Определение функции. Область значений функции (множество значений функции). Необходимые понятия и примеры нахождения

Многие задачи приводят нас к поиску множества значений функции на некотором отрезке или на всей области определения. К таким задачам можно отнести различные оценки выражений, решение неравенств.

В этой статье дадим определение области значений функции, рассмотрим методы ее нахождения и подробно разберем решение примеров от простых к более сложным. Весь материал снабдим графическими иллюстрациями для наглядности. Так что эта статья является развернутым ответом на вопрос как находить область значений функции.


Определение.

Множеством значений функции y = f(x) на интервале X называют множество всех значений функции, которые она принимает при переборе всех .

Определение.

Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения .

Область значений функции обозначают как E(f) .

Область значений функции и множество значений функции - это не одно и то же. Эти понятия будем считать эквивалентными, если интервал X при нахождении множества значений функции y = f(x) совпадает с областью определения функции.

Не путайте также область значений функции с переменной x для выражения, находящегося в правой части равенства y=f(x) . Область допустимых значений переменной x для выражения f(x) – это есть область определения функции y=f(x) .

На рисунке приведены несколько примеров.

Графики функций показаны жирными синими линиями, тонкие красные линии – это асимптоты, рыжими точками и линиями на оси Оy изображена область значений соответствующей функции.

Как видите, область значений функции получается, если спроецировать график функции на ось ординат. Она может быть одним единственным числом (первый случай), множеством чисел (второй случай), отрезком (третий случай), интервалом (четвертый случай), открытым лучом (пятый случай), объединением (шестой случай) и т.п.


Так что же нужно делать для нахождения области значений функции.

Начнем с самого простого случая: покажем как определять множество значений непрерывной функции y = f(x) на отрезке .

Известно, что непрерывная на отрезке функция достигает на нем своего наибольшего и наименьшего значений . Таким образом, множеством значений исходной функции на отрезке будет отрезок . Следовательно, наша задача сводится к нахождению наибольшего и наименьшего значения функции на отрезке .

Для примера найдем область значений функции арксинуса.

Пример.

Укажите область значений функции y = arcsinx .

Решение.

Областью определения арксинуса является отрезок [-1; 1] . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Мы получили область значений функции арксинуса .

Пример.

Найдите множество значений функции на отрезке .

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку :

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является отрезок .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) промежутках (a; b) , .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Пример.

Определите множество значений функции на интервале (-2; 2) .

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2) :

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при x стремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0 ), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

Пример.

Укажите множество значений функции тангенса y = tgx на интервале .

Решение.

Производная функции тангенса на интервале положительна , что указывает на возрастание функции. Исследуем поведение функции на границах интервала:

Таким образом, при изменении аргумента от к значения функции возрастают от минус бесконечности к плюс бесконечности, то есть, множество значений тангенса на этом интервале есть множество всех действительных чисел .

Пример.

Найдите область значений функции натурального логарифма y = lnx .

Решение.

Функция натурального логарифма определена для положительных значений аргумента . На этом интервале производная положительна , это говорит о возрастании функции на нем. Найдем односторонний предел функции при стремлении аргумента к нулю справа, и предел при x стремящемся к плюс бесконечности:

Мы видим, что при изменении x от нуля к плюс бесконечности значения функции возрастают от минус бесконечности к плюс бесконечности. Следовательно, областью значений функции натурального логарифма является все множество действительных чисел.

Пример.

Решение.

Эта функция определена для всех действительных значений x . Определим точки экстремума, а также промежутки возрастания и убывания функции.

Следовательно, функция убывает при , возрастает при , x = 0 - точка максимума, соответствующий максимум функции.

Посмотрим на поведение функции на бесконечности:

Таким образом, на бесконечности значения функции асимптотически приближаются к нулю.

Мы выяснили, что при изменении аргумента от минус бесконечности к нулю (точке максимума) значения функции возрастают от нуля до девяти (до максимума функции), а при изменении x от нуля до плюс бесконечности значения функции убывают от девяти до нуля.

Посмотрите на схематический рисунок.

Теперь хорошо видно, что область значений функции есть .

Нахождение множества значений функции y = f(x) на промежутках требует аналогичных исследований. Не будем сейчас подробно останавливаться на этих случаях. В примерах ниже они нам еще встретятся.

Пусть область определения функции y = f(x) представляет собой объединение нескольких промежутков. При нахождении области значений такой функции определяются множества значений на каждом промежутке и берется их объединение.

Пример.

Найдите область значений функции .

Решение.

Знаменатель нашей функции не должен обращаться в ноль, то есть, .

Сначала найдем множество значений функции на открытом луче .

Производная функции отрицательна на этом промежутке, то есть, функция убывает на нем.

Получили, что при стремлении аргумента к минус бесконечности значения функции асимптотически приближаются к единице. При изменении x от минус бесконечности до двух значения функции убывают от одного до минус бесконечности, то есть, на рассматриваемом промежутке функция принимает множество значений . Единицу не включаем, так как значения функции не достигают ее, а лишь асимптотически стремятся к ней на минус бесконечности.

Действуем аналогично для открытого луча .

На этом промежутке функция тоже убывает.

Множество значений функции на этом промежутке есть множество .

Таким образом, искомая область значений функции есть объединение множеств и .

Графическая иллюстрация.

Отдельно следует остановиться на периодических функциях. Область значений периодических функций совпадает с множеством значений на промежутке, отвечающем периоду этой функции.

Пример.

Найдите область значений функции синуса y = sinx .

Решение.

Эта функция периодическая с периодом два пи. Возьмем отрезок и определим множество значений на нем.

Отрезку принадлежат две точки экстремума и .

Вычисляем значения функции в этих точках и на границах отрезка, выбираем наименьшее и наибольшее значение:

Следовательно, .

Пример.

Найдите область значения функции .

Решение.

Мы знаем, что областью значений арккосинуса является отрезок от нуля до пи, то есть, или в другой записи . Функция может быть получена из arccosx сдвигом и растяжением вдоль оси абсцисс. Такие преобразования на область значений не влияют, поэтому, . Функция получается из растяжением втрое вдоль оси Оy , то есть, . И последняя стадия преобразований – это сдвиг на четыре единицы вниз вдоль оси ординат. Это нас приводит к двойному неравенству

Таким образом, искомая область значений есть .

Приведем решение еще одного примера, но без пояснений (они не требуются, так как полностью аналогичны).

Пример.

Определите область значений функции .

Решение.

Запишем исходную функцию в виде . Областью значений степенной функции является промежуток . То есть, . Тогда

Следовательно, .

Для полноты картины следует поговорить о нахождении области значений функции, которая не является непрерывной на области определения. В этом случае, область определения разбиваем точками разрыва на промежутки, и находим множества значений на каждом из них. Объединив полученные множества значений, получим область значений исходной функции. Рекомендуем вспомнить


Л.является создателем основ современного р.яз.Изучение языка для Л было важной сферой интересов.Он сам знал 8 языков.Многие изучил самостоятельно.Во время детства Л. культурно -официальным языком Российской империи считался церковнославянский.
Учась в Германии,Л.видел силу единого литературного нем.яз.Это он проецировал на русскую реальность.К середине 18 российская элита была двуязычна.Одновременно функционировали 2 языка,но в разных сферах жизни:церковнославянский и русский.Первый был престижен,употреблялся в небытовых,высоких сферах: в церкви,в книгах,в госдокументах,в образовании и науке.А русский имел статус непрестижного и использовался в повседневной жизни,в записках,в договорах,объявлениях и др.) Р.яз не имел официального статуса,не преподавался в школах.Элита называла его мужицким,грубым,невыразительным Иностранцы,посетившие империю,говорили,что там разговаривать надо по - русски,писать - по - словенски.
Письменный яз той эпохи - это смесь церковнославянизмов,простонародных слов,диалектов,архаизмов,вульгаризмов, заимствований Научных,специальных терминов не было в языке.
Элита говорила на иностранных языках (так как Пётр прорубил окно в Европу).Одним словом язык не имел системы.логики,стройности.
Великая миссия Л. в том,что он создал работы по лингвистике,которые определили законы и правила развития русского языка.
Какую же миссию выполнил М.В.Ломоносов в отношении русского языка и шире культуры? Об этом говорят названия его языковедческих работ: 
Краткое руководство к риторике (1743); 
Риторика (1748); 
Российская грамматика (1755).
Эти работы объединены в один том ППС.
Главный труд Л. как лингвиста "Российская грамматика"Это первая полная,нормативная грамматика р.яз,заложившая основы современного р. яз.Л. в ней ясно определил нормы яз,звуковой состав,произношение,правописание и грамматику (учение о частях речи)За основу взял московское наречие.Л.говорил: «Московское наречие не только для важности столичного города, но и для своей отменной красоты прочим справедливо предпочитается».
Его труд был очень востребован.За 30 лет переиздавалась Грамматика 5 раз.
Л разработал стилистическую систему яз,известную как теорию 3-х штилей: высокого,среднего и низкого,Л. определил сферу употребления каждого стиля.
Р.яз для Л. -объект реформации,систематизации,кодификации.Учёный и на практике дал образцы употребления языка: в научных трудах,публичных лекциях,трактатах,стихотворениях.Именно после Л. появились первые общенациональные классики:Фонвизин,Карамзин,Державин,И мировые:Пушкин,Лермонтов,Гоголь
Л.боролся за расширение применения р.яз.в сфере науки.В стенах Академии наук зазвучала русская речь:Л. выхлопотал разрешение читать лекции по физике и химии на русском яз,развивая терминологию.,научный стиль,.
Русская грамматика"Л. послужила образцом для написания многих грамматик других народов.
"Таким образом, филологическая деятельность М.В.Ломоносова дала большой импульс не только изучению русского языка, но и многих других языков российской державы"

1. Внушаемость связана с общей личностной и интеллектуальной незрелостью, имеет определенную функциональную роль в онтогенезе как фактор первичных, еще не интериоризованных, интерпсихических отношений между людьми (В. Н. Куликов).

2. Внушаемость - черта истерической личности, для которой характерны подражательные формы истерического поведения (А.Якубик).

3. Внушаемость - черта личности, связанная с интеллектуальной недостаточностью, отрицательным отношением субъекта к самому себе, неуверенностью в своих силах, низкой самооценкой -определяющими ориентацию в поведении на мнения и оценки других людей.

4. Внушаемость - относительная черта, проявляющаяся в значимой ситуации, - личностно-значимое чаще принимается на веру (С. В. Кравков, В. А. Бакеев).

Задание № 8. Можно ли отнести приведенные ниже примеры к случаям патологии волевого поведения? Почему?

1. «Совершенную противоположность с Порфирием Владимировичем представлял брат его, Павел Владимирович. Это было полнейшее олицетворение человека, лишенного каких бы то ни было поступков. Еще мальчиком он не выказывал ни малейшей склонности ни к учению, ни к играм, ни к общительности, но любил жить особняком, в отчуждении от людей. Забьется, бывало, в угол, надуется и начнет фантазировать. Представляется ему, что он толокна наелся, что от этого ноги сделались у него тоненькие, и он не учится. Или - что он не Павел - дворянский сын, а Давыдка-пас-тух... что он арапником щелкает и не учится. ...Шли годы, и из Павла Владимировича постепенно образовывалась та апатичная и загадочно-угрюмая личность, из которой, в конечном результате, получается человек, лишенный поступков. Может быть, он был добр, но никому добра не сделал; может быть, был и неглуп, но во всю жизнь ни одного умного поступка не совершил. Он был гостеприимен, но никто не ластился на его гостеприимство, он охотно тратил деньги, но ни полезного, ни приятного результата от этих трат ни для кого никогда не происходило; он никого никогда не обидел, но никто этого не вменял ему в достоинство...» (М. Е. Салтыков-Щедрин).

Онегин дома заперся,

Зевая, за перо взялся,

Хотел писать, но труд упорный

Ему был тошен; ничего

Не вышло из пера его...

И снова, преданный безделью,

Томясь душевной пустотой,

Уселся он - с похвальной целью

Себе присвоить ум чужой;

Отрядом книг уставил полку,

Читал, читал - а все без толку:

Там скука, там обман иль бред;

В том совести, в том смысла нет;

На всех различные вериги;

И устарела старина,

И старым бредит новизна.

Как женщин он оставил книга

И полку, с пыльной их семьей,

Задернул траурной тафтой.

Попрыгунья Стрекоза

Лето красное пропела;

Оглянуться не успела,

Как зима катит в глаза.

Помертвело чисто поле;

Нет уж дней тех светлых боле,

Как под каждым ей листком

Был готов и стол, и дом.

Все прошло: с зимой холодной

Нужда, голод настает;

Стрекоза уж не поет:

И кому же в ум пойдет

На желудок петь голодный!

Злой тоской удручена,

К Муравью ползет она:

«Не оставь меня, кум милой!

Дай ты мне собраться с силой

И до вешних только дней

Прокорми и обогрей!»

- «Кумушка, мне странно это:

Да работала ль ты в лето?» -

Говорит ей Муравей.

«До того ль, голубчик, было?

В мягких муравах у нас

Песни, резвость всякий час,

Так, что голову вскружило».

- «А, так ты...»

- «Я без души

Лето целое все пела».

- -«Ты все пела? это дело:

Так поди же, попляши!»

(И. А. Крылов)

4. Часто покидает огромные хоромы тот, кому надоело быть дома, и внезапно возвращается, так как находит, что и не дома ничем не лучше. Стремительно мчится он, рысаков погоняя, в усадьбу, как будто ему нужно спешить на пожар; снова, опять начинает зевать, как только коснется порога усадьбы; или удрученный отходит ко сну и ищет забвенья, или поспешно стремится он в город, и вот он там снова (Лукреций).

Задание № 9. Проанализируйте приведенный пример из криминальной практики и объясните, какие личностные черты способствуют внушению. Можно ли считать, что эти свойства и черты образуют патопсихологический синдром, деформирующий волевое поведение, и почему?

Б., 29 лет, обвинялась в хищении денежных средств. С детства отличалась усидчивостью, прилежностью, исполнительностью. Окончила 8 классов и медицинское училище с отличием. В 23 года вышла замуж, от брака имеет 2 детей. Длительное время жила у родителей мужа, отношения с которыми были конфликтными. Сильно уставала, настроение было подавленным, часто плакала, была раздражительной, плохо спала, похудела. Устроилась работать кассиром в парикмахерскую, намеревалась в последующем работать по специальности.

По дороге с работы к Б. на улице подошла женщина, которая сказала ей, что она плохо выглядит, спросила, где и с кем она живет, где работает, обещала «гаданием» помочь ей. Следующую встречу она назначила в день получения Б. из банка крупной суммы денег. При этом присутствовали соучастницы, две другие женщины, «ассистирующие» лидеру, подтверждавшие ее «возможности».

Через 10 дней Б., получив деньги из банка и доставив их на работу, отправилась на встречу с той женщиной. Узнав, что Б. пришла без денег, соучастницы стали требовать деньги, необходимые для «гадания», угрожали ей ухудшением состояния ее здоровья и отношений с мужем. Б. вернулась в бухгалтерию, взяла из сейфа деньги.

На улице в процессе «гадания» она отдала деньги одной из женщин, после чего все трое скрылись. Была привлечена к уголовной ответственности за хищение.

В процессе следствия обвиняла в случившемся себя, говорила, что «гадалка» подействовала на нее своей внешностью. Когда «гадалка» подошла к ней на улице и с участливым лицом осведомилась о ее самочувствии, пообещав помочь, у нее не возникло сомнений в искренности слов «гадалки». В этот момент рядом оказалась женщина, которая была намерена принести «гадалке» за якобы оказанную ранее услугу значительную сумму денег. Была так заворожена словами «гадалки», что была готова выполнить любое ее приказание. Первые два дня после встречи самочувствие ее улучшилось, в последующие дни она с тревогой чего-то ждала, часто вспоминала о происшедшем с ней, охотно пошла на повторную встречу.

При встрече ощущала некоторую тревогу, волнение, сказала «гадалке», что не может принести деньги, но та стала угрожать ей, что из-за этого ее ожидают несчастья. То же самое твердили и «ассистенты». Б. испугалась, пошла за деньгами и отдала их «гадалке». Затем по ее распоряжению закрыла глаза и стояла так три минуты. Открыла глаза и, не увидев «гадалки», некоторое время считала, что так и должно быть, затем поняла, что ее обманули, у нее «внутри все оборвалось», она стала метаться по улице, искать «гадалку» и ее спутниц, но их нигде не было. Вернувшись на работу, сообщила о случившемся в милицию.

Темы для рефератов

1. Общее состояние современных теоретических исследований воли.

2. Игры детей и их значение в развитии воли.

3. Становление волевой регуляции поведения у детей.

4. Основные направления и пути развития воли.

Литература

1. Выготский Л. С. Проблема воли и ее развитие в детском возрасте // Собр. соч. - Т. 3. - М., 1982.

2. Зимин П. П. Воля и ее воспитание у подростков. - Ташкент, 1985.

3. Иванников В. А. Психологические механизмы волевой регуляции. - М., 1998.

4. Ильин Е. П. Психология воли. - СПб.: Питер, 2000.

5. Маклаков А. Г. Общая психология. - СПб.: Питер, 2000.

6. Рубинштейн С. Л. Основы общей психологии. - СПб.: Питер, 1999.

7. Селиванов В. И. Психология волевой активности. - Рязань: Рязанский государственный педагогический институт, 1974.

8. Селиванов В. И. Воля и ее воспитание. - М.: Знание, 1976.

9. Чхартишвили Ш. Н. Проблема воли в психологии // Вопросы психологии. 1967.

Тема 1.8. Эмоционально-волевая организация субъекта (воля). Практическое занятие.

Воля – это способность (функция) человека, проявляющаяся в самодетерминации и саморегуляции им своей деятельности и различных психических процессов. Она осуществляется через произвольную и осознанную форму мотивации. Психологическим механизмом произвольного изменения побуждения является изменение смысла действия. Поэтому за волевыми усилиями, стоит особая активность, происходящая во внутреннем плане сознания, по мобилизации всех возможностей человека.

Воля реализуется в виде побудительной и тормозной активности психики. Благодаря волевой регуляции познавательные психические процессы переводятся в разряд произвольных и становятся возможными усилия, позволяющие человеку осуществлять целенаправленную деятельность.

Действия, контролируемые и регулирующиеся волей, бывают простыми и сложными. В зависимости от того, в какой мере индивид понимает значение своей волевой активности и приписывает ли ответственность внешним обстоятельствам или, напротив, собственным усилиям и способностям, определяют его локус контроля.

При оценке человека по критерию "волевой-слабовольный" следует учитывать его способность создавать дополнительное побуждение к действию через изменение его смысловой стороны. От этого зависит инициация действия, а также сила, темп, скорость, длительность работы, преодоление внешних и внутренних (психологических) препятствий. Поскольку волевая регуляция определяется смысловыми изменениями в сознании, то она зависит от таких компонентов личности, как мировоззрение, характер смысловой сферы, убежденность.

По критериям деятельности выделяют волевые свойства к которым относятся настойчивость, решительность, энергичность, упорство и пр.

Из многообразия волевых свойств в практикум вошли исследования по определению субъективного контроля, настойчивости и импульсивности.

Задание 26

Исследование субъективного контроля

Цель исследования: определить локус субъективного контроля.

Материал и оборудование: тест-опросник, разработанный Е.Ф.Бажиным и др. на основе шкалы локуса контроля Дж.Роттера, бланк для ответов, ручка.

В каждой функции есть две переменные – независимая переменная и зависимая переменная, значения которой зависят от значений независимой переменной. Например, в функции y = f (x ) = 2x + y независимой переменной является «х», а зависимой – «у» (другими словами, «у» – это функция от «х»). Допустимые значения независимой переменной «х» называются областью определения функции, а допустимые значения зависимой переменной «у» называются областью значений функции.

Шаги

Часть 1

Нахождение области определения функции

    Определите тип данной вам функции. Областью значений функции являются все допустимые значения «х» (откладываются по горизонтальной оси), которым соответствуют допустимые значения «у». Функция может быть квадратичной или содержать дроби или корни. Для нахождения области определения функции сначала необходимо определить тип функции.

  1. Выберите соответствующую запись для области определения функции. Область определения записывается в квадратных и/или круглых скобках. Квадратная скобка применяется в том случае, когда значение входит в область определения функции; если значение не входит в область определения, используется круглая скобка. Если у функции несколько несмежных областей определения, между ними ставится символ «U».

    • Например, область определения [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
  2. Постройте график квадратичной функции. График такой функции представляет собой параболу, ветви которой направлены либо вверх, либо вниз. Так как парабола возрастает или убывает на всей оси Х, то областью определения квадратичной функции являются все действительные числа. Другими словами, областью определения такой функции является множество R (R обозначает все действительные числа).

    • Для лучшего уяснения понятия функции выберите любое значение «х», подставьте его в функцию и найдите значение «у». Пара значений «х» и «у» представляют собой точку с координатами (х,у), которая лежит на графике функции.
    • Нанесите эту точку на плоскость координат и проделайте описанный процесс с другим значением «х».
    • Нанеся на плоскость координат несколько точек, вы получите общее представление о форме графика функции.
  3. Если функция содержит дробь, приравняйте ее знаменатель к нулю. Помните, что делить на нуль нельзя. Поэтому, приравняв знаменатель к нулю, вы найдете значения «х», которые не входят в область определения функции.

    • Например, найдите область определения функции f(x) = (x + 1) / (x - 1) .
    • Здесь знаменатель: (х - 1).
    • Приравняйте знаменатель к нулю и найдите «х»: х - 1 = 0; х = 1.
    • Запишите область определения функции. Область определения не включает 1, то есть включает все действительные числа за исключением 1. Таким образом, область определения функции: (-∞,1) U (1,∞).
    • Запись (-∞,1) U (1,∞) читается так: множество всех действительных чисел за исключением 1. Символ бесконечности ∞ означает все действительные числа. В нашем примере все действительные числа, которые больше 1 и меньше 1, включены в область определения.
  4. Если функция содержит квадратный корень, то подкоренное выражение должно быть больше или равно нулю. Помните, что квадратный корень из отрицательных чисел не извлекается. Поэтому любое значение «х», при котором подкоренное выражение становится отрицательным, нужно исключить из области определения функции.

    • Например, найдите область определения функции f(x) = √(x + 3).
    • Подкоренное выражение: (х + 3).
    • Подкоренное выражение должно быть больше или равно нулю: (х + 3) ≥ 0.
    • Найдите «х»: х ≥ -3.
    • Область определения этой функции включает множество всех действительных чисел, которые больше или равны -3. Таким образом, область определения: [-3,∞).

    Часть 2

    Нахождение области значений квадратичной функции
    1. Убедитесь, что вам дана квадратичная функция. Квадратичная функция имеет вид: ax 2 + bx + c: f(x) = 2x 2 + 3x + 4. График такой функции представляет собой параболу, ветви которой направлены либо вверх, либо вниз. Существуют различные методы нахождения области значений квадратичной функции.

      • Самый простой способ найти область значений функции, содержащей корень или дробь, – это построить график такой функции при помощи графического калькулятора.
    2. Найдите координату «х» вершины графика функции. В случае квадратичной функции найдите координату «х» вершины параболы. Помните, что квадратичная функция имеет вид: ax 2 + bx + c. Для вычисления координаты «х» воспользуйтесь следующим уравнением: х = -b/2a. Это уравнение является производной от основной квадратичной функции и описывает касательную, угловой коэффициент которой равен нулю (касательная к вершине параболы параллельна оси Х).

      • Например, найдите область значений функции 3x 2 + 6x -2.
      • Вычислите координату «х» вершины параболы: х = -b/2a = -6/(2*3) = -1
    3. Найдите координату «у» вершины графика функции. Для этого в функцию подставьте найденную координату «х». Искомая координата «у» представляет собой предельное значение области значений функции.

      • Вычислите координату «у»: y = 3x 2 + 6x – 2 = 3(-1) 2 + 6(-1) -2 = -5
      • Координаты вершины параболы этой функции: (-1,-5).
    4. Определите направление параболы, подставив в функцию по крайней мере одно значение «х». Выберите любое другое значение «х» и подставьте его в функцию, чтобы вычислить соответствующее значение «у». Если найденное значение «у» больше координаты «у» вершины параболы, то парабола направлена вверх. Если же найденное значение «у» меньше координаты «у» вершины параболы, то парабола направлена вниз.

      • Подставьте в функцию х = -2: y = 3x 2 + 6x – 2 = y = 3(-2) 2 + 6(-2) – 2 = 12 -12 -2 = -2.
      • Координаты точки, лежащей на параболе: (-2,-2).
      • Найденные координаты свидетельствуют о том, что ветки параболы направлены вверх. Таким образом, область значений функции включает все значения «у», которые больше или равны -5.
      • Область значений этой функции: [-5, ∞)
    5. Область значений функции записывается аналогично области определения функции. Квадратная скобка применяется в том случае, когда значение входит в область значений функции; если значение не входит в область значений, используется круглая скобка. Если у функции несколько несмежных областей значений, между ними ставится символ «U».

      • Например, область значений [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
      • С символом бесконечности ∞ всегда используются круглые скобки.

Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

НАПРИМЕР у=5+х

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

НАПРИМЕР.

1.у=1/х. (наз.гипербола)

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= (∞; +∞)//всё мн-во действит.чисел

3. D (у)= (∞; +∞)//всё мн-во действит.чисел

4. D (у)= }