Основы построения локальных вычислительных сетей. Основы локальных вычислительных сетей (LAN)

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Основы локальных компьютерных сетей

Введение.

На сегодняшний день в мире существует более 130 миллионов ком­пьютеров и бо­лее 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объ­единению компьютеров в сети обусловлена рядом важных причин, таких как ускорение пе­редачи ин­формационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E - Mail писем и прочего) не отходя от рабочего места, возможность мгновенного получения любой информации из лю­бой точки земного шара, а так же об­мен информацией между компьютерами разных фирм производителей ра­бо­тающих под разным программным обеспечением.

Такие огромные потенциальные возможности, которые несет в себе вычислитель­ная сеть и тот новый потенциальный подъем, который при этом испытывает информацион­ный комплекс, а так же значительное ускорение производственного процесса не дают нам право не принимать это к разра­ботке и не применять их на практике.

Поэтому необходимо разработать принципиальное решение вопроса по организа­ции ИВС (информационно-вычислительной сети) на базе уже существующего компьютер­ного парка и программного комплекса отвечаю­щего современным научно-техническим требованиям с учетом возрастаю­щих потребностей и возможностью дальнейшего посте­пенного развития сети в связи с появлением новых технических и программных решений.

Понятие ЛВС.

Что такое локальная вычислительная сеть (ЛВС)? Под ЛВС понимают совместное подключение нескольких отдельных компьютерных рабочих мест (рабочих станций) к еди­ному каналу передачи данных. Благодаря вычислительным сетям мы полу­чили возможность одновременного использо­вания программ и баз данных несколькими пользователями.

Понятие локальная вычислительная сеть - ЛВС (англ. LAN - Lokal Area Network) относится к географически ограниченным (территориально или производственно) аппаратно-программным реализациям, в которых не­сколько компьютерных систем связанны друг с другом с помощью соответствующих средств коммуникаций. Благодаря такому со­единению пользователь может взаимодействовать с другими рабочими станциями, подключенными к этой ЛВС.

В производственной практике ЛВС играют очень большую роль. По­средством ЛВС в систему объединяются персональные компьютеры, распо­ложенные на многих удален­ных рабочих местах, которые используют совместно оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объеди­няются в единую систему. Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети.

Разделение ресурсов.

Разделение ресурсов позволяет экономно использовать ресурсы, на­пример, управлять периферийными устройствами, такими как лазерные пе­чатающие устройства, со всех присоединенных рабочих станций.

Разделение данных .

Разделение данных предоставляет возможность доступа и управле­ния базами данных с периферийных рабочих мест, нуждающихся в инфор­мации.

Разделение программных средств.

Разделение программных средств, предоставляет возможность одно­временного использования централизованных, ранее установленных программных средств.

Разделение ресурсов процессора.

При разделении ресурсов процессора возможно использование вы­числительных мощностей для обработки данных другими системами, вхо­дящими в сеть. Предоставляе­мая возможность заключается в том, что на имеющиеся ресурсы не “набрасываются” мо­ментально, а только лишь че­рез специальный процессор, доступный каждой рабочей станции.

Многопользовательский режим .

Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, ранее установленных и управляемых, например, если пользователь системы работает с другим заданием, то те­кущая вы­полняемая работа отодвигается на задний план.

Одно ранговая сеть.

В одно - ранговой сети, все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера, и, как правило, каждый компьютер функционирует и как клиент и как сер­вер. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать дос­тупными для всех. Одно - ранговую сеть называют так же рабочей группой. Рабочая группа –это небольшой коллектив, поэтому в одно - ранговой сети не более 10 компьютеров.

Одно - ранговые сети относительно просты. Поскольку каждый компьютер является и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей. Одно ранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных и дорогих компьютеров.

В одно - ранговой сети требования к производительности и к уровню защиты для сетевого про­граммного обеспечения, как правило, ниже, чем в сетях с выделенным сервером. Выделенные серверы функционируют исключительно в качестве серверов, но не клиентов или рабочих стан­ций.

В такие операционные системы, как Microsoft Windows NT Workstation ,Microsoft Windows for Workgroups и Microsoft Windows 95, встроена поддержка одно ранговых сетей. По этому чтобы установить одно ранговую сеть дополнительного программного обеспечения не требуется.

Одно ранговая компьютерная сеть выглядит так:

    Компьютеры расположены на рабочих столах пользователей.

    Пользователи сами выступают в роли администраторов, и сами обеспечивают защиту ин­формации.

    Для объединения компьютеров в сеть применяется простая кабельная система.

Если эти условия выполняются, то, скорее всего выбор одно ранговой сети будет правильным.

Защита подразумевает установку пароля на разделяемый ресурс, например на каталог. Центра­лизованно управлять защитой в одно ранговой сети очень сложно, так как каждый пользователь устанавливает ее самостоятельно, да и общие ресурсы могут находиться на всех компьютерах, а не только на центральном сервере. Такая ситуация представляет серьезную угрозу для всей сети, кроме того некоторые пользователи могут вообще не устанавливать защиту.

Сети на основе сервера

Если к сети подключено более 10 пользователей, то одно ранговая сеть, где компьютеры высту­пают в роли клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей используют выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер. Они специально оптимизированы для быстрой об­работки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом.

С увеличением размеров сети и объемов сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы при­способиться возрастающим потребностям пользователей, серверы в больших сетях стали спе­циализированными. Например, в сети Windows NT существуют различные типы серверов:

Файл-серверы и принт - серверы управляют доступом соответственно к файлам и принтерам, на серверах приложений выполняются прикладные части клиент - серверных приложений, а так же находятся данные доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отлича­ются от файл - серверов и принт - серверов. В принт - серверах, файл или данные целиком копируются на запра­шиваемый компьютер. А в сервере приложений на запрашиваемый компьютер посылаются только результаты запроса. Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на ваш компьютер с сервера загружаются только результаты запроса.

В расширенной сети использование серверов различных типов становится наиболее актуальным. Необходимо поэтому учитывать всевозможные нюансы, которые могут проявиться при разрастании сети, с тем чтобы изменение роли определенного сервера в дальнейшем не от­разилось на работе всей сети.

Основным аргументом при работе в сети на основе выделенного сервера является, как правило, защита данных. В таких сетях, например как Windows NT Server, проблемами безопас­ности может заниматься один администратор.

Поскольку жизненно важная информация расположена централизованно, то есть, сосредо­точена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копи­рование. Благодаря избыточным системам данные на любом сервере могут дублироваться в ре­альном времени,поэтому в случае повреждения основной области хранения данных информа­ция не будет потеряна –легко воспользоваться резервной копией. Сети на основе сервера могут поддерживать тысячи пользователей. Сетью такого размера, будь она одно - ранговой, невоз­можно было бы управлять. Так как компьютер пользователя не выполняет функции сервера, требования к его характеристикам зависят от самого пользователя.

Все ЛВС работают в одном стандарте, принятом для компьютерных сетей - в стандарте Open Systems Interconnection (OSI).

Базовая модель OSI (Open System Interconnection)

Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообще­ний.

Показанные выше стадии необходимы, когда сообщение передается от отправителя к получателю.

Для того чтобы привести в движение процесс передачи данных, использовали машины с одинаковым кодированием данных и связанные одна с другой. Для единого представления данных, в линиях связи по которым передается информация, сформи­рована Международная организация по стандартизации (англ. ISO - International Standards Organization).

ISO предназначена для разработки модели международного комму­никационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного по­яснения расчленим ее на семь уровней.

Международных организация по стандартизации (ISO) разработала базовую модель взаимодействия открытых систем (англ. Open Systems In­terconnection (OSI)). Эта модель явля­ется международным стандартом для передачи данных.

Модель содержит семь отдельных уровней:

Уровень 1 : физический - битовые протоколы передачи информации;

Уровень 2 : канальный - формирование кадров, управление доступом к среде;

Уровень 3 : сетевой - маршрутизация, управление потоками данных;

Уровень 4 : транспортный - обеспечение взаимодействия удаленных процес­сов;

Уровень 5 : сеансовый - поддержка диалога между удаленными про­цессами;

Уровень 6 : представлении данных - интерпретация передаваемых данных;

Уровень 7 : прикладной - пользовательское управление данными.


Основная идея этой модели заключается в том, что каждому уровню отводится кон­кретная ролью, в том числе и транспортной среде. Благодаря этому общая задача передачи дан­ных расчленяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного уровня, например вышерасположенного и нижерасположенного называют про­токолом.

Так как пользователи нуждаются в эффективном управлении, система вычис­лительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.

С учетом вышеизложенного можно вывести следующую уровневую модель с админи­стративными функциями, выполняющимися в пользова­тельском прикладном уровне.

Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от прием­ника данных (от уровня 1 к уровню 7). Пользовательские данные переда­ются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень.

На приемной стороне поступающие данные анализируются и, по мере надоб­ности, передаются далее в вышерасположенный уровень, пока ин­формация не будет передана в пользо­вательский прикладной уровень.

Уровень 1. Физический.

На физическом уровне определяются электрические, механические, функ­циональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней экс­плуатационная готовность явля­ются основной функцией 1-го уровня. Стандарты физического уровня вклю­чают рекомендации V.24 МККТТ (CCITT), EIA RS232 и Х.21. Стандарт ISDN (Integrated Services Digital Network) в будущем сыграет определяющую роль для функций передачи данных. В качестве среды передачи данных исполь­зуют трехжильный медный провод (экранированная витая пара), коакси­аль­ный кабель, оптоволоконный проводник и радиорелейную линию.

Уровень 2. Канальный.

Канальный уровень формирует из данных, передаваемых 1-м уров­нем, так на­зываемые "кадры" последовательности кадров. На этом уровне осуществляются управление доступом к передающей среде, используемой несколькими ЭВМ, синхро­низация, обнаружение и исправле­ние ошибок.

Уровень 3. Сетевой.

Сетевой уровень устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрути­зации, которые требуют наличия сете­вого адреса в пакете. Сетевой уровень должен также обеспечи­вать обработку ошибок, мультип­лексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов).

Уровень 4. Транспортный.

Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими про­цессами. Качество транспорти­ровки, безошибочность передачи, независи­мость вычислительных сетей, сервис транспорти­ровки из конца в конец, ми­нимизация затрат и адресация связи га­рантируют непрерывную и безоши­бочную передачу данных.

Уровень 5. Сеансовый.

Сеансовый уровень координирует прием, передачу и выдачу одного сеанса связи. Для координации необходимы:контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу, имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управле­ния паролями, подсчета платы за пользование ресурсами сети, управления диалогом, синхрони­зации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях.

Уровень 6. Представления данных.

Уровень представления данных предназначен для интерпретации данных; а также под­готовки данных для пользовательского прикладного уровня. На этом уровне происходит преоб­разование данных из кадров, ис­пользуемых для передачи данных в экранный формат или фор­мат для пе­чатающих устройств оконечной системы.

Уровень 7. Прикладной.

В прикладном уровне необходимо предоставить в распоряжение пользовате­лей уже пе­реработанную информацию. С этим может спра­виться системное и пользовательское приклад­ное программное обеспече­ние.

Сетевые устройства и средства коммуника­ций.

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель, оптоволоконные линии. При выборе типа кабеля учитывают сле­дующие показатели:

стоимость монтажа и обслуживания,

скорость передачи информации,

Ограничения на величину расстояния передачи информации без дополни­тельных усилителей-повторителей (репитеров),

безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показате­лей, например, наивысшая скорость передачи данных ограничена максимально воз­можным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращивае­мость и простота расширения кабельной системы влияют на ее стоимость.


Витая пара .

Наиболее дешевым кабельным соединением является витое двух­жильное про­водное соединение часто называемое "витой парой" (twisted pair). Она позволяет пе­редавать информацию со скоростью до 10 Мбит/с., легко наращивается, однако не защищена от помех. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимущест­вами являются низкая цена и простота уста­новки. Для повышения помехозащищенности информации часто используют экраниро­ванную ви­тую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и при­ближает ее цену к цене коаксиального кабеля.

Еthernet-кабель.

Ethernet-кабель также является коаксиальным кабелем с волновым сопротив­лением 50 Ом. Его называют еще толстый Ethernet (thick), жел­тый кабель (yellow ca­ble) или 10BaseT5 . Он использует 15-контактное стандартное включе­ние. Вследствие помехоза­щищенности он является дорогой альтернативой обычным коаксиальным кабелям. Мак­симально доступное расстояние без повторителя не превышает 500 м, а общее рас­стояние сети Ethernet - около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, ис­пользует в конце лишь один нагрузочный резистор.

Сheapernеt-кабель.

Более дешевым, чем Ethernet-кабель является соединение Cheaper­net-кабель или, как его часто называют, тонкий (thin) Ethernet или 10BaseT2 . Это также 50-омный коаксиальный кабель со скоростью передачи информации в десять миллионов бит в секунду.

При соединении сегментов Сhеарегnеt-кабеля также требуются по­вторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и мини­мальные затраты при наращивании. Соединения сетевых плат производится с помо­щью широко используемых малогабаритных байо­нетных разъемов (СР-50). Дополни­тельное экранирование не требуется. Ка­бель присоединяется к ПК с помощью тройни­ковых соединителей (T-connectors).

Расстояние между двумя рабочими станциями без повторителей мо­жет состав­лять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet располо­жен на сетевой плате и как для гальваниче­ской развязки между адаптерами, так и для усиления внешнего сигнала

Оптоволоконные линии.

Наиболее дорогими являются оптопроводники, называемые также стекловоло­конным кабелем. Скорость распространения информации по ним достигает нескольких миллиардов бит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются они там, где возникают электромагнитные поля помех или требу­ется передача информа­ции на очень большие расстояния без использования повтори­телей. Они обладают противоподспушивающими свойствами, так как техника ответв­ле­ний в оптоволоконных кабелях очень сложна. Оптопроводники объединя­ются в JIBC с помощью звездообразного соединения.

Сетевая карта

Платы сетевого адаптера выступают в качестве физического интерфейса, или соединения между компьютером и сетевым кабелем. Платы вставляются в специальные гнезда (слоты расширения) всех компьютеров и серверов. Чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему разъему, или порту, платы (после ее установки) подключают сетевой кабель. Назначение платы сетевого адаптера:

    подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю

    передача данных другому компьютеру

    управление потоком данных между компьютером и кабельной системой

    плата сетевого адаптера принимает данные из сетевого кабеля и переводит в форму, понятную центральному процессору компьютера.




Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ (постоянном запоминающем устройстве). Эти программы реализуют функции подуровней управления логической связью и управление доступом к среде канального уровня модели OSI.

Разветвитель(HAB)

Разветвитель служит центральным узлом в сетях с топологией «звезда».

Репитер

При передаче по сетевому кабелю электрический сигнал постепенно ослабевает (затухает). И, искажается до такой степени, что компьютер перестает его воспринимать. Для предотвращения искажения сигнала применяется репитер, который усиливает (восстанавливает) ослабленный сигнал и передает его дальше по кабелю. Применяются репитеры в сетях с топологией «шина».


Существует ряд принципов построения ЛВС на основе выше рассмот­ренных компонентов. Такие принципы еще называют - топологиями.

Топологии вычислительной сети.

Топология типа звезда.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с пе­риферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими мес­тами проходит через центральный узел вычислительной сети.


Топология в виде звезды


Пропускная способность сети определяется вычислительной мощно­стью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других тополо­гиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким ме­стом вычислительной сети. В случае выхода из строя центрального узла на­рушается работа всей сети.

Центральный узел управления - файловый сервер мотает реализо­вать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с дру­гой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3

Кольцевая топология

с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффектив­ной, так как большинство сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличи­вается пропорционально количеству рабочих станций, входящих в вычисли­тельную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограниче­ния на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут не­посредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.


Шинная топология


Рабочие станции в любое время, без прерывания работы всей вычис­лительной сети, могут быть подключены к ней или отключены. Функциони­рование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выклю­чение и особенно подключение к такой сети требуют разрыва шины, что вы­зывает нарушение циркулирующего потока информации и зависание сис­темы.

Древовидная структура ЛВС.

Наряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вы­шеназванных топологий вычислительных сетей. Основание дерева вычис­лительной сети располагается в точке (корень), в которой собираются ком­муникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде.

Типы построения сетей по методам передачи информации.

Локальная сеть Token Ring

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управле­ния доступом станций к передающей среде используется метод - маркерное кольцо (Тоken Ring). Основные положения этого метода:

    устройства подключаются к сети по топологии кольцо;

    все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

    в любой момент времени только одна станция в сети обладает таким правом.

Типы пакетов.

В IВМ Тоkеn Ring используются три основных типа пакетов:

    пакет управление/данные (Data/Соmmand Frame);

    маркер (Token);

    пакет сброса (Аbort).

Пакет Управление/Данные . С помощью такого пакета выполняется передача данных или команд управления работой сети.

Маркер. Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

Пакет Сброса. Посылка такого пакета называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть Ethernet

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet и нститутом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

Основные принципы работы.

На логическом уровне в Ethernet применяется топология шина:

    все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени (если передающая среда свободна);

    данные, передаваемые одной станцией, доступны всем станциям сети.

Правила монтажа кабельной части ЛВС.

10 BaseT

В 1990 году институт IEEE выпустил спецификацию 802.3 для построения сети Ethernet на основе витой пары. 10 BaseT (10 – скорость передачи 10 Мбит с., Base – узкополосная, Т – витая пара) – сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно разветвитель сети 10BaseT выступают как многопортовый репитер. Каждый компьютер подключается к другому концу кабеля, соединенного с разветвителем, и использует две пары проводов: одну для приема, другую для передачи.


Максимальная длина сегмента 10BaseT – 100 м. Минимальная длина кабеля – 2,5 м. ЛВС 10BaseT может обслуживать до 1024 компьютеров.

Для построения сети 10BaseT применяют:

    соединители RJ – 45 на концах кабеля,

Расстояние от рабочей станции до разветвителя не больше 100 м.

10Base2

В соответствии со спецификацией IEEE 802.3 эта топология называется 10Base2 (10 – скорость передачи 10 Мбит / с, Base – узкополосная передача, 2 – передача на расстояние, примерно в два раза превышающее 100 м (фактическое расстояние 185 м).

Сеть такого типа ориентирована на тонкий коаксиальный кабель, или тонкий Ethernet, с максимальной длиной сегмента 185 м. Минимальная длина кабеля 0,5 м. Кроме того существует ограничение на максимальное количество компьютеров, которое может быть подключено на 185 – метровом сегменте кабеля, - 30 штук.

Компоненты кабеля «тонкий Ethernet”:

    BNC баррел – коннекторы (соединители);

    BNC Т – коннекторы;

    BNC – терминаторы;

Сети на тонком Ethrnet обычно имеют топологию «шина».Стандарты IEEE для тонкого Ethernet не предусматривают использование кабеля трансивера между Т – коннектором и момпьютером. Вместо этого Т – коннектор располагают непосредственно на плате сетевого адаптера.

BNC барелл – коннектор, соединяя сегменты кабеля, позволяет увеличить его общую длину. Однако их использование необходимо свести к минимуму, поскольку они ухудшают качество сигнала.

Сеть на тонком Ethernet – экономичный способ реализации сетей для небольших отделений для рабочих групп. Используемый в такого типа сетях кабель относительно не дорогой, прост в установке, легко конфигурируется. Сеть на тонком Ethernet может поддерживать до 30 узлов (компьютеров и принтеров) на один сегмент.

Сеть на тонком Ethernet может состоять максимум из пяти сегментов кабеля, соединенных четырьмя репитерами, но только к трем сегментам при этом могут быть подключены рабочие станции. Таким образом два сегмента остаются зарезервированными для репитеров, их называют межрепитерными связями. Такая конфигурация называется правило 5 – 4 – 3.

10Base5.

В соответствии со спецификацией IEEE эта топология называется 10Base5 (10 – скорость передачи 10 Мбит / с, Base – узкополосная передача, 5 – сегменты по 500 метров (5 раз по 100 метров)). Есть и другое ее название – стандартный Ethrnet.

Сети на толстом коаксиальном кабеле (толстый Ethrnet) обычно используют топологию “шина”. Толстый Ethrnet может поддерживать до 100 узлов (рабочих станций, репитеров и т. д.) на магистральный сегмент. Магистраль, или магистральный сегмент, - главный кабель, к которому присоединяются трансиверы с подключенными к ним рабочими станциями и репитерами. Сегмент толстого Ethernet может иметь длину 500 метров при общей длине сети 2500 метров. Расстояния и допуски для толстого Ethernet больше, чем для тонкого Ethernet.

Компоненты кабельной системы:

    Трансиверы. Трансиверы, обеспечивая связь между компьютером и главным кабелем ЛВС, совмещены с «зубом вампира», соединенным с кабелем.

    Кабели трансиверов. Кабель трансивера (ответвляющий кабель) соединяет кабель с платой сетевого адаптера.

    DIX – коннектор, или AUI – коннектор. Этот коннектор расположен на кабеле трансивера.

Тема 3.3: Прикладные программы для создания Веб-сайтов

Тема 3.4: Применение Интернет в экономике и защита информации

Локальные компьютерные сети

3.1. Сетевые технологии. Локальные вычислительные сети

3.1.1. Основы локальных вычислительных сетей

В настоящее время на предприятиях и в учреждениях нашли широкое применение ЛВС, основное назначение которых обеспечить доступ к общесетевым (информационным, программным и аппаратным) ресурсам. Кроме того, ЛВС позволяют сотрудникам предприятий оперативно обмениваться друг с другом информацией.

ЛВС применяются для решения таких проблемы как:

  1. Распределение данных. Данные в локальной сети хранятся на центральном ПК и могут быть доступны на рабочих станциях. В связи с этим не надо на каждом рабочем месте иметь накопители для хранения одной и той же информации.
  2. Распределение ресурсов. Периферийные устройства могут быть доступны для всех пользователей ЛВС. Такими устройствами могут быть, например, сканер или лазерный принтер.
  3. Распределение программ. Все пользователи ЛВС могут совместно иметь доступ к программам, которые были централизованно установлены на одном из компьютеров.

Локальная вычислительная сеть (ЛВС) представляет собой соединение нескольких ПК с помощью соответствующего аппаратного и программного обеспечения. В локальных сетях скорость передачи данных высока, протоколы в сравнении с протоколами глобальных сетей относительно просты, отсутствует избыточность каналов связи.

Локальные сети в зависимости от административных взаимоотношений между ЭВМ разделяются на:

  • иерархические или централизованные;
  • одноранговые.

Локальные сети в зависимости от физических и логических взаимоотношений между ЭВМ отличаются архитектурой (Ethernet, Token Ring, FDDI и т.д.) и топологией (шинная, кольцевая, звезда и т.д.).

В локальных сетях реализуется технология «клиент – сервер». Сервер – это объект (компьютер или программа) который предоставляет сервисные услуги, а клиент – это объект (компьютер или программа), который запрашивает сервер предоставить эти услуги.

В одноранговых сетях сервер может быть одновременно и клиентом, т.е. использовать ресурсы другого ПК или того же ПК, которому он сам предоставляет ресурсы.

Сервер в иерархических сетях может быть клиентом только сервера более высокого уровня иерархии. Иерархические сети называются сетями с выделенным сервером. Компьютеры, составляющие локальную сеть, принято называть узлами. Каждый узел может представлять собой сервер или рабочую станцию.

Одноранговая (одноуровневая) локальная сеть

Одноранговая сеть – это сеть равноправных компьютеров (рабочих станций), каждый из которых имеет уникальное имя и пароль для входа в компьютер. Одноранговая сеть не имеют центрального ПК (Рис. 1.).


Рис. 1.

В одноранговой сети каждая рабочая станция может разделить все ее ресурсов с другими рабочими станциями сети. Рабочая станция может разделить часть ресурсов, а может вообще не предоставлять никаких ресурсов другим станциям. Например, некоторые аппаратные средства (сканеры, принтеры винчестеры, приводы CD-ROM, и др.), подключенные к отдельным ПК, используются совместно на всех рабочих местах.

Каждый пользователь одноранговой сети является администратором на своем ПК. Одноранговые сети применяются для объединения в сеть небольшого числа компьютеров – не более 10-15. Одноранговые сети могут быть организованы, например, с помощью операционной системы Windows 95, 98, 2000, Windows XP и другими ОС.

Для доступа к ресурсам рабочих станций в одноранговой сети необходимо войти в папку сетевое окружение, дважды щелкнув на пиктограмме Сетевое окружение и выбрать команду Отобразить компьютеры рабочей группы. После этого на экране будут отображены компьютеры, которые входят в одноранговую сеть, щелкая мышью на пиктограммах компьютеров можно открыть логические диски и папки с общесетевыми ресурсами.

Иерархические (многоуровневые) локальные сети

Иерархические локальные сети – локальные сети, в которых имеется один или несколько специальных компьютеров – серверов, на которых хранится информация, совместно используемая различными пользователями. Иерархические локальные сети – это, как правило, ЛВС с выделенным сервером (Рис. 2.), но существуют сети и с невыделенным сервером. В сетях с невыделенным сервером функции рабочей станции и сервера совмещены. Рабочие станции, входящие в иерархическую сеть, могут одновременно организовать между собой одноранговую локальную сеть.



Рис. 2.

Выделенные серверы обычно представляют собой высокопроизводительные компьютеры, с винчестерами большой емкости. На сервере устанавливается сетевая операционная система, к нему подключаются все внешние устройства (принтеры, сканеры, жесткие диски, модемы и т.д.). Предоставление ресурсов сервера в иерархической сети производится на уровне пользователей.

Каждый пользователь должен быть зарегистрирован администратором сети под уникальным именем (логином) и пользователи должны назначить себе пароль, под которым будут входить в ПК и сеть. Кроме того, при регистрации пользователей администратор сети выделяет им необходимые ресурсы на сервере и права доступа к ним.

Компьютеры, с которых осуществляется доступ к информации на сервере, называются рабочими станциями, или клиентами. На них устанавливается автономная операционная система и клиентская часть сетевой операционной системы. В локальные операционные системы Windows 95, 98, 2000, Windows XP включена клиентская часть таких сетевых операционных систем как: Windows NT Server, Windows 2003 Server.

В зависимости от способов использования сервера в иерархических ЛВС различают серверы следующих типов.

Файловый сервер . В этом случае на сервере находятся совместно обрабатываемые файлы и совместно используемые программы.

Сервер баз данных . На сервере размещается сетевая база данных. База данных на сервере может пополняться с различных рабочих станций и выдавать информацию по запросам с рабочих станций.

Сервер доступа – выделенный компьютер в локальной сети для выполнения удаленной обработки заданий. Сервер выполняет задание, полученное с удаленной рабочей станции, и результаты направляет на удаленную рабочую станцию. Другими словами сервер предназначен для удаленного доступа (например, с мобильного ПК) к ресурсам локальной сети.

Сервер - печати . К компьютеру небольшой мощности подключается достаточно производительный принтер, на котором может быть распечатана информация сразу с нескольких рабочих станций. Программное обеспечение организует очередь заданий на печать.

Почтовый сервер . На сервере хранится информация, отправляемая и получаемая как по локальной сети, так и извне по модему. Пользователь может просмотреть поступившую на его имя информацию или отправить через почтовый сервер свою информацию.

Одноранговые и иерархические локальные сети имеет свои преимущества и недостатки. Выбор типа локальной сети зависит от требований предъявляемых к ее стоимости, надежности, скорость обработки данных, секретности информации и т.д.

ВВЕДЕНИЕ

В современных организациях, как то учебные заведения, бизнес офисы, магазины или административные здания для обеспечения более быстрой, удобной совместной работы принято использовать локальные вычислительные сети (ЛВС). Все вышесказанное определяет актуальность темы дипломной работы "Развертывание локальной вычислительной сети".

Объект: Проектирование и развертывание локальной вычислительной сети.

Предмет: Проектирование и развертывание школьной сети.

Цель дипломной работы: изучить и систематизировать теоретический материал, необходимый для построения ЛВС; организовать и настроить работу ЛВС в школе № 15 г. Краснотурьинск.

Для решения поставленной цели необходимо решить следующие задачи:

  • - Изучить теоретические основы ЛВС.
  • - Изучить программно-аппаратные средства.
  • - Изучить механизмы построения, работы ЛВС.
  • - Исследовать администрирование ЛВС.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПОСТРОЕНИЯ ЛОКАЛЬНЫХ СЕТЕЙ

1.1 Оборудование, необходимое для построения различных компьютерных сетей

Чтобы пользователь мог подключить свой компьютер к локальной сети, в его компьютере должно быть установлено специальное устройство - сетевой контроллер.

Сетевой адаптер выполняет множество заданий, самые главные из которых - кодирование/ декодирование информации и получение доступа к информационной среде при использовании уникального идентификатора (МАС-адрес).

Сетевые карты бывают в виде плат расширения которые вставляют в соответствующий слот.

Также сетевые карты могут быть встроенными в материнские платы что сегодня встречается повсеместно.

Основными показателями сетевой карты можно считать поддерживаемый стандарт и тип подключения к компьютеру.

Поддерживаемый стандарт. Существуют сети с разными сетевыми стандартами. Это означает, что сетевая карта должна обладать определенным типом коннектора (или коннекторов) и уметь работать с определенной скоростью обмена информацией. Наиболее важен в данном случае тип коннектора.

Тип коннектора сетевой карты зависит от выбора сетевой топологии и кабеля, по которому передаются данные. Существует несколько типов коннекторов: RJ-45 (для витой пары), BNC (для коаксиального кабеля) и для оптоволокна.

Рисунок 1 - Сетевой адаптер

Рисунок 2 - RJ-45 (витая пара)

Рисунок 3 - BNC (коаксиальный кабель)

Рисунок 4 - Оптоволоконный кабель

Они существенно различаются по конструкции, поэтому использовать коннектор не по назначению невозможно. Хотя существуют комбинированные сетевые адаптеры, которые содержат, например, RJ-45- и BNC-коннекторы. Но поскольку сеть на коаксиальном кабеле встречается все реже, то же самое происходит и с одноименными адаптерами.

Тип подключения к компьютеру. В персональных компьютерах сетевая карта обычно устанавливается в PCI-слот или в USB-порт. Мало того, практически любая современная материнская плата уже имеет интегрированный сетевой контроллер.

Сетевые адаптеры для беспроводной сети по внешнему виду практически не отличаются от проводных вариантов, за исключением наличия гнезда для антенны - внутренней или внешней. Сетевые платы, которые подключают через USB-порт, встречаются достаточно часто, особенно это касается беспроводных вариантов.

Рисунок 5 - Сетевой адаптер для WIFI

Когда сеть содержит более двух компьютеров, для их объединения необходимо использовать специальные устройства, одним из которых является концентратор. Свое применение концентратор находит, как правило, в сетях на основе витой пары.

Концентратор (он называется также хаб, повторитель, репитер) - сетевое устройство, имеющее два и более разъемов (портов), которое, кроме коммутации подключенных к нему компьютеров, выполняет и другие полезные функции, например усиление сигнала.

Концентратор служит для расширения сети, а основное его предназначение - передача поступившей на вход информации всем подключенным к нему устройствам сети.

Все подключенные к концентратору устройства получают абсолютно одинаковую информацию, что одновременно является и его недостатком - наличие нескольких концентраторов в сети засоряет эфир лишними сообщениями, так как концентратор не видит реального адреса, по которому нужно отослать информацию, и вынужден отсылать ее всем. В любом случае концентратор выполняет свою задачу - соединяет компьютеры, находящиеся в одной рабочей группе. Кроме того, он анализирует ошибки, в частности возникающие коллизии. Если одна из сетевых карт приводит к возникновению частых проблем, то порт на концентраторе, к которому она подключена, может временно отключаться.

Концентратор реализует физический уровень модели ISO/OSI, на котором работают стандартные протоколы, поэтому использовать его можно в сети любого стандарта.

Существует два основных типа концентраторов:

  • - Концентраторы с фиксированным количеством портов самые простые. Выглядит такой концентратор как отдельный корпус, снабженный определенным количеством портов и работающий на выбранной скорости. Как правило, один из портов служит в качестве связующего звена между другим концентратором или коммутатором.
  • - Модульные концентраторы состоят из блоков, которые устанавливают в специальное шасси и объединяют кабелем. Возможна также установка концентраторов, не связанных между собой общей шиной, например, когда существуют разные локальные сети, связь между которыми не принципиальна.

Рисунок 6 - Концентратор

Мост (также называется свич, переключатель) представляет собой довольно простое устройство, основное предназначение которого - разделение двух сегментов сети с целью увеличения ее общей длины (соответственно, количества подключенных повторителей) и преодоление при этом ограничений сетевой топологии.

Как правило, мост имеет два или больше портов, к которым подключают сегменты сети. Анализируя адрес получателя пакета, он может фильтровать сообщения, предназначенные другому сегменту. Пакеты, предназначенные для «родного» сегмента, устройство попросту игнорирует, что также уменьшает трафик

Для построения сети используют три типа мостов:

  • - локальный - работает только с сегментами одного типа, то есть имеющими одинаковую скорость передачи данных;
  • - преобразующий - предназначен для того же, что и локальный мост, кроме того, работает с разнородными сегментами, например Token Ring и 100Base;
  • - удаленный - соединяет сегменты, расположенные на значительном расстоянии, при этом могут использоваться любые средства соединения, например модем.

Рисунок 7 - Сетевой мост

Коммутатор объединяет в себе возможности концентратора и моста, а также выполняет еще некоторые полезные функции.

Концентратор, получив от какой-либо сетевой карты пакет данных, не зная о том, кому он адресован, рассылает его по всем подключенным к нему сетевым устройствам. Несложно представить, какой создается трафик, если в сети существует не один, а несколько концентраторов.

Коммутатор - более интеллектуальное устройство, которое не только фильтрует поступающие пакеты, но, имея таблицу адресов всех сетевых устройств, точно определяет, какому из них предназначен пакет. Это позволяет ему передавать информацию сразу нескольким устройствам с максимальной скоростью. Коммутаторы работают на канальном уровне, что позволяет использовать их не только в разных типах сетей, но и объединять различные сети в одну.

Поэтому для организации большой сети коммутаторы более предпочтительны. Кроме того, в последнее время стоимость коммутаторов заметно упала, поэтому использование концентраторов явно не оправдано.

Рисунок 8 - Коммутатор

Главная задача маршрутизатора (также называется роутер) - разделение большой сети на подсети, он имеет большое количество полезных функций и, соответственно, обладает большими возможностями и «интеллектом». В нем сочетаются концентратор, мост и коммутатор. Кроме того, добавляется возможность маршрутизации пакетов. В связи с этим маршрутизатор работает на более высоком уровне - сетевом.

Таблица возможных маршрутов движения пакетов автоматически и постоянно обновляется, что дает маршрутизатору возможность выбирать самый короткий и самый надежный путь доставки сообщения.

Одна из ответственных задач маршрутизатора - связь разнородных сетевых сегментов локальной сети. С помощью маршрутизатора также можно организовывать виртуальные сети, каждая из которых будет иметь доступ к тем или иным ресурсам, в частности ресурсам Интернета.

Организация фильтрования широковещательных сообщений в маршрутизаторе выполнена на более высоком уровне, чем в коммутаторе. Все протоколы, использующие сеть, беспрепятственно «принимает» и обрабатывает процессор маршрутизатора. Даже если попался незнакомый протокол, то маршрутизатор быстро научится с ним работать.

Маршрутизатор может использоваться и в проводных, и в беспроводных сетях. Очень часто функции маршрутизации ложатся на беспроводные точки доступа.

Рисунок 9 - Маршрутизатор

Модем также является сетевым оборудованием, и его до сих пор часто используют для организации выхода в Интернет..

Модемы бывают двух типов: внешние и внутренние Внешний модем может подключаться к компьютеру, используя LPT, СОМ или USB-порт.

Внутренний модем представляет собой плату расширения, которую обычно вставляют в РСI-слот. Модемы могут работать с телефонной линией, с выделенной линией и радиоволнами.

В зависимости от типа устройства и среды передачи данных отличается и скорость передачи данных. Скорость обычного цифрово-аналогового модема, работающего с телефонной аналоговой линией, равна 33,6-56 Кбит/с. В последнее время все чаще встречаются цифровые модемы, использующие преимущества DSL-технологии, которые могут работать на скорости, превышающей 100 Мбит/с. Еще одно неоспоримое преимущество таких модемов - всегда свободная телефонная линия.

Для связи с другим модемом используются свои протоколы и алгоритмы. Большое внимание при этом уделяется качеству обмена информацией, так как качество линий при этом достаточно низкое. Модем может использоваться и в проводных, и в беспроводных сетях.

Рисунок 10 - Модем

Точка доступа - устройство, используемое для работы беспроводной сети в инфраструктурном режиме. Она играет роль концентратора и позволяет компьютерам обмениваться нужной информацией, используя для этого таблицы маршрутизации, средства безопасности, встроенный аппаратный DNS- и DHCP-серверы и многое другое.

От точки доступа зависят не только качество и устойчивость связи, но и стандарт беспроводной сети. Существует большое количество разнообразнейших моделей точек доступа с разными свойствами и аппаратными технологиями. Однако сегодня наиболее оптимальными можно считать устройства, работающие со стандартом IEEE 802.11g, так как он совместим со стандартами IEEE 802.11а и IEEE 802.11b и позволяет работать на скорости до 108 Мбит/с. Более перспективным и скоростным является стандарт IEEE 802.11n, устройства с поддержкой которого начинают появляться на рынке.

Рисунок 11 - Точка доступа

Основы локальных компьютерных сетей

Введение. На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E - Mail писем и прочего) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением. Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право не принимать это к разработке и не применять их на практике. Поэтому необходимо разработать принципиальное решение вопроса по организации ИВС (информационно-вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса отвечающего современным научно-техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений. Понятие ЛВС. Что такое локальная вычислительная сеть (ЛВС)? Под ЛВС понимают совместное подключение нескольких отдельных компьютерных рабочих мест (рабочих станций) к единому каналу передачи данных. Благодаря вычислительным сетям мы получили возможность одновременного использования программ и баз данных несколькими пользователями. Понятие локальная вычислительная сеть - ЛВС (англ. LAN - Lokal Area Network) относится к географически ограниченным (территориально или производственно) аппаратно-программным реализациям, в которых несколько компьютерных систем связанны друг с другом с помощью соответствующих средств коммуникаций. Благодаря такому соединению пользователь может взаимодействовать с другими рабочими станциями, подключенными к этой ЛВС. В производственной практике ЛВС играют очень большую роль. Посредством ЛВС в систему объединяются персональные компьютеры, расположенные на многих удаленных рабочих местах, которые используют совместно оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объединяются в единую систему. Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети. Разделение ресурсов. Разделение ресурсов позволяет экономно использовать ресурсы, например, управлять периферийными устройствами, такими как лазерные печатающие устройства, со всех присоединенных рабочих станций. Разделение данных. Разделение данных предоставляет возможность доступа и управления базами данных с периферийных рабочих мест, нуждающихся в информации. Разделение программных средств. Разделение программных средств, предоставляет возможность одновременного использования централизованных, ранее установленных программных средств. Разделение ресурсов процессора. При разделении ресурсов процессора возможно использование вычислительных мощностей для обработки данных другими системами, входящими в сеть. Предоставляемая возможность заключается в том, что на имеющиеся ресурсы не “набрасываются” моментально, а только лишь через специальный процессор, доступный каждой рабочей станции. Многопользовательский режим. Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, ранее установленных и управляемых, например, если пользователь системы работает с другим заданием, то текущая выполняемая работа отодвигается на задний план. Одно ранговая сеть. В одно - ранговой сети, все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера, и, как правило, каждый компьютер функционирует и как клиент и как сервер. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать доступными для всех. Одно - ранговую сеть называют так же рабочей группой. Рабочая группа это небольшой коллектив, поэтому в одно - ранговой сети не более 10 компьютеров. Одно - ранговые сети относительно просты. Поскольку каждый компьютер является и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей. Одно ранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных и дорогих компьютеров. В одно - ранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером. Выделенные серверы функционируют исключительно в качестве серверов, но не клиентов или рабочих станций В такие операционные системы, как Microsoft Windows NT Workstation ,Microsoft Windows for Workgroups и Microsoft Windows 95, встроена поддержка одно ранговых сетей. По этому чтобы установить одно ранговую сеть дополнительного программного обеспечения не требуется.Одно ранговая компьютерная сеть выглядит так:1. Компьютеры расположены на рабочих столах пользователей.2. Пользователи сами выступают в роли администраторов, и сами обеспечивают защиту информации.3. Для объединения компьютеров в сеть применяется простая кабельная система. Если эти условия выполняются, то, скорее всего выбор одно ранговой сети будет правильным. Защита подразумевает установку пароля на разделяемый ресурс, например на каталог. Централизованно управлять защитой в одно ранговой сети очень сложно, так как каждый пользователь устанавливает ее самостоятельно, да и общие ресурсы могут находиться на всех компьютерах, а не только на центральном сервере. Такая ситуация представляет серьезную угрозу для всей сети, кроме того некоторые пользователи могут вообще не устанавливать защиту. Сети на основе сервера. Если к сети подключено более 10 пользователей, то одно ранговая сеть, где компьютеры выступают в роли клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей используют выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер. Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом. С увеличением размеров сети и объемов сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных. Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться возрастающим потребностям пользователей, серверы в больших сетях стали специализированными. Например, в сети Windows NT существуют различные типы серверов: Файл-серверы и принт - серверы управляют доступом соответственно к файлам и принтерам, на серверах приложений выполняются прикладные части клиент - серверных приложений, а так же находятся данные доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отличаются от файл - серверов и принт - серверов. В принт - серверах, файл или данные целиком копируются на запрашиваемый компьютер. А в сервере приложений на запрашиваемый компьютер посылаются только результаты запроса. Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на ваш компьютер с сервера загружаются только результаты запроса. В расширенной сети использование серверов различных типов становится наиболее актуальным. Необходимо поэтому учитывать всевозможные нюансы, которые могут проявиться при разрастании сети, с тем чтобы изменение роли определенного сервера в дальнейшем не отразилось на работе всей сети. Основным аргументом при работе в сети на основе выделенного сервера является, как правило, защита данных. В таких сетях, например как Windows NT Server, проблемами безопасности может заниматься один администратор. Поскольку жизненно важная информация расположена централизованно, то есть, сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование. Благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени,поэтому в случае повреждения основной области хранения данных информация не будет потеряна легко воспользоваться резервной копией. Сети на основе сервера могут поддерживать тысячи пользователей. Сетью такого размера, будь она одно - ранговой, невозможно было бы управлять. Так как компьютер пользователя не выполняет функции сервера, требования к его характеристикам зависят от самого пользователя. Все ЛВС работают в одном стандарте, принятом для компьютерных сетей - в стандарте Open Systems Interconnection (OSI). Базовая модель OSI (Open System Interconnection) Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообщений. Показанные выше стадии необходимы, когда сообщение передается от отправителя к получателю. Для того чтобы привести в движение процесс передачи данных, использовали машины с одинаковым кодированием данных и связанные одна с другой. Для единого представления данных, в линиях связи по которым передается информация, сформирована Международная организация по стандартизации (англ. ISO - International Standards Organization). ISO предназначена для разработки модели международного коммуникационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного пояснения расчленим ее на семь уровней. Международных организация по стандартизации (ISO) разработала базовую модель взаимодействия открытых систем (англ.Open Systems Interconnection (OSI)). Эта модель является международным стандартом для передачи данных. Модель содержит семь отдельных уровней: Уровень 1: физический - битовые протоколы передачи информации; Уровень 2: канальный - формирование кадров, управление доступом к среде; Уровень 3: сетевой - маршрутизация, управление потоками данных; Уровень 4: транспортный - обеспечение взаимодействия удаленных процессов; Уровень 5: сеансовый - поддержка диалога между удаленными процессами; Уровень 6: представлении данных - интерпретация передаваемых данных; Уровень 7: прикладной - пользовательское управление данными. Основная идея этой модели заключается в том, что каждому уровню отводится конкретная ролью, в том числе и транспортной среде. Благодаря этому общая задача передачи данных расчленяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного уровня, например вышерасположенного и нижерасположенного называют протоколом. Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей. С учетом вышеизложенного можно вывести следующую уровневую модель с административными функциями, выполняющимися в пользовательском прикладном уровне. Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень. На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень. Уровень 1. Физический. На физическом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней эксплуатационная готовность являются основной функцией 1-го уровня. Стандарты физического уровня включают рекомендации V.24 МККТТ (CCITT), EIA RS232 и Х.21. Стандарт ISDN (Integrated Services Digital Network) в будущем сыграет определяющую роль для функций передачи данных. В качестве среды передачи данных используют трехжильный медный провод (экранированная витая пара), коаксиальный кабель, оптоволоконный проводник и радиорелейную линию. Уровень 2. Канальный. Канальный уровень формирует из данных, передаваемых 1-м уровнем, так называемые «кадры» последовательности кадров. На этом уровне осуществляются управление доступом к передающей среде, используемой несколькими ЭВМ, синхронизация, обнаружение и исправление ошибок. Уровень 3. Сетевой. Сетевой уровень устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрутизации, которые требуют наличия сетевого адреса в пакете. Сетевой уровень должен также обеспечивать обработку ошибок, мультиплексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов). Уровень 4. Транспортный. Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими процессами. Качество транспортировки, безошибочность передачи, независимость вычислительных сетей, сервис транспортировки из конца в конец, минимизация затрат и адресация связи гарантируют непрерывную и безошибочную передачу данных. Уровень 5. Сеансовый. Сеансовый уровень координирует прием, передачу и выдачу одного сеанса связи. Для координации необходимы:контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу, имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, подсчета платы за пользование ресурсами сети, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Уровень 6. Представления данных. Уровень представления данных предназначен для интерпретации данных; а также подготовки данных для пользовательского прикладного уровня. На этом уровне происходит преобразование данных из кадров, используемых для передачи данных в экранный формат или формат для печатающих устройств оконечной системы. Уровень 7. Прикладной. В прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское прикладное программное обеспечение. Сетевые устройства и средства коммуникаций. В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель, оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели: стоимость монтажа и обслуживания, скорость передачи информации, ограничения на величину расстояния передачи информации без дополнительных усилителей-повторителей (репитеров), безопасность передачи данных. Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

Витая пара.

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое «витой парой» (twisted pair). Она позволяет передавать информацию со скоростью до 10 Мбит/с., легко наращивается, однако не защищена от помех. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и простота установки. Для повышения помехозащищенности информации часто используют экранированную витую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.Еthernet-кабель. Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick), желтый кабель (yellow cable) или 10BaseT5 . Он использует 15-контактное стандартное включение. Вследствие помехозащищенности он является дорогой альтернативой обычным коаксиальным кабелям. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор. Сheapernеt-кабель.

Более дешевым, чем Ethernet-кабель является соединение Cheapernet-кабель или, как его часто называют, тонкий (thin) Ethernet или 10BaseT2 . Это также 50-омный коаксиальный кабель со скоростью передачи информации в десять миллионов бит в секунду. При соединении сегментов Сhеарегnеt-кабеля также требуются повторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР-50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T-connectors). Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате и как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала Оптоволоконные линии. Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. Скорость распространения информации по ним достигает нескольких миллиардов бит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются они там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподспушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в JIBC с помощью звездообразного соединения. Сетевая карта Платы сетевого адаптера выступают в качестве физического интерфейса, или соединения между компьютером и сетевым кабелем. Платы вставляются в специальные гнезда (слоты расширения) всех компьютеров и серверов. Чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему разъему, или порту, платы (после ее установки) подключают сетевой кабель. Назначение платы сетевого адаптера:- подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю- передача данных другому компьютеру- управление потоком данных между компьютером и кабельной системой- плата сетевого адаптера принимает данные из сетевого кабеля и переводит в форму, понятную центральному процессору компьютера. Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ (постоянном запоминающем устройстве). Эти программы реализуют функции подуровней управления логической связью и управление доступом к среде канального уровня модели OSI.

Разветвитель(HAB) Разветвитель служит центральным узлом в сетях с топологией «звезда». Репитер

При передаче по сетевому кабелю электрический сигнал постепенно ослабевает (затухает). И, искажается до такой степени, что компьютер перестает его воспринимать. Для предотвращения искажения сигнала применяется репитер, который усиливает (восстанавливает) ослабленный сигнал и передает его дальше по кабелю. Применяются репитеры в сетях с топологией «шина». Существует ряд принципов построения ЛВС на основе выше рассмотренных компонентов. Такие принципы еще называют - топологиями. Топологии вычислительной сети. Топология типа звезда. Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети. Топология в виде звезды Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях. Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления - файловый сервер мотает реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра. Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 Кольцевая топология с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо. Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять “в дорогу” по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями. Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети. Шинная топология Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции. В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы. Древовидная структура ЛВС. Наряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Типы построения сетей по методам передачи информации. Локальная сеть Token Ring

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод - маркерное кольцо (Тоken Ring). Основные положения этого метода:Ё устройства подключаются к сети по топологии кольцо;Ё все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);Ё в любой момент времени только одна станция в сети обладает таким правом. Типы пакетов.

В IВМ Тоkеn Ring используются три основных типа пакетов:Ё пакет управление/данные (Data/Соmmand Frame); Ё маркер (Token); Ё пакет сброса (Аbort). Пакет Управление/Данные.

С помощью такого пакета выполняется передача данных или команд управления работой сети. Маркер. Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных. Пакет Сброса. Посылка такого пакета называет прекращение любых передач. В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть Ethernet

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet и нститутом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.Основные принципы работы.На логическом уровне в Ethernet применяется топология шина:Ё все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени (если передающая среда свободна);Ё данные, передаваемые одной станцией, доступны всем станциям сети. Правила монтажа кабельной части ЛВС. 10 BaseT В 1990 году институт IEEE выпустил спецификацию 802.3 для построения сети Ethernet на основе витой пары. 10 BaseT (10 скорость передачи 10 Мбит с., Base узкополосная, Т витая пара) сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно разветвитель сети 10BaseT выступают как многопортовый репитер. Каждый компьютер подключается к другому концу кабеля, соединенного с разветвителем, и использует две пары проводов: одну для приема, другую для передачи. Максимальная длина сегмента 10BaseT 100 м. Минимальная длина кабеля 2,5 м. ЛВС 10BaseT может обслуживать до 1024 компьютеров.Для построения сети 10BaseT применяют: · кабель категории 3, 4 лил 5 UTP · соединители RJ 45 на концах кабеля, Расстояние от рабочей станции до разветвителя не больше 100 м. 10Base2 В соответствии со спецификацией IEEE 802.3 эта топология называется 10Base2 (10 скорость передачи 10 Мбит / с, Base узкополосная передача, 2 передача на расстояние, примерно в два раза превышающее 100 м (фактическое расстояние 185 м). Сеть такого типа ориентирована на тонкий коаксиальный кабель, или тонкий Ethernet, с максимальной длиной сегмента 185 м. Минимальная длина кабеля 0,5 м. Кроме того существует ограничение на максимальное количество компьютеров, которое может быть подключено на 185 метровом сегменте кабеля, - 30 штук. Компоненты кабеля «тонкий Ethernet”:- BNC баррел коннекторы (соединители);- BNC Т коннекторы;- BNC терминаторы;Сети на тонком Ethrnet обычно имеют топологию «шина».Стандарты IEEE для тонкого Ethernet не предусматривают использование кабеля трансивера между Т коннектором и момпьютером. Вместо этого Т коннектор располагают непосредственно на плате сетевого адаптера.BNC барелл коннектор, соединяя сегменты кабеля, позволяет увеличить его общую длину. Однако их использование необходимо свести к минимуму, поскольку они ухудшают качество сигнала.


МИНЕСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА
РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГОУ ВПО «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ
АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Д. ГЛИНКИ»

КАФЕДРА ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ
И МОДЕЛИРОВАНИЯ АГРОЭКОНОМИЧЕСКИХ СИСТЕМ

Курсовая работа

на тему «Локальные компьютерные сети»

выполнил: студент Э-2-1
Беспахотных Л.А.

Проверил: к.ф.-м.н., доцент
Кульнева. Н.А..

Воронеж
2007

Введение 4

Теоретические основы организации локальных сетей 6

1.1 Общие сведения о сетях 6

1.2 Топология сетей 11

1.3 Основные протоколы обмена в компьютерных сетях 14

Обзор программных средств 17

1.5 Установка и настройка протоколов сети 20

Выводы и предложения 24

Список использованной литературы 27

Приложение 28

Введение

Вхождение России в мировое информационное пространство влечет за собой широчайшее использование новейших информационных технологий, и в первую очередь, компьютерных сетей. При этом резко возрастают и качественно видоизменяются возможности пользователя как в деле оказания услуг своим клиентам, так и при решении собственных организационно-экономических задач.

Уместно отметить, что современные компьютерные сети являются системой, возможности и характеристики которой в целом существенно превышают соответствующие показатели простой суммы составляющих элементов сети персональных компьютеров при отсутствии взаимодействия между ними.

Достоинства компьютерных сетей обусловили их широкое распространение в информационных системах кредитно-финансовой сферы, органов государственного управления и местного самоуправления, предприятий и организаций. Поэтому целью данной курсовой работы является знакомство с основами построения и функционирования компьютерных сетей, для достижения поставленной цели необходимо решить ряд задач:

    Знакомство с компьютерными сетями, выделение их особенностей и отличий;

    Характеристика основных способов построения сетей (топология сетей);

    Знакомство с методами защиты от несанкционированного доступа к ресурсам сети;

    Краткая характеристика основных протоколов сети, которые обеспечивают согласованное взаимодействие пользователей в сети;

    Подведение итогов работы и внесение предложений по данной теме.

При решении поставленных задач основным методом является анализ литературы по данной теме.

Теоретические основы организации локальных сетей

1.1Общие сведения о сетях

Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы; реализовывать сложную математическую и логическую обработку данных. Управление крупными предприятиями, управление экономикой на уровне страны требуют участия в этом процессе достаточно крупных коллективов. Такие коллективы могут располагаться в разных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участвующих в процессе выработки управленческих решений.

Принцип централизованной обработки данных не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя централизованной ЭВМ приводил к роковым последствиям для системы в целом, так как приходилось дублировать функции центральной ЭВМ, значительно увеличивая затраты на создание и эксплуатацию систем обработки данных.

Появление малых ЭВМ, микроЭВМ и персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных, т.е. обработке, выполняемой на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

    многомашинные вычислительные комплексы (МВК) – группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно информационно-вычислительный процесс;

    компьютерные (вычислительные) сети – совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Компьютерные сети являются высшей формой многомашинных ассоциаций. Выделяют основные отличия компьютерной сети от многомашинного вычислительного комплекса.

Первое отличие – размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до тысяч километров.

Второе отличие – разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции разделены между различными ЭВМ.

Третье отличие – необходимость решения в сети задачи маршрутизации сообщений. Сообщение от одной ЭВМ к другой может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

    глобальные сети (WAN – Wide Area Network);

    региональные сети (MAN – Metropolitan Area Network);

    локальные сети (LAN – Local Area Network).

Локальная вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов. Обычно такая сеть привязана к конкретному месту. Протяженность такой сети можно ограничить пределами 2 – 2,5 км.

Основной назначение любой компьютерной сети – предоставление информационных и вычислительных ресурсов подключенным к ней пользователям.

С этой точки зрения локальную вычислительную сеть можно рассматривать как совокупность серверов и рабочих станций.

Сервер – компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами. Серверы могут осуществлять хранение данных, управление базами данных, удаленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер – источник ресурсов сети.

Рабочая станция – персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам. Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MS DOS, Windows и т.д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач.

Компьютерные сети, как было сказано выше, реализуют распределенную обработку данных. Обработка данных в этом случае распределена между двумя объектами: клиентом и сервером.

Клиент – задача, рабочая станция или пользователь компьютерной сети. В процессе обработки данных клиент может сформировать запрос на сервер для выполнения сложных процедур, чтения файлов, поиск информации в базе данных и т.д.

Сервер, определенный ранее, выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту.

Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя. Для подобных систем приняты термины – системы или архитектура клиент – сервер.

Архитектура клиент – сервер может использоваться как в одноранговых сетях, так и в сети с выделенным сервером.

Одноранговая сеть, в которой нет единого центра управления взаимодействием рабочих станций и нет единого центра для хранения данных. Сетевая операционная система распределена по рабочим станциям. Каждая станция сети может выполнять функции как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть. Пользователю сети доступны все устройства, подключенные к другим станциям.

Достоинства одноранговых сетей:

    низкая стоимость;

    высокая надежность.

Недостатки одноранговых сетей:

    зависимость эффективности работы сети от количества станций;

    сложность управления сетью;

    сложность обеспечения защиты информации;

    трудности обновления и изменения программного обеспечения станций.

Наибольшей популярностью пользуются одноранговые сети на базе сетевых операционных систем LANtastic, NetWare Lite.

В сети с выделенным сервером один из компьютеров выполняет функции хранения данных, предназначенных для использования всеми рабочими станциями, управления взаимодействием между рабочими станциями и ряд сервисных функций.

Такой компьютер обычно называют сервером сети. На нем устанавливается сетевая операционная система, к нему подключаются все разделяемые внешние устройства – жесткие диски, принтеры и модемы.

Взаимодействие между рабочими станциями в сети, как правило, осуществляются через сервер.

Достоинства сети с выделенным сервером:

    надежна система защиты информации;

    высокое быстродействие;

    отсутствие ограничений на число рабочих станций;

    простота управления по сравнению с одноранговыми сетями.

Недостатки сети:

    высокая стоимость из-за выделения одного компьютера на сервер;

    зависимость быстродействия и надежности от сервера;

    меньшая гибкость по сравнению с одноранговыми сетями.

Сети выделенным сервером являются наиболее распространенными у пользователей компьютерных сетей. Сетевые операционные системы для таких сетей – LANServer (IBM), Windows NT Server версий 3.51 и 4.0 и NetWare (Novell).

1.2Топология сетей

Топология сети определяется размещением узлов в сети и связей между ними. Из множества возможных построений выделяют следующие структуры.

Топология «звезда». Каждый компьютер через сетевой адаптер подключается отдельным кабелем объединяющему устройству. Все сообщения проходят через центральное устройство, которое обрабатывает поступающие сообщения и направляет их к нужным или всем компьютерам (рис.1).

Звездообразная структура чаще всего предполагает нахождение в центральном узле специализированной ЭВМ или концентратора.

Достоинства «звезды»:

    простота периферийного оборудования;

    каждый пользователь может работать независимо от остальных пользователей;

    высокий уровень защиты данных;

    легкое обнаружение неисправности в кабельной сети.

Недостатки «звезды»:

    выход из строя центрального устройства ведет к остановке всей сети;

    высокая стоимость центрального устройства;

    уменьшение производительности сети с увеличением числа компьютеров, подключенных к сети.

Топология «кольцо». Все компьютеры соединяются друг с другом в кольцо. Здесь пользователи сети равноправны. Информация по сети всегда передается в одном направлении (рис.2). Кольцевая сеть требует специальных повторителей, которые, приняв информацию, передают ее дальше как бы по эстафете; копируют в свою память (буфер), если информация предназначается им; изменяют некоторые служебные разряды, если это им разрешено. Информацию из кольца удаляет тот узел, который ее послал.

Достоинства «кольца»:

    отсутствие дорогого центрального устройства;

    легкий поиск неисправных узлов;

    отсутствует проблема маршрутизации;

    пропускная способность сети разделяется между всеми пользователями, поэтому все пользователи гарантированно последовательно получают доступ к сети;

    простота контроля ошибок.

Недостатки «кольца»:

    трудно включить в сеть новые компьютеры;

    каждый компьютер должен активно участвовать в пересылке информации, для этого нужны ресурсы, чтобы не было задержек в основной работе этих компьютеров;

    в случае выхода из строя хотя одного компьютера или отрезка кабеля вся сеть парализуется.

Топология «общая шина». Общая шина наиболее широко распространенна в локальных вычислительных сетях. Топология «общая шина» предполагает использование одного кабеля (шины), к которому непосредственно подключаются все компьютеры сети (рис.3). В данном случае кабель используется всеми станциями по очереди, т.е. шину может захватить в один момент только одна станция. Доступ к сети (к кабелю) осуществляется путем состязания между пользователями. В сети принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать данные. Возникающие конфликты разрешаются соответствующими протоколами. Информация передается на все станции сразу.

Достоинства «обшей шины»:

    простота построения сети;

    сеть легко расширяется;

    эффективно используется пропускная способность канала;

    надежность выше, т.к. выход из строя отдельных компьютеров не нарушит работоспособности сети в целом.

Недостатки «общей шины»:

    ограниченная длина шины;

    нет автоматического подтверждения приема сообщений;

    возможность возникновения столкновений (коллизий) на шине, когда пытаются передать информацию сразу несколько станций;

    низкая защита данных;

    выход из строя какого-либо отрезка кабеля ведет к нарушению работоспособности сети;

    трудность нахождения места обрыва.

Топология «дерево». Эта структура позволяет объединить несколько сетей, в том числе с различными топологиями или разбить одну большую сеть на ряд подсетей (рис. 4).

Разбиение на сегменты позволит выделить подсети, в пределах которых идет интенсивный обмен между станциями, разделить потоки данных и увеличить, таким образом, производительность сети в целом. Объединение отдельных ветвей (сетей) осуществляется с помощью устройств, называемых мостами или шлюзами. Шлюз применяется в случае соединения сетей, имеющих различную топологию и различные протоколы. Мосты объединяют сети с одинаковой топологией, но может преобразовывать протоколы. Разбиение сети на подсети осуществляется с помощью коммутаторов и маршрутизаторов.

1.3Основные протоколы обмена в компьютерных сетях

Для обеспечения согласованной работы в сетях передачи данных используются различные коммуникационные протоколы передачи данных – наборы правил, которых должны придерживаться передающая и принимающая стороны для согласованного обмена данными. Протоколы – это наборы правил и процедур, регулирующих порядок осуществления некоторой связи. Протоколы – это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом.

Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

Протоколы работают на разных уровнях модели взаимодействия открытых систем OSI/ISO (рис.5). Функции протоколов определяются уровнем, на котором он работает. Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов.

Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функций и возможностей стека.

Передача данных по сети, с технической точки зрения, должна состоять из последовательных шагов, каждому из которых соответствуют свои процедуры или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, все эти действия должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе действия выполняются в направлении сверху вниз, а на компьютере-получателе снизу вверх.

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия: Разбивает данные на небольшие блоки, называемыми пакетами, с которыми может работать протокол, добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему, подготавливает данные к передаче через плату сетевого адаптера и далее – по сетевому кабелю.

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке: принимает пакеты данных из сетевого кабеля; через плату сетевого адаптера передает данные в компьютер; удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем, копирует данные из пакета в буфер – для их объединения в исходный блок, передает приложению этот блок данных в формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнить каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными.

Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

До середины 80-ых годов большинство локальных сетей были изолированными. Они обслуживали отдельные компании и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими информации возрос, они стали компонентами больших сетей. Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми протоколами.

Среди множества протоколов наиболее распространены следующие:

    IPX/SPX и NWLmk;

    Набор протоколов OSI.

Более подробно каждый стек протоколов будет рассмотрен в следующей главе.

Обзор программных средств

1.4Аутентификация и авторизация. Система Kerberos

Kerberos – это сетевая служба, предназначенная для централизованного решения задач аутентификации и авторизации в крупных сетях. Она может работать в среде многих популярных операционных систем. В основе этой достаточно громоздкой системы лежит несколько простых принципов.

    В сетях, использующих систему безопасности Kerberos, все процедуры аутентификации между клиентами и серверами сети выполняются через посредника, которому доверяют обе стороны аутентификационного процесса, причем таким авторитетным арбитром является сама система Kerberos.

    В системе Kerberos клиент должен доказывать свою аутентичность для доступа к каждой службе, услуги которой он вызывает.

    Все обмены данными в сети выполняются в защищенном виде с использованием алгоритма шифрования.

Сетевая служба Kerberos построена по архитектуре клиент-сервер, что позволяет ей работать в самых сложных сетях. Kerberos-клиент устанавливается на всех компьютерах сети, которые могут обратится к какой-либо сетевой службе. В таких случаях Kerberos-клиент от лица пользователя передает запрос на Kerberos-сервер и поддерживает с ним диалог, необходимый для выполнения функций системы Kerberos.

Итак, в системе Kerberos имеются следующие участники: Kerberos-сервер, Kerberos-клиент и ресурсные серверы (рис. 6). Kerberos-клиенты пытаются получить доступ к сетевым ресурсам – файлам, приложением, принтеру и т.д. Этот доступ может быть предоставлен, во-первых, только легальным пользователям, а во-вторых, при наличии у пользователя достаточных полномочий, определяемых службами авторизации соответствующих ресурсных сервер – файловым сервером, сервером приложений, сервером печати. Однако в системе Kerberos ресурсным серверам запрещается «напрямую» принимать запросы от клиентов, им разрешается начинать рассмотрение запроса клиента только тогда, когда на это поступает разрешение от Kerberos-сервера. Таким образом, путь клиента к ресурсу в системе Kerberos состоит из трех этапов:

    Определение легальности клиента, логический вход в сеть, получение разрешения на продолжение процесса получения доступа к ресурсу.

    Получение разрешения на обращение к ресурсному серверу.

    Получение разрешения на доступ к ресурсу.

Для решения первой и второй задачи клиент обращается к Kerberos-серверу. Каждая из этих задач решается отдельным сервером, входящим в состав Kerberos-сервера. Выполнение первичной аутентификации и выдача разрешения на продолжение процесса получения доступа к ресурсу осуществляется так называемым аутентификационным сервером (Authentication Server, AS). Этот сервер хранит в своей базе данных информацию об идентификаторах и паролях пользователей.

Вторую задачу, связанную с получением разрешения на обращение к ресурсному серверу, решает другая часть Kerberos-сервера – сервер квитанций (Ticket-Granting Server, TGS). Сервер квитанций для легальных клиентов выполняет дополнительную проверку и дает клиенту разрешение на доступ к нужному ему ресурсному серверу, для чего наделяет его электронной формой-квитанцией. Для выполнения своих функций сервер квитанций использует копии секретных ключей всех ресурсных серверов, которые хранятся у него в базе данных. Кроме этих ключей сервер TGS имеет еще один секретный DES-ключ, который разделяет с сервером AS.

Третья задача – получение разрешения на доступ непосредственно к ресурсу – решается на уровне ресурсного сервера.

Изучая довольно сложный механизм системы Kerberos, нельзя не задаться вопросом: какое влияние оказывают все эти многочисленные процедуры шифрования и обмена ключами на производительность сети, какую часть ресурсов сети они потребляют и как это сказывается на ее пропускной способности?

Ответ весьма оптимистичный – если система Kerberos реализована и сконфигурирована правильно, она незначительно уменьшает производительность сети. Так как квитанции используются многократно, сетевые ресурсы, затрачиваемые на запросы предоставления квитанций, невелики. Хотя передача квитанции при аутентификации логического входа несколько снижает пропускную способность, такой обмен должен осуществляться и при использовании любых других систем и методов аутентификации. Дополнительные же издержки незначительны. Опыт внедрения системы Kerberos показал, что время отклика при установленной системе Kerberos существенно не отличается от времени отклика без нее – даже в очень больших сетях с десятками тысяч узлов. Такая эффективность делает систему Kerberos весьма перспективной.

Среди уязвимых мест системы Kerberos можно назвать централизованное хранение всех секретных ключей системы. Успешная атака на Kerberos-сервер, в котором сосредоточена вся информация, критическая для системы безопасности, приводит к крушению информационной защиты всей сети. Альтернативным решением могла бы быть система, построенная на использовании алгоритмов шифрования с парными ключами, для которых характерно распределенное хранение секретных ключей.

Еще одной слабостью системы Kerberos является то, что исходные коды тех приложений, доступ к которым осуществляется через Kerberos, должны быть соответствующим образом модифицированы. Такая модификация называется «керберизацией» приложения. Некоторые поставщики продают «керберизированные» версии своих приложений. Но если нет такой версии и нет исходного текста, то Kerberos не может обеспечить доступ к такому приложению.

1.5Установка и настройка протоколов сети

Как говорилось выше, среди множества протоколов можно выделить наиболее распространенные.

NetBEUI – расширенный интерфейс NetBIOS. Первоначально NetBEUI и NetBIOS были тесно связаны и рассматривались как один протокол, затем производители их обособили и сейчас они рассматриваются отдельно. NetBEUI – небольшой, быстрый и эффективный протокол транспортного уровня, который поставляется со всеми сетевыми продуктами фирмы Microsoft. К преимуществам NetBEUI относятся небольшой размер стека, высокая скорость передачи данных и совместимость со всеми сетями Microsoft. Основной недостаток – он не поддерживает маршрутизацию, это ограничение относится ко всем сетям Microsoft.

Xerox Network System (XNS) был разработан фирмой Xerox для своих сетей Ethernet. Его широкое применение началось с 80=ых годов, но постепенно он был вытеснен протоколом TCP/IP. XNS – большой и медленный протокол, к тому же он применяет значительное количество широковещательных сообщений, что увеличивает трафик сети.

Набор протоколов OSI – полный стек протоколов, где каждый протокол соответствует конкретному уровню модели OSI. Набор содержит маршрутизируемые и транспортные протоколы, серии протоколов IEEE Project 802, протокол сеансового уровня, представительского уровня и нескольких протоколов прикладного уровня. Они обеспечивают полнофункциональность сети, включая доступ к файлам, печать и т.д.

Особенно следует остановиться на стеке протоколов IPX/SPX. Этот стек является оригинальным стеком протоколов фирмы Novell, который она разработала для своей сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали имя стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньше степени, чем IPX/SPX. По количеству установок протоколы IPX/SPX лидируют, и это обусловлено тем, что сама ОС NetWare занимает лидирующее положение с долей установок в мировом масштабе примерно в 65%.

Семейство протоколов фирмы Novell и их соответствие модели ISO/OSI представлено на рис. 7

На физическом и канальном уровнях в сетях Novell используются все популярные протоколы этих уровней (Ethernet, Token Ring, FDDI и другие).

На сетевом уровне в стеке Novell работает протокол IPX, а также протоколы обмена маршрутной информацией RIP и NLSP. IPX является протоколом, который занимается вопросами адресации и маршрутизации пакетов в сетях Novell. Маршрутные решения IPX основаны на адресных полях в заголовке его пакета, а также на информации, поступающей от протоколов обмена маршрутной информацией. Например, IPX использует информацию, поставляемую либо протоколом RIP, либо протоколом NLSP (NetWare Link State Protocol) для передачи пакетов компьютеру назначения или следующему маршрутизатору. Протокол IPX поддерживает только дейтаграммный способ обмена сообщениями, за счет чего экономно потребляет вычислительные ресурсы. Итак, протокол IPX обеспечивает выполнение трех функций: задание адреса, установление маршрута и рассылку дейтаграмм.

Транспортному уровню модели OSI в стеке Novell соответствует протокол SPX, который осуществляет передачу сообщений с установлением соединений.

На верхних прикладном, представительном и сеансовом уровнях работают протоколы NCP и SAP. Протокол NCP (NetWare Core Protocol) является протоколом взаимодействия сервера NetWare и оболочки рабочей станции. Этот протокол прикладного уровня реализует архитектуру клиент-сервер на верхних уровнях модели OSI. С помощью функций этого протокола рабочая станция производит подключение к серверу, отображает каталоги сервера на локальные буквы дисководов, просматривает файловую систему сервера, копирует удаленные файлы, изменяет их атрибуты и т.п., а также осуществляет разделение сетевого принтера между рабочими станциями.

SAP (Service Advertising Protocol) - протокол объявления о сервисе - концептуально подобен протоколу RIP. Подобно тому, как протокол RIP позволяет маршрутизаторам обмениваться маршрутной информацией, протокол SAP дает возможность сетевым устройствам обмениваться информацией об имеющихся сетевых сервисах.

Серверы и маршрутизаторы используют SAP для объявления о своих сервисных услугах и сетевых адресах. Протокол SAP позволяет сетевым устройствам постоянно корректировать данные о том, какие сервисные услуги имеются сейчас в сети. При старте серверы используют SAP для оповещения оставшейся части сети о своих услугах. Когда сервер завершает работу, то он использует SAP для того, чтобы известить сеть о прекращении действия своих услуг.

В сетях Novell серверы NetWare 3.x каждую минуту рассылают широковещательные пакеты SAP. Пакеты SAP в значительной степени засоряют сеть, поэтому одной из основных задач маршрутизаторов, выходящих на глобальные связи, является фильтрация трафика SAP-пакетов и RIP-пакетов.

Особенности стека IPX/SPX обусловлены особенностями ОС NetWare, а именно ориентацией ее ранних версий на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Поэтому Novell нужны были протоколы, на реализацию которых требовалось минимальное количество оперативной памяти и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате, протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами).

Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать у нее лицензию, долгое время ограничивали распространенность его только сетями NetWare. Однако к моменту выпуска версии NetWare 4.0, Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на приспособление их для работы в корпоративных сетях. Сейчас стек IPX/SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС - SCO UNIX, Sun Solaris, Microsoft Windows NT.

Выводы и предложения

По результатам проделанной работы можно дать краткую характеристику организации локальных сетей.

Во-первых, локальные сети реализуют распределенную обработку информации, соответственно обработка распределяется между всеми компьютерами сети, что позволяет увеличить производительность компьютеров.

Во-вторых, локальные сети бывают двух видов:

Одноранговая сеть, в которой нет единого центра управления взаимодействием рабочих станций и нет единого центра для хранения данных.

Сеть с выделенным сервером, т.е. сервер выполняет функции хранения информации, управления взаимодействием внутри сети и ряд сервисных функций.

В-третьих, по структуре все многообразие сетей можно поделить на следующие типы:

топология «звезда», т.е. каждый компьютер через сетевой адаптер подключается отдельным кабелем объединяющему устройству. Все сообщения проходят через центральное устройство, которое обрабатывает поступающие сообщения и направляет их к нужным или всем компьютерам

топология «кольцо», т.е. все компьютеры соединяются последовательно, и информация передается в одном направлении, проходя через каждый узел сети;

топология «общая шина», т.е. все компьютеры подключаются к общей шине (кабелю);

топология «дерево» позволяет объединять сети с различными топологиями.

В-четвертых, для обеспечения согласованной работы внутри сети применяются протоколы – это набор правил, регулирующих порядок в сети на разных уровнях взаимодействия. Были рассмотрены основные стеки протоколов, и была дана краткая их характеристика.

В-пятых, была рассмотрена система Kerberos, которая по средствам аутентификации обеспечивает защиту от несанкционированного доступа в сеть и использования ее ресурсов.

Как вывод всей работы можно сказать, что локальная сеть – это не просто механическая сумма персональных компьютеров, она значительно расширяет возможности пользователей. Компьютерные сети на качественно новом уровне позволяют обеспечить основные характеристики:

    максимальную функциональность, т.е. пригодность для самых разных видов операций,

    интегрированность, заключающуюся в сосредоточении всей информации в едином центре,

    оперативность информации и управления, определяемые возможностью круглосуточной работы в реальном масштабе времени,

    функциональную гибкость, т.е. возможность быстрого изменения параметров системы,

    развитую инфраструктуру, т.е. оперативный сбор, обработку и представление в единый центр всей информации со всех подразделений,

    минимизированные риски посредством комплексного обеспечения безопасности информации, которая подвергается воздействию случайных и преднамеренных угроз.

Последний пункт очень важен, поскольку в сете могут содержаться данные, которые могут быть использованы в ходе конкурентной борьбы, но, в целом, если безопасность находится на должном уровне, локальные сети становятся просто необходимыми в современных условиях экономики и управления.

Список использованной литературы

    Герасименко В.Г., Нестеровский И.П., Пентюхов В.В. и др. Вычислительные сети и средства их защиты: Учебное пособие/ Герасименко В.Г., Нестеровский И.П., Пентюхов В.В. и др. – Воронеж: ВГТУ, 1998. – 124 с.

    Камалян А.К., Кулев С.А., Назаренко К.Н. и др. Компьютерные сети и средства защиты информации: Учебное пособие /Камалян А.К., Кулев С.А., Назаренко К.Н. и др. - Воронеж: ВГАУ, 2003.-119с.

    Курносов А.П. Практикум по информатике/Под ред. Курносова А.П. Воронеж: ВГАУ, 2001.- 173 с.

    Макарова Н.В. Информатика /под ред. Проф. Н.В. Макаровой. - М.: Финансы и статистика, 1997. - 768 с.: ил.

    Малышев Р.А. Локальные вычислительные сети: Учебное пособие/ РГАТА. – Рыбинск, 2005. – 83 с.

    Олифер В.Г, Олифер Н.А. Сетевые операционные системы/ В.Г. Олифер, Н.А. Олифер. – СПб.: Питер, 2002. – 544 с.: ил.

    Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы /В.Г. Олифер, Н.А. Олифер. - СПб.: Питер, 2002.- 672 с.: ил.

    Симонович С.В.Информатика. Базовый курс/Симонович С.В. и др. - СПб.: издательство "Питер", 2000. - 640 с.: ил.