, которое возможно подключить к устройству.
  3. Тип мультиплексора.
  4. Разрешение устройства.
  5. Наличие детектора, определяющего движение.
  6. Можно ли подключить второй экран монитора?

При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.

Демультиплексоры

Демультиплексор - схема, выполняющая функцию, обратную функции мультиплексора, т.е. это комбинационная схема, имеющая один информационный вход (Д), n информационных выходов (у0, у1, …, уn-1) и k управляющих (адресных) входов (А0, А1, …, Аk-1). Обычно, также как и мультиплексоров, 2k= n. Двоичный код, поступающий на адресные входы, определяет один из n выходов, на который передается значение переменной с информационного входа (Д), т.е. демультиплексор реализует следующие функции:

Таблица функционирования демультиплексора, имеющего n = 4 информационных выходов (у0, у1, у2, у3) и k = 2 адресных входов (А0, А1), представлена в табл. 1.2.

Таблица 1.2

Уравнения, описывающие работу демультиплексора:

Схема демультиплексора, построенная по данным уравнениям и его графическое изображение представлены на рис. 1.3.


Рис. 1.3 - Схема демультиплексора "1- 4" (а) и его условное изображение (б)

Функция демультиплексора легко реализуется с помощью дешифратора, если его вход “Разрешение” (Е) использовать в качестве информационного входа демультиплексора, а входы 1, 2, 4 … - в качестве адресных входов демультиплексораА0, А1, А2, … Действительно, при активном значении сигнала на входе Е избирается выход, соответствующий коду, поданному на адресные входы. Поэтому ИС дешифраторов, имеющих разрешающий вход, иногда называют не просто дешифраторами, а дешифраторами-демультиплексорами (например, К155ИД4, К531ИД7 и др.).

Применение мультиплексоров и демультиплексоров

Термином “мультиплексирование” называют процесс передачи данных от нескольких источников по общему каналу, а устройство, осуществляющее на передающей стороне операцию сведения данных в один канал, принято называть мультиплексором. Подобное устройство способно осуществлять временное разделение сигналов, поступающих от нескольких источников, и передавать их в канал (линию) связи друг за другом в соответствии со сменой кодов на своих адресных входах.

На приемной стороне обычно требуется выполнить обратную операцию - демультиплексирование, т.е. распределение порций данных, поступивших по каналу связи в последовательные моменты времени, по своим приемникам. Эту операцию выполняет демультиплексор. Совместное использование мультиплексора и демультиплексора для передачи данных от n источников к n приемникам по общей линии иллюстрирует рис. 1.4. (В общем случае число источников данных не равно числу приемников).


Рис. 1.4

Если в схеме (рис. 1.4) n различных источников и приемников заменить n-разрядными источником и приемником, например, регистрами RGист. и RGпр. (изображены пунктирными линиями), то схема может быть использована для преобразования n-разрядного параллельного кода на передающей стороне в последовательный код (с помощью мультиплексора) и последовательного кода в параллельный на приемной стороне (с помощью демультиплексора).

При подобном применении мультиплексора и демультиплексора в качестве их адресных кодов используются выходные сигналы двоичного счетчика, последовательно формирующего на своих выходах двоичные коды чисел от 0 до n-1.

Мультиплексор можно использовать в качестве универсального логического элемента для реализации любой логической функции от числа аргументов, равного числу адресных входов мультиплексора. Покажем это на примере логической функции, заданной своей таблицей истинности (табл. 1.3).

Выбираем мультиплексор, имеющий три адресных (по числу аргументов функции) и восемь информационных входов.


Рис. 1.5

Для реализации заданной функции информационные входы мультиплексора соединим с уровнями логических “1” и “0” в такой последовательности, которая полностью копирует последовательность единиц и нулей функции в таблице истинности (рис. 1.5). При этом не требуется ни записи СДНФ, ни ее минимизации. Кстати, функция, заданная табл. 1.3 (четность числа единиц в трехразрядном слове), не упрощается, поэтому для своей реализации, например, в базисе ЛЭ “И-НЕ” требует четырех ЛЭ “3И-НЕ” и трех инверторов, т.е. в сумме потребуется три ИС. В то же время для реализации схемы по рис. 1.5 требуется всего одна ИС мультиплексора “8-1”. По этой причине, способ реализации функций трех или большего числа аргументов с помощью ИС мультиплексоров весьма популярен у разработчиков.