Общая топология. Некоторые основные понятия

Доступно с лицензией Standard или Advanced.

Топология - это набор правил, которые вместе с инструментами и технологиями редактирования позволяют более точно моделировать геометрические отношения в базе геоданных. В ArcGIS топология обеспечивается через набор правил, которые определяют, как пространственные объекты взаморасполагаются в географическом пространстве, а также через набор инструментов редактирования, одинаковым образом применяющиеся к объектам с общей геометрией. Топология хранится в базе геоданных как одно или несколько отношений, определяющих, как пространственные объекты одного или нескольких классов пространственных объектов используют общую геометрию. Участвующие в топологии пространственные объекты относятся к простым классам пространственных объектов - топология не изменяет определение класса пространственных объектов, а сама служит описанием пространственных отношений этих объектов.

Зачем нужна топология?

В течение долгого времени, топология была ключевым элементом ГИС, служащим для управления данными и контролем над их целостностью. В целом, модель топологических данных управляет пространственными отношениями путем представления пространственных объектов (точечных, линейных и площадных объектов) в виде схем топологических примитивов – узлов, граней и ребер. Эти примитивы, взаимоотношения между ними, а также с объектами, чьи границы они представляют, определяются отображением геометрии пространственных объектов в графе топологических элементов.

Топология используется в основном для контроля качества данных с пространственными отношениями, а также помогает при их компиляции. Во многих случаях, топология также применяется для анализа пространственных взаимоотношений – например, чтобы убрать границы между соседними полигонами, имеющими одинаковые атрибутивные значения, или для прокладывания пути по сети элементов топологического графа.

Топология также используется для моделирования интеграции геометрии между несколькими различными классами пространственных объектов. Иногда это называют вертикальной интеграцией классов пространственных объектов.

Каким образом объекты в топологии используют общую геометрию

Пространственные объекты могут совместно использовать геометрию внутри топологии. Ниже приведены примеры смежных пространственных объектов:

  • Площадные объекты могут использовать общие границы (полигональная топология).
  • Линейные объекты могут использовать общие конечные точки (топология ребер и узлов).

Кроме того, общая геометрия может использоваться между классами пространственных объектов с помощью топологии базы геоданных. Например:

  • Линейные пространственные объекты могут иметь общие сегменты.
  • Площадные объекты могут совмещаться с другими площадными объектами. Например, земельные участки могут могут складываться в кварталы.
  • Линейные пространственные объекты могут иметь вершины, совпадающие с точечными объектами (узловая топология).
  • Точечные объекты могут совмещаться с линейными (точечные события).
Примечание:

Земельные участки часто управляются с помощью простых классов пространственных объектов и топологии базы геоданных, так как там набор классов пространственных объектов, необходимых для моделирования земельных участков, границ, угловых точек и контрольных точек следуют правилам совпадения. Еще одним способом управления земельными участками является использование набора данных участков , который автоматически обеспечивает наличие этих слоев. Набор данных участков управляет своей внутренней топологией, так что нет необходимости поддерживать топологию базы геоданных или выполнять какое-либо топологическое редактирование для используемый участками слоев.

Ключевое отличие между участками, моделируемыми в виде простых объектов, и участками в наборе данных участков заключается в том, что в наборе границы участков (линии в наборе данных участков) не являются общими – каждый земельный участок содержит полный набор линий границ; смежные линии участков перекрываются и совпадают друг с другом.

При этом наборы данных участков могут участвовать в топологии базы геоданных; там накладывающиеся линии границ обладают разной геометрией, линии разбиваются и граф топологии строится как обычно.

Два вида: объекты и элементы топологии

Слой полигонов можно описать и использовать:

  • Как наборы географических пространственных объектов (точек, линий и полигонов)
  • Как граф топологических элементов (узлов, ребер, граней и их взаимоотношений).

Это означает, что существуют два варианта работы с пространственными объектами: в одном случае вы работаете с пространственными объектами, имеющие заданные координаты, а в другом – с объектами, представленными в виде упорядоченного графа топологических элементов.

Эволюция покрытий в топологию базы геоданных

Примечание:

Прочтение этого раздела не является необходимым для работы с топологией базы геоданных. Однако прочитайте этот раздел, если вас интересует история появления и развития топологии в базах геоданных.

Происхождение терминов «Дуга-узел» и «Геореляционный»

Покрытия ArcInfo Workstation имеют долгую историю применения и показали важность топологии для обеспечения пространственной целостности данных.

Модель данных покрытия содержит следующие элементы.

Границы пространственных объектов и точки в покрытии хранились в нескольких основных файлах, управляемых ArcInfo Workstation . Файл «ARC» содержал линейную или полигональную геометрию границ в виде топологических ребер, которые назывались «дугами». Файл «LAB» содержал точечные объекты, которые использовались как отправные точки для построения полигонов или как отдельные точечные объекты, например скважины. Другие файлы использовались для определения и сохранения топологических отношений между ребрами полигонов.

Например, файл «PAL» («Polygon-arc list») содержал порядок и направление дуг каждого полигона. С помощью программной логики в ArcInfo Workstation осуществлялась сборка координат каждого полигона для целей отображения, анализа и запроса данных. Упорядоченный список, содержащийся в файле PAL, использовался для поиска и сборки координат ребер, которые хранились в файле ARC. Сборка полигонов происходила по мере необходимости во время работы.

Модель покрытий имела несколько преимуществ:

  • Она использовала простую структуру для хранения топологии.
  • Она позволяла один раз оцифровывать и сохранять дуги, которые затем использовались несколькими пространственными объектами.
  • Она могла отображать полигоны очень большого размера (с тысячами координатных точек), т.к. они были представлены в виде набора ребер (т.е. «дуг»)
  • Структура хранения топологии покрытия была интуитивно понятна. Ее физические топологические файлы были легко понятны пользователям ArcInfo Workstation .
Прежние версии:

Интересный исторический факт: сочетание Arc с менеджером таблиц Info породило название продукта ArcInfo Workstation , из которого развились все последующие Arc-продукты в семействе продуктов Esri – ArcInfo, ArcIMS, ArcGIS и т.д.

Покрытия также имели несколько недостатков:

  • Некоторые операции выполнялись медленно из-за необходимости сборки «на лету» большого количества объектов. Сюда относятся все полигоны и составные объекты, такие как регионы (термин, означающий полигоны, состоящие из нескольких частей) и маршруты (составные линейные объекты).
  • Топологические пространственные объекты (такие как полигоны, регионы и маршруты) были не готовы к использованию, пока не была построена топология покрытия. Если редактировались ребра, вся топология требовала перестроения. (Примечание: в конечном итоге была использована частичная обработка, что позволяло перестраивать только измененные части топологии покрытия). В основном, при редактировании пространственных объектов топологии, необходимо было задействовать алгоритм геометрического анализа для перестроения топологических отношений, независимо от использованной модели хранения данных.
  • Покрытия не позволяли использовать многопользовательское редактирование. Поскольку существовала необходимость обеспечить синхронизацию графа топологии с геометрией пространственных объектов, только один пользователь мог одновременно редактировать топологию. Пользователям приходилось разбивать покрытие на части для одновременного редактирования. Это давало возможность отдельным пользователям «закрывать» и редактировать свою часть данных. Для использования всего массива данных, пользователи должны были скопировать свои части в составной слой данных. Другими словами, разделенные на части наборы данных, которые они редактировали, нельзя было сразу использовать в совместном доступе. Сначала, их было необходимо конвертировать, что означало дополнительные затраты времени и труда.

Шейп-файлы и хранение простой геометрии

В начале 1980-х, покрытия рассматривались как существенное усовершенствование устаревших полигональных и линейных систем, в которых полигоны хранились в виде замкнутых петель. В этих устаревших системах, все координаты пространственных объектов хранились вместе с геометрией этих объектов. До появления покрытий и ArcInfo Workstation , использовались эти простые полигональные и линейные структуры. Эта структура данных была проста, но имела существенный недостаток «дважды оцифрованных границ». Т.е. в геометрии каждого полигона, имеющего общие грани, хранились две копии координат для соседних участков. Основной недостаток состоял в том, что программное обеспечение ГИС того времени не могло управлять целостностью общих ребер. Кроме того, стоимость хранения информации была очень велика, экономить приходилось каждый байт. В начале 80-х годов жесткий диск емкостью 300 МБ был размером со стиральную машину и стоил 30 000 долларов. Хранение двух и более наборов координат было дорогостоящим, а вычисления занимали немало машинного времени. Таким образом, использование топологии покрытия имело реальные преимущества.

В середине 1990-х, на фоне уменьшения стоимости дискового пространства и увеличения вычислительной мощности, усиливался интерес к простым геометрическим структурам. В это же время, наборы ГИС данных становились все доступнее, и пользователи ГИС стали переходить от первичной компиляции данных к их обработке и анализу.

Пользователи хотели повышения быстродействия при работе с данными (например, не ждать вычисления геометрии полигона, который потребовался в данный момент, а просто получить координаты полигонов как можно быстрее). Доступность полной геометрии пространственных объектов оказалась более эффективной. Тысячи пользователей ГИС создали огромное количество доступных наборов данных.

Примерно в это же время компания Esri разработала и опубликовала формат шейп-файла. Шейп-файлы использовали очень простую модель хранения координат пространственных объектов. Каждый шейп-файл представлял один класс пространственных объектов (точечных, линейных или полигональных) и использовал простую модель хранения координат пространственных объектов. Шейп-файлы легко создавались из покрытий и форматов других ГИС. Они быстро стали форматом «де-факто», широко распространились и используются по сей день.

Несколько лет спустя, ArcSDE предложил простую модель хранения данных в таблицах реляционных баз данных. Таблица пространственных объектов может хранить один объект в виде строки, вместе с информацией о его геометрии, а также атрибуты.

Пример такой таблицы, содержащей полигоны штатов, показан ниже. Каждая строка представляет один штат. Столбец shape содержит полигональную геометрию каждого штата.


Эта простая модель пространственных объектов хорошо подходит для механизма обработки SQL. Благодаря использованию реляционных баз данных, увеличение объема данных и количества пользователей не приводило к снижению производительности. Мы начали использовать РСУБД для управления данными ГИС.

Шейп-файлы получили повсеместное распространение и, благодаря ArcSDE, этот механизм хранения простой геометрии стал основной моделью хранения пространственных объектов в РСУБД. (Стремясь обеспечить совместимость данных, компания Esri сыграла ведущую роль в создании спецификации простой геометрии OGC и ISO).

Хранение простых объектов имело явные преимущества:

  • Полная геометрия каждого пространственного объекта содержится в одной строке. Сборка не требуется.
  • Структура данных (физическая схема) очень проста, кроме того, она не только быстрая, но и масштабируемая.
  • Легкость написания интерфейса.
  • Легкость взаимодействия. Позволяет без труда создавать конвертеры для переноса данных в формат простой геометрии из большого количества других форматов, и наоборот. Шейп-файлы широко применялись как формат хранения данных, а также как обменный формат.

Одним из их недостатков являлась невозможность использования топологии для поддержания целостности данных при работе с простыми объектами. Как следствие, пользователи использовали одну модель данных для редактирования и хранения (покрытия), а вторую для обработки (шейп-файлы или слои ArcSDE).

Пользователи стали применять такой гибридный подход для редактирования и работы с данными. Например, пользователи могли редактировать данные в покрытиях, файлах САПР или в других форматах. Затем, они могли конвертировать данные в шейп-файлы для картографического использования. Таким образом, несмотря на то, что структура простых объектов стала удобным форматом прямого использования, она не поддерживала топологическое редактирование и управление совместно используемой геометрией. Базы данных прямого пользования могли использовать простую структуру, но для редактирования использовалась иная топологическая форма. Это давало преимущества при работе с данными. Но, при этом данные устаревали, их требовалось обновлять. Эта схема работала, но при этом появлялась задержка обновления информации. Нижняя линия – топология отсутствует.

ГИС требовали механизма хранения пространственных объектов, использующего простую геометрию объектов, и позволяющего использовать топологию вместе с этой структурой данных. Это означало, что пользователи, наконец, смогут совместить преимущества обоих подходов – транзакционной модели данных, которая позволяет выполнять запросы к топологии, совместное редактирование и контроль над целостностью данных, и простого, хорошо масштабируемого механизма хранения данных, основанного на использовании геометрии простых объектов.

Эта модель данных оказалась простой, быстрой и эффективной. Она позволяет прямое редактирование и одновременную работу любого числа пользователей.

Рабочая среда топологии в ArcGIS

Фактически, топология предполагает нечто большее, чем только модель хранения данных. Топология включает:

  • Полная модель данных (объекты, правила целостности, инструменты редактирования и проверки, топологически-геометрический механизм, позволяющий обрабатывать наборы данных любого размера и сложности, а также набор топологических операторов, способов отображения и инструментов построения запросов).
  • Открытый формат хранения использует набор типовых записей для обозначения простых объектов и топологический интерфейс для построения запросов, поиска элементов топологии и обработки пространственных отношений между ними (т.е., поиск смежных областей и их общих ребер, перемещение вдоль соединенных линий).
  • Возможность взаимодействия пространственных объектов (точки, линии и полигоны), топологических элементов (узлы, ребра, грани) и их отношений.
  • Механизм, который может поддерживать:
    • Очень большие наборы данных, содержащие миллионы пространственных объектов.
    • Одновременное редактирование и обработку несколькими пользователями.
    • Готовую к использованию, всегда доступную геометрию пространственных объектов.
    • Поддержку топологической целостности и поведения.
    • Быстродействующую систему, масштабируемую в зависимости от числа пользователей и редакторов.
    • Гибкую и простую систему.
    • Систему, использующую преимущества механизма SQL реляционной СУБД и среду транзакций.
    • Систему, поддерживающую многопользовательское редактирование, длинные транзакции, историческое архивирование и репликацию.

В топологии базы геоданных, процесс проверки определяет общие координаты пространственных объектов (как в пределах одного класса пространственных объектов, так и между классами). Алгоритм кластеризации обеспечивает точное совпадение общих координат. Общие координаты хранятся как часть простой геометрии каждого пространственного объекта.

Это обеспечивает быстрый и масштабируемый поиск топологических элементов (узлов, ребер и граней). Дополнительным преимуществом является работа с механизмом SQL РСУБД и управление транзакциями.

При редактировании или обновлении данных, новые пространственные объекты можно использовать сразу после добавления. Обновленные области карты, так называемые «измененные области», маркируются в каждом классе пространственных объектов. В любое время, пользователи могут выполнить топологический анализ и проверку измененных областей. Перестройка требуется только для топологии измененных областей, что сокращает время, требующееся на обработку.

В результате, топологические примитивы (узлы, ребра и грани), отношения между ними и пространственные объекты, в которые они входят, можно быстро обнаружить и собрать. Такая топология имеет следующие преимущества:

  • Для хранения пространственных объектов используется простая геометрия. Модель хранения является открытой, эффективной, и масштабируется под большие объемы и многочисленных пользователей.
  • Модель данных простых объектов является транзакционной и многопользовательской. Предыдущие топологические модели данных не масштабировались и имели серьезные ограничения при многопользовательской работе.
  • Топология базы геоданных полностью поддерживает все возможности длинных транзакций и версионных данных базы геоданных. Топологию базы геоданных не нужно разбивать для многопользовательской работы, пользователи могут одновременно редактировать базу топологических данных – даже свои собственные версии одних и тех же пространственных объектов.
  • Классы пространственных объектов могут содержать очень большое количество объектов (сотни миллионов), при этом их производительность не снижается.
  • Такое решение топологии является аддитивным. Как правило, вы можете добавить топологию к существующей схеме пространственно связанных классов объектов. Или, вам придется заново создать схему, имеющею возможность использования топологических примитивов, и загрузить в нее имеющиеся пространственные данные.
  • Для редактирования геометрии и работы с данными, как правило, достаточно одной модели.
  • Это стало возможным благодаря использованию спецификаций Открытого геопространственного консорциума и ISO для хранения геометрии всех пространственных объектов.
  • Моделирование данных более естественно, т.к. оно основано на пользовательских пространственных объектах (таких как земельные участки, улицы, типы почв и водоразделы) вместо топологических примитивов (узлов, ребер и граней). Пользователи начинают оперировать категориями целостности данных относительно реальных объектов, а не следить за целостностью топологических примитивов. Например, как должны себя вести эти земельные участки? Такой подход упрощает моделирование всех типов географических объектов. Он упрощает представление о реальных объектах: улицах, типах почв, районах переписи, железнодорожных путях, лесах, ландшафтах и т.д.
  • Топология базы геоданных обеспечивает то же информационное наполнение, что и предыдущие версии топологии – вне зависимости от того, храните ли вы топологический линейный граф и рассчитываете геометрию пространственных объектов (как в покрытиях) или храните геометрию объектов и вычисляете элементы топологии и связи (как в базах геоданных).

В тех случаях, когда пользователи предпочитают хранить топологические примитивы, они могут создавать таблицы и размещать в них топологию и связи для различных аналитических операций и для обмена данными (например, если необходимо разместить информацию в Oracle Spatial, который хранит таблицы топологических примитивов).

С практической точки зрения, топологическое решение ArcGIS работает. Оно масштабируется без потери производительности, как по объему данных, так и по количеству пользователей. Оно позволяет использовать широкий набор инструментов проверки и редактирования для построения и обработки топологии в базе геоданных. Оно включает мощные и гибкие инструменты моделирования данных, которые позволяют пользователям создавать удобные системы, работающие как на файловом уровне, так и на уровне реляционных баз данных, и использующие любое количество схем.

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.

Содержание статьи

ТОПОЛОГИЯ, раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация – это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек). Такие геометрические свойства связаны с положением, а не с формой или величиной фигуры. В отличие от евклидовой и римановой геометрий, геометрии Лобачевского и других геометрий, занимающихся измерением длин и углов, топология имеет неметрический и качественный характер. Раньше она носила названия «анализ ситус» (анализ положения), а также «теория точечных множеств». В научно-популярной литературе топологию часто называют «геометрией на резиновом листе», поскольку ее наглядно можно представлять себе как геометрию фигур, нарисованных на идеально упругих резиновых листах, которые подвергаются растяжению, сжатию или изгибанию. Топология – один из новейших разделов математики.

История.

В 1640 французский философ и математик Р.Декарт (1596–1650) нашел инвариантное соотношение между числом вершин, ребер и граней простых многогранников. Это соотношение Декарт выразил формулой V – E + F = 2, где V – число вершин, E – число ребер и F – число граней. В 1752 швейцарский математик Л.Эйлер (1707–1783) дал строгое доказательство этой формулы. Еще один вклад Эйлера в развитие топологии – это решение знаменитой задачи о кёнигсбергских мостах. Речь шла об острове на реке Прегель в Кёнигсберге (в том месте, где река разделяется на два рукава – Старый и Новый Прегель) и семи мостах, соединяющих остров с берегами. Задача состояла в том, чтобы выяснить, можно ли обойти все семь мостов по непрерывному маршруту, побывав на каждом только один раз и вернувшись в исходную точку. Эйлер заменил участки суши точками, а мосты – линиями. Полученную конфигурацию Эйлер назвал графом, точки – его вершинами, а линии – ребрами. Вершины он разделил на четные и нечетные в зависимости от того, четное или нечетное число ребер выходит из вершины. Эйлер показал, что все ребра графа можно обойти ровна по одному разу по непрерывному замкнутому маршруту, лишь если граф содержит только четные вершины. Так как граф в задаче о кёнигсбергских мостах содержит только нечетные вершины, мосты невозможно обойти по непрерывному маршруту, побывав на каждом ровно по одному разу и вернувшись к началу маршрута.

Предложенное Эйлером решение задачи о кенигсбергских мостах зависит только от взаимного расположения мостов. Оно положило формальное начало топологии как разделу математики. К.Гаусс (1777–1855) создал теорию узлов, которой позднее занимались И.Листинг (1808–1882), П.Тэйт (1831–1901) и Дж.Александер. В 1840 А.Мёбиус (1790–1868) сформулировал так называемую проблему четырех красок, которую впоследствии исследовали О.де Морган (1806–1871) и А.Кэли (1821–1895). Первым систематическим трудом по топологии были Предварительные исследования по топологии Листинга (1874).

Основателями современной топологии являются Г.Кантор (1845–1918), А.Пуанкаре (1854–1912) и Л.Брауэр (1881–1966).

Разделы топологии.

Топологию можно подразделить на три области: 1) комбинаторную топологию, изучающую геометрические формы посредством их разбиения на простейшие фигуры, регулярным образом примыкающие друг к другу; 2) алгебраическую топологию, занимающуюся изучением алгебраических структур, связанных с топологическими пространствами, с упором на теорию групп; 3) теоретико-множественную топологию, изучающую множества как скопления точек (в отличие от комбинаторных методов, представляющих объект как объединение более простых объектов) и описывающую множества в терминах таких топологических свойств, как открытость, замкнутость, связность и т.д. Разумеется, такое деление топологии на области в чем-то произвольно; многие топологи предпочитают выделять в ней другие разделы.

Некоторые основные понятия.

Топологическое пространство состоит из множества точек S и набора S подмножеств множества S , удовлетворяющего следующим аксиомам:

(1) все множество S и пустое множество принадлежат набору S;

(2) объединение любой совокупности множеств из S есть множество из S;

(3) пересечение любого конечного числа множеств из S есть множество из S.

Множества, входящие в набор S, называются открытыми множествами , а сам этот набор – топологией в S . См . МНОЖЕСТВ ТЕОРИЯ.

Топологическое преобразование , или гомеоморфизм , одной геометрической фигуры S на другую, S ў, – это отображение (p ® p ў) точек p из S в точки p ў из S ў, удовлетворяющее следующим условиям: 1) устанавливаемое им соответствие между точками из S и S ў взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка p ў из S ў и в каждую точку p ў отображается только одна точка p ; 2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p , q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками p ў, q ў из S ў также стремится к нулю, и наоборот.

Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными . Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны. Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.

Топологическим свойством (или топологическим инвариантом ) геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании.

Любое открытое связное множество, содержащее по крайней мере одну точку, называется областью .

Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной односвязностью . Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной , а соответствующее свойство области – многосвязностью . Представьте себе две круговые области, или диски, одну без дыр, а другую с дырами. Первая область односвязна, вторая многосвязна. Односвязность и многосвязность – топологические свойства. Область с дырой не может перейти при гомеоморфизме в область без дыр. Интересно отметить, что если в многосвязном диске провести по разрезу от каждой из дыр до края диска, то он станет односвязным.

Максимальное число замкнутых простых непересекающихся кривых, по которым можно разрезать замкнутую поверхность, не разделяя ее на отдельные части, называется родом поверхности. Род – топологический инвариант поверхности. Можно доказать, что род сферы равен нулю, род тора (поверхности «бублика») – единице, род кренделя (тора с двумя дырками) – двум, род поверхности с p дырами равен p . Отсюда следует, что ни поверхность куба, ни сфера не гомеоморфны тору.

Среди топологических инвариантов поверхности можно также отметить число сторон и число краев. Диск имеет 2 стороны, 1 край и род 0. Тор имеет 2 стороны, не имеет краев, а его род равен 1.

Введенные выше понятия позволяют уточнить определение топологии: топологией называется раздел математики, изучающий свойства, которые сохраняются при гомеоморфизмах .

Важные проблемы и результаты.

Теорема Жордана о замкнутой кривой.

Если на поверхности проведена простая замкнутая кривая, то существует ли какое-либо свойство кривой, которое сохраняется при деформации поверхности? Существование такого свойства вытекает из следующей теоремы: простая замкнутая кривая на плоскости делит плоскость на две области, внутреннюю и внешнюю . Эта кажущаяся тривиальной теорема очевидна для кривых простого вида, например, для окружности; однако для сложных замкнутых ломаных дело обстоит иначе. Теорема была впервые сформулирована и доказана К.Жорданом (1838–1922); однако доказательство Жордана оказалось ошибочным. Удовлетворительное доказательство было предложено О.Вебленом (1880–1960) в 1905.

Теорема Брауэра о неподвижной точке.

Пусть D – замкнутая область, состоящая из окружности и ее внутренности. Теорема Брауэра утверждает, что для любого непрерывного преобразования, переводящего каждую точку области D в точку этой же области, существует некоторая точка, которая остается неподвижной при этом преобразовании. (Преобразование не предполагается взаимно однозначным.) Теорема Брауэра о неподвижной точке представляет особый интерес потому, что она, по-видимому, является, наиболее часто используемой в других разделах математики топологической теоремой.

Проблема четырех красок.

Проблема заключается в следующем: можно ли любую карту раскрасить в четыре цвета так, чтобы любые две страны, имеющие общую границу, были раскрашены в различные цвета? Проблема четырех красок топологическая, так как ни форма стран, ни конфигурация границ не имеют значения.

Гипотеза о том, что четырех красок достаточно для соответствующей раскраски любой карты, была впервые высказана в 1852. Опыт показал, что четырех красок действительно достаточно, но строгого математического доказательства не удавалось получить на протяжении более ста лет. И только в 1976 К.Аппель и В.Хакен из Иллинойского университета, затратив более 1000 часов компьютерного времени, добились успеха.

Односторонние поверхности.

Простейшей односторонней поверхностью является лист Мёбиуса , названный так в честь А.Мёбиуса, открывшего его необычайные топологические свойства в 1858. Пусть ABCD (рис. 2,а ) – прямоугольная полоска бумаги. Если склеить точку A с точкой B , а точку C с точкой D (рис. 2,б ), то получится кольцо с внутренней поверхностью, наружной поверхностью и двумя краями. Одну сторону кольца (рис. 2,б ) можно окрасить. Окрашенная поверхность будет ограничена краями кольца. Жук может совершить «кругосветное путешествие» по кольцу, оставаясь либо на окрашенной, либо на неокрашенной поверхности. Но если полоску перед склеиванием концов перекрутить на полоборота и склеить точку A с точкой C , а B с D , то получится лист Мёбиуса (рис. 2,в ). У этой фигуры есть только одна поверхность и один край. Любая попытка окрасить только одну сторону листа Мёбиуса обречена на неудачу, так как у листа Мёбиуса всего одна сторона. Жук, ползущий по середине листа Мёбиуса (не пересекая края), вернется в исходную точку в положении «вверх ногами». При разрезании листа Мёбиуса по средней линии он не распадается на две части.

Узлы.

Узел можно представлять себе как запутанный кусок тонкой веревки с соединенными концами, расположенный в пространстве. Простейший пример – из куска веревки сделать петлю, пропустить один из ее концов сквозь петлю и соединить концы. В результате мы получим замкнутую кривую, которая остается топологически той же самой, как бы ее ни растягивать или скручивать, не разрывая и не склеивая при этом отдельные точки. Проблема классификации узлов по системе топологических инвариантов пока не решена.

§ 1.9. База и предбаза топологии.

Для задания на множестве X некоторой топологии Ω нет необходимости указывать непосредственно все подмножества семейства Ω. Существует другой очень удобный способ построения топологии с помощью понятия базы.

Совокупность β открытых множеств пространства (X,Ω) называется базой топологии Ω или базой пространства (X,Ω), если всякое непустое открытое множество топологического пространства (X,Ω) можно представить в виде объединения некоторой совокупности множеств, принадлежащих β. В частности, X равно объединению всех множеств базы.

Теорема 1.9.

Совокупность β открытых множеств топологии Ω является базой этой топологии тогда и только тогда, когда для всякого открытого множества U Ω и для всякой точки х U существует множество V β такое, что х V U.

Доказательство. Пусть β - база топологии Ω. U - произвольное открытое множество из семейства Ω, х - произвольная точка множества U. Тогда, по определению базы, множество , где - некоторое семейство множеств, принадлежащих совокупности β. Так как х U, то найдется индекс α 0 J такой, что х V α0 β, и V α0 U. Обратно, если U - произвольное открытое множество из семейства Ω, то для любой точки х U найдется множество V x β такое, что х V x U. Непосредственно проверяется, что объединение всех таких V x совпадает с U: . Таким образом, любое открытое множество из семейства Ω является объединением некоторой совокупности множеств, принадлежащих β. Значит, β является, по определению, базой топологии Ω.

Теорема доказана.

Система подмножеств S α из X называется покрытием X, если объединение совпадает с X. Покрытие S называется открытым , если каждое S α открыто в пространстве (X,Ω).

В частности, база пространства (X,Ω) является открытым покрытием X. Однако не всякое покрытие X может служить базой некоторой топологии на X.

Возникает вопрос: если - некоторое покрытие X, то при каких условиях можно построить топологию на X так, чтобы данное семейство было базой этой топологии? Отвечает на этот вопрос следующая теорема.

Теорема 1.10.

Пусть . Покрытие β = является базой некоторой топологии на X тогда и только тогда, когда для каждого V α из β, каждого V β из β и для каждой точки x V α V β существует V γ β такое, что x V γ (V α V β).

Доказательство. Пусть β = - база пространства (X,Ω). Так как β Ω, то в силу аксиомы в) топологического пространства пересечение любых двух множеств из совокупности β является открытым множеством, т.е. V α V β Ω. Отсюда, по теореме 1.9 для любой точки х V α V β найдется V γ β такое, что x V γ (V α V β).

Обратно, пусть покрытие β удовлетворяет условию теоремы. Зададим семейство Ω, состоящее из пустого множества и всевозможных объединений множеств из β. Покажем, что построенное семейство Ω удовлетворяет аксиомам а) - в) топологического пространства. Аксиома а)очевидна: пустое множество входит в Ω по условию, а множество принадлежит Ω как объединение всех множеств из β. Проверим аксиому б). Пусть - семейство множеств, где U α Ω для любого индекса α из J. Каждое множество U α является объединением некоторой совокупности множеств из β: где V α,γ β для каждого индекса α J и каждого индекса γ G. Тогда , т.е. множество является объединением некоторой совокупности множеств из β и, следовательно, принадлежит семейству Ω. Для проверки аксиомы в) достаточно показать, что пересечение любых двух множеств U, из Ω. принадлежит Ω. Представим множества U, в следующем виде: где V γ β для каждого γ G, δ β для каждого δ D. Рассмотрим пересечение . Сначала убедимся в том, что каждое множество вида V γ δ принадлежит Ω. Действительно, для любой точки х V γ δ по условию теоремы найдется множество W x β такое, что х W x V γ δ . Следовательно, множество V γ δ = . Полученное равенство показывает, что множество V γ δ Ω как объединение некоторого семейства множеств из совокупности β. Поэтому множество U есть объединение некоторого семейства множеств, принадлежащих Ω, и значит, в силу аксиомы б), U Ω. Таким образом, семейство Ω удовлетворяет аксиомам а) - в) топологического пространства, т.е. является топологией на X, а покрытие β служит для Ω, по определению, базой.

Теорема доказана.

Заметим, что в доказательстве теоремы 1.10 указан способ построения топологии на X, если задано покрытие β, удовлетворяющее условию теоремы.

Можно ли сконструировать топологию на X, если задано произвольное покрытие ? Ответ на этот вопрос дает следующая теорема.

Теорема 1.11.

Пусть - произвольное покрытие множества X. Тогда семейство всевозможных конечных пересечений элементов из S образует базу некоторой топологии на X.

Доказательство. Проверим, что покрытие где К - произвольное конечное подмножество из I, удовлетворяет критерию базы. Заметив, что пересечение любых двух элементов семейства β снова является элементом семейства β, применим теорему 1.10: для любых множеств U α , V β , принадлежащих β, положим V γ = V α V β . Тогда V γ β как пересечение конечного числа множеств из S. Следовательно, для любой точки х V α V β имеем: х V γ = (V α V β). Таким образом, в силу теоремы 1.10, β является базой некоторой топологии на X.

Теорема доказана.

Семейство γ открытых подмножеств пространства (X,Ω) называется предбазой топологии Ω, если семейство β, состоящее из всевозможных конечных пересечений множеств из γ, образует базу топологии Ω.

Теорема 1.11 утверждает, что каждое покрытие множества X является предбазой некоторой топологии на X.

Очевидно, всякая база пространства является и его предбазой. Как правило, у топологии есть много баз и предбаз. Предпочтение может быть отдано той или иной из них в зависимости от решаемой задачи.

1. Общая топология. Общая топология существует с тех пор, когда в процессе развития канторовской теории множеств была создана теория точечных множеств в евклидовом пространстве. Евклидово пространство - это пространство, в котором введено расстояние, поэтому оно как множество точек приобретает свою топологию.

Благодаря этому были разработаны понятия замкнутого и открытого множеств окрестности, точки накопления. Эти понятия являются фундаментальными в разных областях математики, в частности в анализе.

Теория точечных множеств в евклидовом пространстве послужила исходным пунктом в развитии общей идеи топологического пространства. Это началось с работ Фреше (1878-1973) 1907 года, посвященных -пространствам. Фреше, занимаясь исследованиями в области функционального анализа, определил пространство при помощи понятия сходимости, которое составляет ядро всей топологии. Заслуга Фреше в том, что он выдвинул основные положения абстрактного пространства. Это был отход от привычных рассмотрений в евклидовом пространстве. Точка абстрактного пространства - это уже не точка в том смысле, как это понимают в евклидовой геометрии. Если речь идет о множестве, в котором определено понятие сходимости, то это уже топологическое пространство. Абстрактная теория пространства постепенно слилась с тем, что определяется сейчас как теория топологических пространств. Абстрактизация идеи пространства открыла путь формированию многих важных понятий в различных разделах математики.

Мы приведем имена лишь нескольких математиков, которые внесли принципиальный вклад в разработку фундаментальных положений топологии.

В 1909 году Рис (1880-1956) исследовал предельные точки множества. В 1914 году Хаусдорф (1868-1942) пришел к понятию

системы окрестностей. В 1922 году Куратовский (р. 1896) ввел аксиоматику замыкания, в 1925 году Александров (р. 1896) построил теорию открытых множеств, а в 1927 году Серпиньский (1882-1969) - теорию замкнутых множеств.

Около сорока лет назад в противоположность нынешнему состоянию алгебраической топологии алгебраический аппарат использовался робко. В то время для изучения геометрических фигур применялись весьма наглядные методы, которые составляли геометрическую топологию теории множеств. Исследования велись в теории кривых линий, теории размерности, что в настоящее время включается в общую топологию.

2. Комбинаторная топология. При исследовании геометрических свойств мнргообразий Пуанкаре пользовался разбиением многообразия на элементарные симплексы и, обратно, создавал из симплексов сложные комбинаторные структуры. При этом Пуанкаре применял аппарат введенных им групп гомологий. Дальнейший прогресс комбинаторной топологии связан с такими значительными результатами, как результаты Хопфа (1895-1971), теоремы о неподвижных точках отображения Лефшеца (1884-1972), теоремы двойственности Пуанкаре и Александера. Эти геометрические теории, представляя собой часть комбинаторной топологии, являются ветвью алгебраической топологии. Примерно с 1940 года она получила значительное развитие в связи с исследованиями линейных образов комбинаторных структур, где Уайтхедом (1904-1960) были получены замечательные результаты. Эта дисциплина стала называться -топологией.

О положительном решении общего предположения Пуанкаре уже говорилось выше. Затрагивая вопрос определения комбинаторных многообразий, мы не говорили об известном основном предположении комбинаторной топологии, которое в 1961 году Мазуром и Милнором (р. 1931) было опровергнуто.

Основное предположение комбинаторной топологии (Hauptvermutung). В начале XX века комбинаторная топология особенно сильное развитие получила в Германии, и подавляющее большинство работ публиковалось на немецком языке. Упоминаемая здесь основная гипотеза также впервые была сформулирована на немецком языке. И по сей день в различных трудах ее часто называют по-немецки Hauptvermutung. Формулировка этого предположения такова: если полиэдры двух комплексов К к К гомеоморфны, то можно подразделить их таким образом, что полученные в результате этого комплексы являются равными комплексами.

Комплексы некоторые подразделения которых равны, называются комбинаторно эквивалентными. При определении комбинаторного многообразия, казалось бы, естественно потребовать, чтобы полиэдр звезды и -мерный симплекс были гомеоморфны. Однако в общем случае остается неизвестным, можно ли считать равными Поэтому удобнее требовать, чтобы были комбинаторно эквивалентны.

3. Алгебраическая топология. Алгебраическая топология представляет собой область геометрии, цель которой состоит в установлении топологических инвариантов на основе

применения теории групп. Алгебраическая топология считается ведущей областью топологии. Упоминавшаяся выше теория гомологий также относится к этой области геометрии. К числу других достижений алгебраической топологии относятся введенные в работах Александера и Колмогорова (р. 1903) группы когомологий.

В более позднее время алгебраическая топология сделала резкий скачок вперед благодаря работам Стинрода (1910-1971) по теории когомологий, опубликованным в 1947 году, и исследованию Серром (р. 1926) в 1951 году спектральных последовательностей.

4. Дифференциальная топология. Есть область топологии, объектом исследований которой являются дифференцируемые многообразия. Суть дифференцируемого многообразия состоит в возможности рассмотрения дифференцируемых функций, заданных на этом многообразии. Если о дифференцируемых многообразиях говорить конкретнее, то нужно прежде всего вспомнить, что каждая точка многообразия обладает окрестностью гомеоморфной открытому диску (или, что все равно, всему евклидову пространству). Координаты, заданные в евклидовом пространстве, посредством гомеоморфизмов переносятся в окрестность каждой точки многообразия. Это так называемые локальные координаты. Так как точка многообразия принадлежит одновременно многим окрестностям то ей соответствует столько же различных систем локальных координат. Многообразие дифференцируемоу если функции преобразования от одной локальной системы координат к другой являются дифференцируемыми.

Вероятно, следовало привести конкретные формулы, однако суть, думается, может быть ясна и без этого.

Непосредственное впечатление от дифференцируемого многообразия отражено в том, что часто применяется термин «гладкое многообразие». Гладкость состоит, собственно, в том, что окрестность каждой точки можно расширить дифференцируемым образом. Гладкие кривы 1 поверхности, такие, как сфера или поверхность тора представляют собой дифференцируемые многообразия.

В дифференциальной топологии, таким образом, можно рассматривать не только непрерывные относительно точек многообразия отображения, но и дифференцируемые отображения. Если к общим условиям гомеоморфизма одного многообразия на другое добавить условия дифференцируемости, то получим изоморфизм их гладких структур, или так называемый диффеоморфизм.

Другими словами, гладкие структуры диффеоморфных между собой дифференцируемых

многообразий равны. Такие многообразия являются главным объектом исследования дифференциальной топологии. Этот раздел геометрии связан с изучением глобальных свойств многообразий, и мы здесь не будем специально рассматривать такие вопросы дифференциальной геометрии, как кривизна и т. п.

Фундаментальные исследования в дифференциальной топологии были проведены Уитни (р. 1907) в 1930 году. Затем активность исследований в этой области несколько снизилась.

В 1952 году Том (р. 1923), лауреат филдсовской премии 1958 года, опираясь на теорию кбгомологий и гомотопических групп, построил теорию кобордизмов. Недавно он разработал ставшую широко известной теорию катастроф.

В 1956 году Милнором были обнаружены удивительные особенности дифференциальной структуры, присущие семимерной сфере Суть отбытия Милнора, которое явилось совершенно неожиданным не только с геометрической точки зрения, но и с точки зрения анализа, в двух словах заключается в том, что существуют гладкие семимерные сферы которые между собой гомеоморфны, но не диффеоморфны. Доказательство этого факта основано на предварительном изучении свойств и величин, сохраняющихся при диффеоморфизмах, последующее сравнение которых привело к выводу о том, что на семимерной сфере есть различные дифференциальные структуры.

В дифференциальной топологии был получен ряд глубоких теорем, которые составили ей славу одной из самых замечательных

областей всей математики. Ряд достижений дифференциальной топологии связан с комбинаторной топологией. Подтверждением этого является, например, теорема о том, что любое дифференцируемое многообразие есть комбинаторное многообразие.

5. Геометрическая топология. Это название, да и сам раздел топологии отнюдь не является общепризнанным. В исследовании топологических свойств геометрических фигур существует направление, в котором не применяется алгебраический метод, как это было при исследовании комбинаторных и гладких структур, и изучение геометрических свойств проводится непосредственно. Этим и объясняется название «геометрическая топология». Основной объект изучения геометрической топологии - это необычные геометрические фигуры в евклидовом пространстве Слова «необычные геометрические фигуры» употреблены здесь потому, что, с одной стороны, речь идет о необычных фигурах, применить к которым алгебраические методы особенно трудно, а с другой стороны, эти фигуры достаточно геометричны, чтобы иметь о них на: глядное представление. Направление, которое исследует необычные фигуры, можно было бы назвать геометрической патологией фигур.

Инструмент исследования в данном случае не представляет собой методически разработанную теорию. Изучение тех или иных геометрических фигур состоит в непосредственном

наглядном восприятии с последующим проведением цепочки строго обоснованных рассуждений. Поэтому здесь необходимы острота восприятия и правильность логического вывода. Из последних достижений в изучении патологических (диких) геометрических фигур можно, например, отметить исследования трехмерных многообразий. Проблема топологической классификации трехмерных многообразий, как это явствует уже из рассуждений относительно гипотезы Пуанкаре, далека от своего решения и представляется крайне сложной. Именно со стороны гипотезы Пуанкаре к задаче классификации подошли вплотную многие исследователи, получив значительные результаты. Хорошо известны исследования Папакирвякопулоса (1914-1976), в результате которых этот «уважаемый Пап» решил в 1957 году проблему Дэна (1878-1952) о сфере. Теорема о сфере формулируется следующим образом: если трехмерное ориентируемое многообразие с (двумерная гомотопическая группа), то существует вложенная в нестягиваемая двумерная сфера Эта сфера 52 как раз и обеспечивает нетривиальность двумерной гомотопической группы Эта теорема вскрывает еще одну связь между комбинаторной и алгебраической топологией. Надо сказать, что многие результаты одной области могут быть в определенной степени взаимно использованы в смежной области, хотя в каждом конкретном случае существо вопроса подлежит непосредственной проверке.

Что касается только что упомянутой проблемы, то о ее решении, которое опиралось на ряд вспомогательных лемм, заявил еще

в 1910 году, когда он занимался изучением геометрии трехмерных многообразий. Однако вскоре Кнезер (р. 1898) и другие указали на пробелы в приведенном доказательстве. И только гораздо позже, в 1957 году, было получено окончательное доказательство.

В вопросах построения трехмерных многообразий из более простых многообразий Кнезером была предложена важная теорема, которая в 1962 году была улучшена Милнором. Упоминая об этих теоремах, мы, однако, из-за их сложности не приводим здесь даже формулировок.

Из работ, посвященных изучению «диких» многообразий, следует также отметить последовавшую за работами Антуана 1921 года работу Александера 1924 года, в которой он предложил конструкцию так называемой рогатой сферы. Рогатая сфера Александера, которая изображена на рис. 107, непривычная, сложная для восприятия дикая фигура. В дальнейшем исследования в этом направлении продолжены Столлингсом, Бингом (р. 1914) и другими.

Итак, мы дали общий обзор основных областей топологии. Эти области, безусловно, не имеют между собой резких границ. Так, комбинаторная топология очень тесно связана как с геометрической, так и с дифференциальной топологией. В каждой из указанных областей применяется аппарат алгебраической топологии.

Далее следует подчеркнуть, что топологические методы находят применение в разных областях математики. Так, хотя мы почти не затрагивали проблемы классификации геометрических фигур, заметим, что здесь имеется много вопросов топологического характера. Достаточно вспомнить о проблеме узлов, которая является частным случаем более общей проблемы вложения многообразий в евклидово пространство или в какое-нибудь другое многообразие. В качестве простого примера можно указать на топологическую задачу размещения замкнутой кривой линии - окружности - на замкнутых кривых поверхностях рода 1, 2 и т. д.

Топология - это современная ветвь математики, и изложение содержания любой из ее областей неизбежно приводит к обсуждению острых проблем, касающихся современного состояния математики и перспектив ее развития. Однако поскольку мы вынуждены ограничиться кратким описанием лишь некоторых самых общих математических принципов и идей, то очень многое пришлось сократить до минимума или опустить вообще.