Основы нечеткой логики. Раздел Fuzzy Logic Toolbox. С.Д.Штовба. Введение в теорию нечетких множеств и нечеткую логику

Основы теории нечетких множеств и нечеткой логики

Одним из методов изучения множеств без уточнения их границ является теория нечетких множеств, которая была предложена в 1965 г. профессором Калифорнийского университета Лотфи Заде. Первоначально она разрабатывалась как средство моделирования неопределенности естественного языка. Однако впоследствии круг задач, решаемых с использованием аппарата нечетких множеств, значительно расширился и сейчас включает в себя такие области, как анализ данных, распознавание, исследование операций, моделирование сложных систем, поддержка принятия решений и т. д. .

Нередко при определении и описании характеристик объектов оперируют не только количественными, но и качественными значениями. В частности, рост человека можно количественно измерить в сантиметрах, а можно описать, используя качественные значения: карликовый, низкий, средний, высокий или гигантский. Интерпретация качественных значений носит субъективный характер, т.е. они могут по-разному трактоваться разными людьми (субъектами). В силу нечеткости (размытости) качественных значений, при необходимости перехода от них к количественным величинам возникают определенные трудности.

В системах, построенных на базе нечетких множеств, используются правила вида «ЕСЛИ А ТО В» (А ® В), в которых как в А (условие, предпосылку), так и в В (результат, гипотезу) могут входить качественные значения. Например, «ЕСЛИ Рост = "высокий" ТО Вид_спорта = "баскетбол"».

Переменная, значение которой определяется набором качественных значений некоторого свойства, в теории нечетких множеств называются лингвистической . В приведенном примере правила используются две лингвистические переменные: Рост и Вид_спорта.

Каждое значение лингвистической переменной определяется через так называемое нечеткое множество. Нечеткое множество определяется через некоторую базовую шкалу X и функцию принадлежности (характеристическую функцию) m(х ), где х Î Х . При этом, если в классическом канторовском множестве элемент либо принадлежит множеству (m(х ) = 1), либо не принадлежит (m(х ) = 0), то в теории нечетких множеств m(х ) может принимать любое значение в интервале . Над нечеткими множествами можно выполнять стандартные операции: дополнение (отрицание), объединение, пересечение, разность и т. д. (рис. 33).

Для нечетких множеств существует также ряд специальных операций: сложение, умножение, концентрирование, расширение и т. д.

При задании лингвистической переменной ее значения, т. е. нечеткие множества, должны удовлетворять определенным требованиям (рис. 34).

1. Упорядоченность. Нечеткие множества должны быть упорядочены (располагаться по базовой шкале) в соответствии с порядком задания качественных значений для лингвистической переменной.

2. Ограниченность. Область определения лингвистической переменной должна быть четко обозначена (определены минимальные и максимальные значения лингвистической переменной на базовой шкале). На границах универсального множества, где определена лингвистическая переменная, значения функций принадлежности ее минимального и максимального нечеткого множества должны быть единичными. На рисунке Т 1 имеет неправильную функцию принадлежности, а Т 6 – правильную.

3. Согласованность. Должно соблюдаться естественное разграничение понятий (значений лингвистической переменной), когда одна и та же точка универсального множества не может одновременно принадлежать с m(х ) = 1 двум и более нечетким множествам (требование нарушается парой Т 2 – Т 3).

4. Полнота. Каждое значение из области определения лингвистической переменной должно описываться хотя бы одним нечетким множеством (требование нарушается между парой T 3 – Т 4).

5. Нормальность. Каждое понятие в лингвистической переменной должно иметь хотя бы один эталонный или типичный объект, т. е. в какой-либо точке функция принадлежности нечеткого множества должна быть единичной (требование нарушается T 5).

X

Нечеткое множество «низкий рост» m н (х )

0 20 40 60 80 100 110 120 140 160 X

Нечеткое множество «высокий рост» m в (х )

0 20 40 60 80 100 110 120 140 160 X

Д = Н: Дополнение нечеткого множества «низкий рост»

m д (х ) = 1 – m н (х )

0 20 40 60 80 100 110 120 140 160 X

Н È В: Объединение нечетких множеств «низкий рост» и «высокий рост»

m нв (х ) = mах (m н (х ), m в (х ))

0 20 40 60 80 100 110 120 140 160 X

Н Ç В: Пересечение нечетких множеств «низкий рост» и «высокий рост»

m нв (х ) = min (m н (х ), m в (х ))

Рис. 33. Операции над нечеткими множествами

m(х ) Т 1 Т 2 Т 3 Т 4 Т 5 Т 6

Рис. 34. Пример задания нечетких множеств для линг­вис­тической переменной с нарушением требований

Требования 2–4 можно заменить одним универсальным – сумма функций принадлежности m(х ) по всем нечетким множествам в каждой точке области определения переменной должна равняться 1.

При обработке правил с лингвистическими переменными (нечетких правил) для вычисления истинности гипотезы применяются правила нечеткой логики. Нечеткая логика – разновидность непрерывной логики, в которой предпосылки, гипотезы и сами логические формулы могут принимать истинностные значения с некоторой долей вероятности.

Основные положения нечеткой логики:

· истинность предпосылки, гипотезы или формулы лежит в интервале ;

· если две предпосылки (Е 1 и Е 2) соединены Ù (логическим И), то истинность гипотезы Н рассчитывается по формуле t(Н) = MIN(t(Е 1), t(Е 2));

· если две предпосылки (Е 1 и Е 2) соединены Ú (логическим ИЛИ), то истинность гипотезы Н рассчитывается по формуле t(Н) = MAX(t(Е 1), t(Е 2));

· если правило (П) имеет свою оценку истинности, тогда итоговая истинность гипотезы Н итог корректируется с учетом истинности правила t(Н итог) = MIN(t(Н), t(П)).

Математическая теория нечетких множеств (fuzzy sets) инечеткая логика (fuzzy logic ) являются обобщениями классическойтеории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких иприближенных рассуждений при описании человеком процессов, систем, объектов.

Одной из основных характеристик нечеткой логики является лингвисти­ческая переменная, которая определяется набором вербальных (словесных) характеристик некоторого свойства. Рассмотрим лингвисти­ческую переменную «скорость», которую можно характеризовать через набор следующих по­нятий-значе­ний: «ма­лая», «средняя» и «большая», данные значения называются термами.

Следующей основополагающей характеристикой нечеткой логики является понятие функции принадлежности. Функция принадлежности определяет, насколько мы уверены в том, что данное значение лингвистической переменной (например, скорость) можно отнести к соответствующим ей категори­ям (в частности для лингвистической переменной скорость к категориям «малая», «средняя», «большая»).

На следующем рисунке (первая часть) отражено, как одни и те же значения лингвистической переменной могут соответствовать различным понятиям-значениям или термам. Тогда функции принадлежности, характеризующие нечеткие множества понятий скорости, можно выразить гра­фически, в более привычном математическом виде (рис. 35, вторая часть).

Из рисунка видно, что степень, с которой численное значение скорости, например v = 53, совместимо с понятием «большая», есть 0,7, в то время как совместимость значений скорости, рав­ных 48 и 45, с тем же понятием есть 0,5 и 0,1 соответственно.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Рисунок 1. Типовые кусочно-линейные функции принадлежности.

Функция принадлежности гауссова типа описывается формулой

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Рисунок 2. Гауссова функция принадлежности.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке приведен пример описанной лингвистической переменной "Цена акции".

Рис. Описание лингвистической переменной "Цена акции".

Количество термов в лингвистической переменной редко превышает 7.

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

    Существует хотя бы одно правило для каждого лингвистического терма выходной переменной .

    Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида: R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1 … R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i … R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m , где x k , k=1..n – входные переменные; y – выходная переменная; A ik – термы соответствующих переменных с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Рисунок 5. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

    Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.

    Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Под дефаззификацией понимается процедура преобразования нечетких величин, получаемых в результате нечеткого вывода, в четкие. Эта процедура является необходимой в тех случаях, где требуется интерпретация нечетких выводов конкретными четкими величинами, т.е. когда на основе функции принадлежности возникает потребность определить для каждой точки вZ числовые значения.

В настоящее время отсутствует систематическая процедура выбора стратегии дефаззификации. На практике часто используют два наиболее общих метода: метод центра тяжести (ЦТ - центроидный), метод максимума (ММ).

Для дискретных пространств в центроидном методе формула для вычисления четкого значения выходной переменной представляется в следующем виде:

Стратегия дефаззификации ММ предусматривает подсчет всех тех z , чьи функции принадлежности достигли максимального значения. В этом случае (для дискретного варианта) получим

где z - выходная переменная, для которой функция принадлежности достигла максимума;m - число таких величин.

Из этих двух наиболее часто используемых стратегий дефаззификации, стратегия ММ дает лучшие результаты для переходного режима, аЦТ - в установившемся режиме из-за меньшей среднеквадратической ошибки.

Пример нечеткого правила

Как работает.

По максимальному значению функций принадлежности (для скорости 60 км в час значение функции принадлежности «низкая» = 0, а для дорожных условий 75 % от нормы значение функции принадлежности «тяжелые» = около 0.7) по 0.7 проводится прямая которая рассекает геометрическую фигуру заключения (подача топлива) на две части, в результате берется фигура лежащая ниже прямой а верхняя часть отбрасывается. Это для одного правила, таких правил может быть 100 и более в реальных задачах.

Рассмотрим процесс получения нечеткого вывода по трем правилам одновременно с последующим получением чет­кого решения. Данная процедура включает в себя три этапа. На первом этапе получают нечеткие выводы по каждому из правил в отдельности по схеме, показанной на рис. 3.13. На втором эта­пе производится сложение результирующих функций, получен­ных на предыдущем этапе (применяется логическая операция ИЛИ, т.е. берется максимум). Третий этап - этап получения чет­кого решения (дефаззификация). Здесь применяется любой из известных классических методов: метод центра тяжести и т.д. Полученное в виде числового значения четкое решение служит задающей величиной системы управления. В нашем примере это будет величина, в соответствии с которой ИСУ должна бу­дет изменить подачу топлива. Процесс получения нечетких выводов по нескольким прави­лам с последующей дефаззификацией для рассматриваемого примера показан на рис. 3.14. При начальном значении скорости = 65 км в час, и дорожным условиям = 80 % от норматива получаем следующую схему решения об уровне подачи топлива.

Рис. 3.14. Процесс получения нечетких выводов по правилам и их преобразование в четкое решение.

Как видно из рис. 3.14, в результате дефаззификации получе­но четкое решение: при заданных значениях скорости и дорожных условий подача топлива должна составлять 63% от

максимального значения. Таким образом, несмотря на нечет­кость выводов, в итоге получено вполне четкое и определенное решение. Такое решение, вероятно, принял бы и водитель авто­мобиля в процессе движения. Данный пример демонстрирует великолепные возможности моделирования человеческих рас­суждений на основе методов теории нечетких множеств.

Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов.

Прежде чем нечеткий подход к моделированию сложных систем получил признание во всем мире, прошло не одно десятилетие с момента зарождения теории нечетких множеств. И на этом пути развития нечетких систем принято выделять три периода.

Первый период (конец 60-х–начало 70 гг.) характеризуется развитием теоретического аппарата нечетких множеств (Л. Заде, Э. Мамдани, Беллман). Во втором периоде (70–80-е годы) появляются первые практические результаты в области нечеткого управления сложными техническими системами (парогенератор с нечетким управлением). Одновременно стало уделяться внимание вопросам построения экспертных систем, построенных на нечеткой логике, разработке нечетких контроллеров. Нечеткие экспертные системы для поддержки принятия решений находят широкое применение в медицине и экономике. Наконец, в третьем периоде, который длится с конца 80-х годов и продолжается в настоящее время, появляются пакеты программ для построения нечетких экспертных систем, а области применения нечеткой логики заметно расширяются. Она применяется в автомобильной, аэрокосмической и транспортной промышленности, в области изделий бытовой техники, в сфере финансов, анализа и принятия управленческих решений и многих других.

Триумфальное шествие нечеткой логики по миру началось после доказательства в конце 80-х Бартоломеем Коско знаменитой теоремы FAT (Fuzzy Approximation Theorem). В бизнесе и финансах нечеткая логика получила признание после того как в 1988 году экспертная система на основе нечетких правил для прогнозирования финансовых индикаторов единственная предсказала биржевой крах. И количество успешных фаззи-применений в настоящее время исчисляется тысячами.

Математический аппарат

Характеристикой нечеткого множества выступает функция принадлежности (Membership Function). Обозначим через MF c (x) – степень принадлежности к нечеткому множеству C, представляющей собой обобщение понятия характеристической функции обычного множества. Тогда нечетким множеством С называется множество упорядоченных пар вида C={MF c (x)/x}, MF c (x) . Значение MF c (x)=0 означает отсутствие принадлежности к множеству, 1 – полную принадлежность.

Проиллюстрируем это на простом примере. Формализуем неточное определение "горячий чай". В качестве x (область рассуждений) будет выступать шкала температуры в градусах Цельсия. Очевидно, что она будет изменяется от 0 до 100 градусов. Нечеткое множество для понятия "горячий чай" может выглядеть следующим образом:

C={0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100}.

Так, чай с температурой 60 С принадлежит к множеству "Горячий" со степенью принадлежности 0,80. Для одного человека чай при температуре 60 С может оказаться горячим, для другого – не слишком горячим. Именно в этом и проявляется нечеткость задания соответствующего множества.

Для нечетких множеств, как и для обычных, определены основные логические операции. Самыми основными, необходимыми для расчетов, являются пересечение и объединение.

Пересечение двух нечетких множеств (нечеткое "И"): A B: MF AB (x)=min(MF A (x), MF B (x)).
Объединение двух нечетких множеств (нечеткое "ИЛИ"): A B: MF AB (x)=max(MF A (x), MF B (x)).

В теории нечетких множеств разработан общий подход к выполнению операторов пересечения, объединения и дополнения, реализованный в так называемых треугольных нормах и конормах. Приведенные выше реализации операций пересечения и объединения – наиболее распространенные случаи t-нормы и t-конормы.

Для описания нечетких множеств вводятся понятия нечеткой и лингвистической переменных.

Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.
Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная. Каждая лингвистическая переменная состоит из:

  • названия;
  • множества своих значений, которое также называется базовым терм-множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных;
  • универсального множества X;
  • синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка;
  • семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.

Рассмотрим такое нечеткое понятие как "Цена акции". Это и есть название лингвистической переменной. Сформируем для нее базовое терм-множество, которое будет состоять из трех нечетких переменных: "Низкая", "Умеренная", "Высокая" и зададим область рассуждений в виде X= (единиц). Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

$$MF\,(x) = \,\begin{cases} \;1\,-\,\frac{b\,-\,x}{b\,-\,a},\,a\leq \,x\leq \,b &\ \\ 1\,-\,\frac{x\,-\,b}{c\,-\,b},\,b\leq \,x\leq \,c &\ \\ 0, \;x\,\not \in\,(a;\,c)\ \end{cases}$$

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

$$MF\,(x)\,=\, \begin{cases} \;1\,-\,\frac{b\,-\,x}{b\,-\,a},\,a\leq \,x\leq \,b & \\ 1,\,b\leq \,x\leq \,c & \\ 1\,-\,\frac{x\,-\,c}{d\,-\,c},\,c\leq \,x\leq \,d &\\ 0, x\,\not \in\,(a;\,d) \ \end{cases}$$

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Функция принадлежности гауссова типа описывается формулой

$$MF\,(x) = \exp\biggl[ -\,{\Bigl(\frac{x\,-\,c}{\sigma}\Bigr)}^2\biggr]$$

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке 3 приведен пример описанной выше лингвистической переменной "Цена акции", на рисунке 4 – формализация неточного понятия "Возраст человека". Так, для человека 48 лет степень принадлежности к множеству "Молодой" равна 0, "Средний" – 0,47, "Выше среднего" – 0,20.

Количество термов в лингвистической переменной редко превышает 7.

Нечеткий логический вывод

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

  1. Существует хотя бы одно правило для каждого лингвистического терма выходной переменной.
  2. Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида:
R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1

R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i

R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m ,
где x k , k=1..n – входные переменные; y – выходная переменная; A ik – заданные нечеткие множества с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

  1. Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.
  2. Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    $$alfa_i\,=\,\min_i \,(A_{ik}\,(x_k))$$

    $$B_i^*(y)= \min_i \,(alfa_i,\,B_i\,(y))$$

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

    $$MF\,(y)= \max_i \,(B_i^*\,(y))$$

    где MF(y) – функция принадлежности итогового нечеткого множества.

    Дефазификация, или приведение к четкости. Существует несколько методов дефазификации. Например, метод среднего центра, или центроидный метод:
    $$MF\,(y)= \max_i \,(B_i^*\,(y))$$

Геометрический смысл такого значения – центр тяжести для кривой MF(y). Рисунок 6 графически показывает процесс нечеткого вывода по Мамдани для двух входных переменных и двух нечетких правил R1 и R2.

Интеграция с интеллектуальными парадигмами

Гибридизация методов интеллектуальной обработки информации – девиз, под которым прошли 90-е годы у западных и американских исследователей. В результате объединения нескольких технологий искусственного интеллекта появился специальный термин – "мягкие вычисления" (soft computing), который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем.

Влияние нечеткой логики оказалось, пожалуй, самым обширным. Подобно тому, как нечеткие множества расширили рамки классической математическую теорию множеств, нечеткая логика "вторглась" практически в большинство методов Data Mining, наделив их новой функциональностью. Ниже приводятся наиболее интересные примеры таких объединений.

Нечеткие нейронные сети

Нечеткие нейронные сети (fuzzy-neural networks) осуществляют выводы на основе аппарата нечеткой логики, однако параметры функций принадлежности настраиваются с использованием алгоритмов обучения НС. Поэтому для подбора параметров таких сетей применим метод обратного распространения ошибки, изначально предложенный для обучения многослойного персептрона. Для этого модуль нечеткого управления представляется в форме многослойной сети. Нечеткая нейронная сеть как правило состоит из четырех слоев: слоя фазификации входных переменных, слоя агрегирования значений активации условия, слоя агрегирования нечетких правил и выходного слоя.

Наибольшее распространение в настоящее время получили архитектуры нечеткой НС вида ANFIS и TSK. Доказано, что такие сети являются универсальными аппроксиматорами.

Быстрые алгоритмы обучения и интерпретируемость накопленных знаний – эти факторы сделали сегодня нечеткие нейронные сети одним из самых перспективных и эффективных инструментов мягких вычислений.

Адаптивные нечеткие системы

Классические нечеткие системы обладают тем недостатком, что для формулирования правил и функций принадлежности необходимо привлекать экспертов той или иной предметной области, что не всегда удается обеспечить. Адаптивные нечеткие системы (adaptive fuzzy systems) решают эту проблему. В таких системах подбор параметров нечеткой системы производится в процессе обучения на экспериментальных данных. Алгоритмы обучения адаптивных нечетких систем относительно трудоемки и сложны по сравнению с алгоритмами обучения нейронных сетей, и, как правило, состоят из двух стадий: 1. Генерация лингвистических правил; 2. Корректировка функций принадлежности. Первая задача относится к задаче переборного типа, вторая – к оптимизации в непрерывных пространствах. При этом возникает определенное противоречие: для генерации нечетких правил необходимы функции принадлежности, а для проведения нечеткого вывода – правила. Кроме того, при автоматической генерации нечетких правил необходимо обеспечить их полноту и непротиворечивость.

Значительная часть методов обучения нечетких систем использует генетические алгоритмы. В англоязычной литературе этому соответствует специальный термин – Genetic Fuzzy Systems.

Значительный вклад в развитие теории и практики нечетких систем с эволюционной адаптацией внесла группа испанских исследователей во главе с Ф. Херрера (F. Herrera).

Нечеткие запросы

Нечеткие запросы к базам данных (fuzzy queries) – перспективное направление в современных системах обработки информации. Данный инструмент дает возможность формулировать запросы на естественном языке, например: "Вывести список недорогих предложений о съеме жилья близко к центру города", что невозможно при использовании стандартного механизма запросов. Для этой цели разработана нечеткая реляционная алгебра и специальные расширения языков SQL для нечетких запросов. Большая часть исследований в этой области принадлежит западноевропейским ученым Д. Дюбуа и Г. Праде.

Нечеткие ассоциативные правила

Нечеткие ассоциативные правила (fuzzy associative rules) – инструмент для извлечения из баз данных закономерностей, которые формулируются в виде лингвистических высказываний. Здесь введены специальные понятия нечеткой транзакции, поддержки и достоверности нечеткого ассоциативного правила.

Нечеткие когнитивные карты

Нечеткие когнитивные карты (fuzzy cognitive maps) были предложены Б. Коско в 1986 г. и используются для моделирования причинных взаимосвязей, выявленных между концептами некоторой области. В отличие от простых когнитивных карт, нечеткие когнитивные карты представляют собой нечеткий ориентированный граф, узлы которого являются нечеткими множествами. Направленные ребра графа не только отражают причинно-следственные связи между концептами, но и определяют степень влияния (вес) связываемых концептов. Активное использование нечетких когнитивных карт в качестве средства моделирования систем обусловлено возможностью наглядного представления анализируемой системы и легкостью интерпретации причинно-следственных связей между концептами. Основные проблемы связаны с процессом построения когнитивной карты, который не поддается формализации. Кроме того, необходимо доказать, что построенная когнитивная карта адекватна реальной моделируемой системе. Для решения данных проблем разработаны алгоритмы автоматического построения когнитивных карт на основе выборки данных.

Нечеткая кластеризация

Нечеткие методы кластеризации, в отличие от четких методов (например, нейронные сети Кохонена), позволяют одному и тому же объекту принадлежать одновременно нескольким кластерам, но с различной степенью. Нечеткая кластеризация во многих ситуациях более "естественна", чем четкая, например, для объектов, расположенных на границе кластеров. Наиболее распространены: алгоритм нечеткой самоорганизации c-means и его обобщение в виде алгоритма Густафсона-Кесселя.

Литература

  • Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. – М.: Мир, 1976.
  • Круглов В.В., Дли М.И. Интеллектуальные информационные системы: компьютерная поддержка систем нечеткой логики и нечеткого вывода. – М.: Физматлит, 2002.
  • Леоленков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. – СПб., 2003.
  • Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. – М., 2004.
  • Масалович А. Нечеткая логика в бизнесе и финансах. www.tora-centre.ru/library/fuzzy/fuzzy-.htm
  • Kosko B. Fuzzy systems as universal approximators // IEEE Transactions on Computers, vol. 43, No. 11, November 1994. – P. 1329-1333.
  • Cordon O., Herrera F., A General study on genetic fuzzy systems // Genetic Algorithms in engineering and computer science, 1995. – P. 33-57.

Задумывались ли вы когда-нибудь о том, как мыслит человек? Какими словами мы обычно пользуемся, чтобы объяснить меру чего-либо? Выражения «Немного посолить», «слегка остудить», «пройти чуть дальше», «налить много», «принести мало» — совершенно обычны для человека. Именно такими категориями мы воспринимаем окружающую действительность. В нашей обычной жизни мы крайне редко пользуемся чёткими правилами и алгоритмами. У человека нет точных датчиков и измерительных приборов. Вместо этого у нас есть органы чувств и наше врождённое чувство меры. Но это нельзя назвать нашим недостатком, наоборот – в этом заключается наше главное преимущество. Это позволяет нам быть адаптивными. Дело в том, что окружающий мир настолько сложен, что ни одна супер-мега-крутая вычислительная машина не сможет учесть все его зависимости. Поэтому для точных компьютерных вычислений мы обычно упрощаем задачу, идеализируем её, отбрасываем несущественные факторы, принимаем какие-то допущения и т.д. Мы можем это сделать, именно потому, что наше чувство меры позволяет нам оценить «навскидку», какие факторы вносят значительный вклад, а какие несущественны. Однако существует довольно много задач, которые достаточно сложно формализовать, составить для них «чёткий» алгоритм.

Например, сложно представить, что какая-то автоматика будет печь пирожки вкуснее, чем бабушка Зина. Слишком много «нечётких» факторов в этом деле: и дрожжи каждый раз разные, и мука; от влажности и температуры в помещении тоже многое зависит. Только опытная бабушка сможет учесть все эти факторы.

Вот почему во многих случаях полезно наделить управляющее устройство «нечётким мышлением». В системе, где все влияющие на неё факторы учесть сложно или невозможно, — это позволяет заменить человека-эксперта, имеющего большой практический опыт, автоматикой. Сейчас на простом примере разберём, как это делается в технических системах.

На заводе «N» работает крановщик Василий. Трудится он на этом предприятии 40 лет, с того самого момента, как окончил ПТУ. Его задача состоит в том, чтобы поднимать краном паллеты с готовой продукцией и ставить на место складирования. Делать это умеет только Василий. За многие годы практики он чётко научился определять, с какой скоростью нужно двигаться на кране в зависимости от того, какой груз у него на крюке, за сколько метров до цели нужно начать останавливаться, как регулировать угол наклона стрелы крана, чтобы уменьшить раскачивание паллеты на крюке и т.д. Весь этот опыт позволяет ему каждый раз опускать груз точно в цель и делать это на оптимальной скорости.

Однако, Василию скоро на пенсию, а заменить его некому. К тому же, руководство завода взяло курс на автоматизацию производственного процесса. Для того, чтобы заменить крановщика интеллектуальным устройством, необходимо наделить его «нечёткой логикой» и экспертными знаниями Василия. Поехали…

Входы и выходы системы управления

Для начала определим входные и выходные параметры нашей будущей системы управления. Входами будут те критерии, с помощью которых Василий обычно оценивает текущее состояние системы:

  • Расстояние до цели
  • Амплитуда раскачивания груза на крюке крана

Выходы – управляющие воздействия, которые может вносить в систему крановщик, чтобы менять её текущее состояние:

  • Педаль газа — регулирует скорость, влияет на амплитуду раскачивания груза
  • Педаль тормоза — влияет на плавность остановки (амплитуду раскачивания груза)
  • Ручка управления стрелой крана – регулирует угол наклона стрелы, компенсирует раскачивание груза

Теперь обратимся к самому Василию, чтобы «добыть» из него бесценные экспертные знания.

Спрашиваем:

— «Василий, скажите, с какой скоростью нужно двигаться, чтобы максимально быстро доставлять груз до цели, но при этом не приходилось резко тормозить перед финишем, заставляя груз сильно раскачиваться?»

Василий ответит примерно следующее:

— «Ну, так это… как только зацепил груз, пока до места еще далеко — давлю газ в пол. В середине пути чуть убавляю и плавненько иду, чтоб не шаталась верёвка. Если сильно шатает – газ жму совсем чуть-чуть и немного наклоняю стрелу в противоход. Когда близко подъезжаю – совсем уже газ отпускаю, наоборот притормаживаю малеху».

Вот мы и получили первые нечёткие правила от Василия. Продолжая общение с ним, узнаем и остальные. Представим все полученные правила, в виде таблицы:

– это перевод входного параметра системы в «нечёткую» область.

Первый входной параметр – «расстояние до цели». В терминах «нечёткой логики» — это лингвистическая переменная , поскольку она принимает в качестве значений не числа, а слова. А в понимании вычислительной машины «расстояние до цели» — вполне чёткий параметр, измеряемый в метрах.

Поэтому на этом этапе нам необходимо выяснить у Василия, что для него «близко», а что «очень близко» — определить его нечёткие диапазоны в цифрах. Например, 15 метров – для него будет однозначно близко. А вот насчёт 6 метров – он будет путаться в показаниях, причисляя это значение то к «близко», то к «очень близко». Поэтому «нечёткие диапазоны» могут перекрывать друг друга. Посмотрим, как это выглядит на графике:

Функцию M(x) называют функцией принадлежности . Она показывает степень принадлежности параметра к одному из нечётких значений. Как видно из графика, расстояние 32 метра со степенью принадлежности 0,2 относится к значению «средне» и со степенью принадлежности 0,65 к значению «близко».

Чем больше степень принадлежности, тем больше вероятность, что вычислительная машина присвоит переменной соответствующее нечёткое значение. Однако не стоит путать функцию принадлежности с функцией вероятностного распределения – это не одно и то же. Поэтому, в частности, сумма степеней принадлежности одного входного параметра к различным нечётким значениям не обязательно равна 1.

Точно такие же функции принадлежности нужно определить и для остальных входных и выходных параметров системы, снова используя экспертные знания крановщика Василия.

Принятие решения

Как только система управления фазифицирует все входные параметры по заданным функциям принадлежности, блок принятия решения найдёт соответствующие значения выходных параметров, пользуясь нечёткими правилами (см. таблицу выше).

Дефазификация

На этом этапе система управления будет делать обратное преобразование из нечётких значений выходных параметров (найденных по таблице) – к чётким цифрам. Математические алгоритмы этих преобразований разнообразны и зависят от конкретной задачи. Подробно на них заморачиваться не имеет смысла — пусть этим занимаются суровые математики. Инженеру нужно лишь реализовать один из известных алгоритмов.


В качестве контроллера нечёткой логики можно использовать уже готовое микропроцессорное устройство, поддерживающее описанные выше алгоритмы. Такому устройству необходимо задать только функции принадлежности всех лингвистических переменных и нечёткие правила. Конечно, если хочется поупражняться – можно взять обычный микроконтроллер и «суровую» книгу по математическим алгоритмам, применяемым в нечёткой логике, и реализовать всё это самому.

В любом случае структура контроллера нечёткой логики будет примерно такой:

Заключение

В этой статье мы рассмотрели базовые понятия нечёткой логики, которая является составной частью более широкого понятия «Искусственный интеллект». Нечёткая логика широко применяется при построении экспертных систем, систем поддержки принятия решений, систем управления, основанных на экспертных знаниях. На очереди статья, в которой мы расскажем, в каких приборах и устройствах, используемых нами в повседневной жизни, применяется нечёткая логика. Да-да, я не оговорился, каждый из нас ежедневно пользуется приборами, обладающими искусственным интеллектом. Но об этом позже, а на сегодня всё! Помните, читая LAZY SMART , вы становитесь ближе к миру новых технологий! До свидания!

2.1 Основные понятия нечеткой логики

Как было упомянуто в предыдущих главах, классическая логика оперирует только двумя понятиями: «истина» и «ложь», и исключая любые промежуточные значения. Аналогично этому булева логика не признает ничего кроме единиц и нулей.

Нечеткая же логика основана на использовании оборотов естественного языка. Человек сам определяет необходимое число терминов и каждому из них ставит в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму (слову естественного языка, характеризующего переменную) будет равна единице, а для всех остальных значений ‒ в зависимости от выбранной функции принадлежности.

При помощи нечетких множеств можно формально определить неточные и многозначные понятия, такие как «высокая температура», «молодой человек», «средний рост» либо «большой город». Перед формулированием определения нечеткого множества необходимо задать так называемую область рассуждений (universe of discourse). В случае неоднозначного понятия «много денег» большой будет признаваться одна сумма, если мы ограничимся диапазоном и совсем другая–в диапазоне .

Лингвистические переменные:

Лингвистической переменной является переменная, для задания которой используются лингвистические значения, выражающие качественные оценки, или нечеткие числа. Примером лингвистической переменной может быть скорость или температура, примером лингвистического значения - характеристика: большая, средняя, малая, примером нечеткого числа - значение: примерно 5, около 0.

Лингвистическим терм-множеством называется множество всех лингвистических значений, используемых для определения некоторой лингвистической переменной. Областью значений переменной является множество всех числовых значений, которые могут принимать определенный параметр изучаемой системы, или множество значений, существенное с точки зрения решаемой задачи.

Нечеткие множества:

Пусть ‒ универсальное множество,‒ элемент, а‒ некоторое свойство. Обычное (четкое) подмножествоуниверсального множества, элементы которого удовлетворяют свойству, определяются как множество упорядоченных пар
,где
‒ характеристическая функция, принимающая значение 1, если удовлетворяет свойству, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов изнет однозначного ответа ”да-нет” относительно свойства. В связи с этим, нечеткое подмножество универсального множестваопределяется как множество упорядоченных пар
, где
‒ характеристическая функция принадлежности, принимающая значения в некотором упорядоченном множестве (например,
). Функция принадлежности указывает степень принадлежности элементамножеству. Множество
называют множеством принадлежностей. Если
, то нечеткое множество может рассматриваться как обычное четкое множество.

Множество элементов пространства
, для которых
, называется носителем нечеткого множества и обозначается supp A :

Высота нечеткого множества определяется как

Нечеткое множество называется нормальным тогда и только тогда, когда
. Если нечеткое множествоне является нормальным, то его можно нормализовать при помощи преобразования

,

где
‒ высота этого множества.

Нечеткое множество
, является выпуклым тогда и только тогда, когда для произвольных
и
выполняется условие

2.1.1 Операции над нечеткими множествами

Включение. Пусть и‒ нечеткие множества на универсальном множестве. Говорят, чтосодежится в, если

Равенство. и равны, если

Дополнение. Пусть
,и‒ нечеткие множества, заданные на.идополняют друг друга, если.

Пересечение.
‒ наибольшее нечеткое подмножество, содержащееся одновременно ви:

Объединение.
‒ наибольшее нечеткое подмножество, содержащее все элементы изи:

Разность.
‒ подмножество с функцией принадлежности:

2.1.2 Нечеткие отношения

Пусть
‒ прямое произведение универсальных множеств и
‒ некоторое множество принадлежностей. Нечеткое n-арное отношение определяется как нечеткое подмножествона, принимающее свои значения в
. В случае
и
нечетким отношениеммежду множествами
и
будет называться функция
, которая ставит в соответствие каждой паре элементов
величину
.

Пусть ­­­­ ‒ нечеткое отношение
между
и, инечеткое отношение
междуи. Нечеткое отношение между
и, обозначаемое
, определенное черезивыражением, называется композицией отношенийи.

Нечеткая импликация.

Нечеткая импликация представляет собой правило вида: ЕСЛИ
ТО
,где
– условие, а
– заключение, причеми‒ нечеткие множества, заданные своими функциями принадлежности
,
и областями определения
,соответственно. Обозначается импликация как
.

Различие между классической и нечеткой импликацией состоит в том, что в случае классической импликации условие и заключение могут быть либо абсолютно истинными, либо абсолютно ложными, в то время как для нечеткой импликации допускается их частичная истинность, со значением, принадлежащим интервалу . Такой подход имеет ряд преимуществ, поскольку на практике редко встречаются ситуации, когда условия правил удовлетворяются полностью, и по этой причине нельзя полагать, что заключение абсолютно истинно.

В нечеткой логике существует множество различных операторов импликации. Все они дают различные результаты, степень эффективности которых зависит в частности от моделируемой системы. Одним из наиболее распространенных операторов импликации является оператор Мамдани, основанный на предположении, что степень истинности заключения
не может быть выше степени выполнения условия
:

2.2 Построение нечеткой системы

Из разработок искусственного интеллекта завоевали устойчивое признание экспертные системы, как системы поддержки принятия решений. Они способны аккумулировать знания, полученные человеком в различных областях деятельности. Посредством экспертных систем удается решить многие современные задачи, в том числе и задачи управления. Одним из основных методов представления знаний в экспертных системах являются продукционные правила, позволяющие приблизиться к стилю мышления человека. Обычно продукционное правило записывается в виде: «ЕСЛИ (посылка) (связка) (посылка)… (посылка) ТО (заключение)».Возможно наличие нескольких посылок в правиле, в этом случае они объединяются посредством логических связок «И», «ИЛИ».

Нечеткие системы (НС) тоже основаны на правилах продукционного типа, однако в качестве посылки и заключения в правиле используются лингвистические переменные, что позволяет избежать ограничений, присущих классическим продукционным правилам.

Таким образом, нечеткая система - это система, особенностью описания которой является:

нечеткая спецификация параметров;

нечеткое описание входных и выходных переменных системы;

нечеткое описание функционирования системы на основе продукционных «ЕСЛИ…ТО…»правил.

Важнейшим классом нечетких систем являются нечеткие системы управления (НСУ).Одним из важнейших компонентов НСУ является база знаний, которая представляет собой совокупность нечетких правил «ЕСЛИ–ТО», определяющих взаимосвязь между входами и выходами исследуемой системы. Существуют различные типы нечетких правил: лингвистическая, реляционная, модель Такаги-Сугено и др.

Для многих приложений, связанных с управлением процессами, необходимо построение модели рассматриваемого процесса. Знание модели позволяет подобрать соответствующий регулятор (модуль управления). Однако часто построение корректной модели представляет собой трудную проблему, требующую иногда введения различных упрощений. Применение теории нечетких множеств для управления процессами не предполагает знания моделей этих процессов. Следует только сформулировать правила поведения в форме нечетких условных суждений типа «ЕСЛИ-ТО».

Рисунок 2.1 -. Структура нечеткой системы управления

Процесс управления системой напрямую связан с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько стадий: фаззификация, разработка нечетких правил и дефаззификация.

Фаззификаия подразумевает переход к нечеткости. На данной стадии точные значения входных переменных преобразуются в значения лингвистических переменных посредством применения некоторых положений теории нечетких множеств, а именно ‒ при помощи определенных функций принадлежности.

В нечеткой логике значения любой величины представляются не числами, а словами естественного языка и называются «термами». Так, значением лингвистической переменной «Дистанция» являются термы «Далеко», «Близко» и т. д. Для реализации лингвистической переменной необходимо определить точные физические значения ее термов. Допустим переменная «Дистанция» может принимать любое значение из диапазона от 0 до 60 метров. Согласно положениям теории нечетких множеств, каждому значению расстояния из диапазона в 60 метров может быть поставлено в соответствие некоторое число, от нуля до единицы, которое определяет степень принадлежностиданного физического значения расстояния (допустим, 10 метров) к тому или иному терму лингвистической переменной «Дистанция». Тогда расстоянию в 50 метров можно задать степень принадлежности к терму «Далеко», равную 0,85, а к терму «Близко» ‒ 0,15. Задаваясь вопросом, сколько всего термов в переменной необходимо для достаточно точного представления физической величины принято считать, что достаточно 3-7 термов на каждую переменнуюдля большинства приложений. Большинствоприменений вполне исчерпывается использованием минимального количества термов.Такое определение содержит два экстремальных значения (минимальное и максимальное) и среднее. Что касается максимального количества термов, то оно не ограничено и зависит целиком от приложения и требуемой точности описания системы. Число 7 же обусловлено емкостью кратковременной памяти человека, в которой, по современным представлениям, может храниться до семи единиц информации.

Принадлежность каждого точного значения к одному из термов лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным, однако сформировалось понятие о так называемых стандартных функциях принадлежности

Рисунок 2.2 ‒ Стандартные функции принадлежности

Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.

Следующей стадией является стадия разработки нечетких правил.

На ней определяются продукционные правила, связывающие лингвистические переменные. Большинство нечетких систем используют продукционные правила для описания зависимостей между лингвистическими переменными. Типичное продукционное правило состоит из антецедента (частьЕСЛИ …) и консеквента (часть ТО…). Антецедент может содержать более одной посылки. В этом случае они объединяются посредством логических связок«И» или «ИЛИ».

Процесс вычисления нечеткого правила называется нечетким логическим выводом и подразделяется на два этапа: обобщение и заключение.

Пусть имеется следующее правило:

ЕСЛИ «Дистанция» = средняя И «Угол» =малый, ТО «Мощность» = средняя.

На первом шаге логического вывода необходимо определить степень принадлежности всего антецедента правила. Для этого в нечеткой логике существуют два оператора: Min(…) и Max(…). Первый вычисляет минимальное значение степени принадлежности, а второй ‒ максимальное значение. Когда применять тот или иной оператор, зависит от того, какой связкой соединены посылки в правиле. Если использована связка «И», применяется оператор Min(…). Если же посылки объединены связкой «Или», необходимо применить оператор Max(…). Ну а если в правиле всего одна посылка, операторы вовсе не нужны.

Следующим шагом является собственно вывод или заключение. Подобным же образом посредством операторов Min/Maxвычисляется значение консеквента. Исходными данными служат вычисленные на предыдущем шаге значения степеней принадлежности антецедентов правил.

После выполнения всех шагов нечеткого вывода мы находим нечеткое значение управляющей переменной. Чтобы исполнительное устройство смогло отработать полученную команду, необходим этап управления, на котором мы избавляемся от нечеткости и который называется дефаззификацией.

На этапе дефаззификации осуществляется переход от нечетких значений величин к определенным физическим параметрам, которые могут служить командами исполнительному устройству.

Результат нечеткого вывода, конечно же, будет нечетким. Например, если речь идет об управлении механизмом и команда для электромотора будет представлена термом «Средняя» (мощность), то для исполнительного устройства это ровно ничего не значит. В теории нечетких множеств процедура дефаззификации аналогична нахождению характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одно экстремальными функциями принадлежности. Для устранения нечеткости окончательного результата существует несколько методов: метод центра максимума, метод наибольшего значения, метод центроида и другие. Для многоэкстремальных функций принадлежности наиболее часто используется дефаззификация путем нахождения центра тяжести плоской фигуры, ограниченной осями координат и функцией принадлежности.

2.3. Модели нечеткого логического вывода

Нечеткий логический вывод - это аппроксимация зависимости «входы–выход» на основе лингвистических высказываний типа «ЕСЛИ–ТО» и операций над нечеткими множествами. Нечеткая модель содержит следующие блоки:

‒ фаззификатор, преобразующий фиксированный вектор влияющих факторов Xв вектор нечетких множеств , необходимых для выполнения нечеткого логического вывода;

‒ нечеткая база знаний, содержащая информацию о зависимости
в виде лингвистических правил типа «ЕСЛИ–ТО»;

‒ машина нечеткого логического вывода, которая на основе правил базы знаний определяет значение выходной переменной в виде нечеткого множества, соответствующего нечетким значениям входных переменных;

‒ дефаззификатор, преобразующий выходное нечеткое множество в четкое число Y.

Рисунок 2.3 ‒ Структура нечеткой модели.

2.3.1Нечеткая модель типа Мамдани

Данный алгоритм описывает несколько последовательно выполняющихся этапов. При этом каждый последующий этап получает на вход значения полученные на предыдущем шаге.

Рисунок 2.4 – Диаграмма деятельности процесса нечеткого вывода

Алгоритм примечателен тем, что он работает по принципу «черного ящика». На вход поступают количественные значения, на выходе они же. На промежуточных этапах используется аппарат нечеткой логики и теория нечетких множеств. В этом и состоит элегантность использования нечетких систем. Можно манипулировать привычными числовыми данными, но при этом использовать гибкие возможности, которые предоставляют системы нечеткого вывода.

В модели типа Мамдани взаимосвязь между входами X = (x 1 , x 2 ,…, x n)и выходом y определяется нечеткой базой знаний следующего формата:

,

где
- лингвистический терм, которым оценивается переменная x i в строке с номером
;
), где- количество строк-конъюнкций, в которых выходоценивается лингвистическим термом;
- количество термов, используемых для лингвистической оценки выходной переменной.

С помощью операций ∪(ИЛИ) и ∩ (И) нечеткую базу знаний можно переписать в более компактном виде:

(1)

Все лингвистические термы в базе знаний (1) представляются как нечеткие множества, заданные соответствующими функциями принадлежности.

Нечеткая база знаний (1) может трактоваться как некоторое разбиение пространства влияющих факторов на подобласти с размытыми границами, в каждой из которых функция отклика принимает значение, заданное соответствующим нечетким множеством. Правило в базе знаний представляет собой «информационный сгусток», отражающий одну из особенностей зависимости «входы–выход». Такие «сгустки насыщенной информации» или «гранулы знаний» могут рассматриваться как аналог вербального кодирования, которое, как установили психологи, происходит в человеческом мозге при обучении. Видимо поэтому формирование нечеткой базы знаний в конкретной предметной области, как правило, не составляет трудностей для эксперта.

Введем следующие обозначения:

- функция принадлежности входа нечеткому терму
,
т.е

- функция принадлежности выхода y нечеткому терму
, т.е.

Степень принадлежности входного вектора
нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

Наиболее часто используются следующие реализации: для операции ИЛИ - нахождение максимума, для операции И- нахождение минимума.

Нечеткое множество , соответствующее входному вектору X * , определяется следующим образом:

где imp- импликация, обычно реализуемая как операция нахождения минимума; agg- агрегирование нечетких множеств, которое наиболее часто реализуется операцией нахождения максимума.

Четкое значение выхода , соответствующее входному вектору
, определяется в результате дефаззификации нечеткого множества. Наиболее часто применяется дефаззификация по методу центра тяжести:

Модели типа Мамдани и типа Сугэно будут идентичными, когда заключения правил заданы четкими числами, т. е. в случае, если:

1) термы d j выходной переменной в модели типа Мамдани задаются синглтонами - нечеткими аналогами четких чисел. В этом случае степени принадлежностей для всех элементов универсального множества равны нулю, за исключением одного со степенью принадлежности равной единице;

2) заключения правил в базе знаний модели типа Сугэно заданы функциями, в которых все коэффициенты при входных переменных равны нулю.

2.3.2 Нечеткая модель типа Сугэно

На сегодняшний день существует несколько моделей нечеткого управления, одной из которых является модель Такаги-Сугено.

Модель Такаги-Сугено иногда носит называние Takagi-Sugeno-Kang. Причина состоит в том, что этот тип нечеткой модели был первоначально предложен Takagi и Sugeno. Однако Канг и Сугено провели превосходную работу над идентификацией нечеткой модели. Отсюда и происхождение названия модели.

В модели типа Сугэно взаимосвязь между входами
и выходом y задается нечеткой базой знаний вида:

где - некоторые числа.

База знаний (3) аналогична (1) за исключением заключений правил , которые задаются не нечеткими термами, а линейной функцией от входов:

,

Таким образом, база знаний в модели типа Сугэно является гибридной - ее правила содержат посылки в виде нечетких множеств и заключения в виде четкой линейной функции. База знаний (3) может трактоваться как некоторое разбиение пространства влияющих факторов на нечеткие подобласти, в каждой из которых значение функции отклика рассчитывается как линейная комбинация входов. Правила являются своего рода переключателями с одного линейного закона «входы–выход» на другой, тоже линейный. Границы подобластей размытые, следовательно, одновременно могут выполняться несколько линейных законов, но с различными весами. Результирующее значение выхода определяется как суперпозиция линейных зависимостей, выполняемых в данной точке
n-мерного факторного пространства. Это может быть взвешенное среднее

,

или взвешенная сумма

.

Значения
рассчитываются как и для модели типа Мамдани, т. е. по формуле (2).Обратим внимание, что в модели Сугэно в качестве операций ˄ и ˅обычно используются соответственно вероятностное ИЛИ и умножение. В этом случае нечеткая модель типа Сугэно может рассматриваться как особый класс многослойных нейронных сетей прямого распространения сигнала, структура которой изоморфна базе знаний. Такие сети получили название нейро-нечетких.