Основы технологии Frame Relay. Технология Frame Relay

Сети Frame Relay относятся к сетям с коммутацией пакетов, которые основаны на реализации цифровых каналов связи со скоростью передачи пакетов до 2 Мбит/с. Технология сети реализована с помощью физического и канального уровней OSI. Интерфейс пользователя UNI — синхронный порт с номинальной скоростью 9,6 — 64 кбит/с. Межсетевой интерфейс NNI реализует высокопроизводительные цифровые линии.

Сеть разрешает транспортировать пакеты в пункты назначения по адресному полю. Список разрешимых путей рассылки создается провайдером услуг сети. Сеть поддерживает готовые соединения постоянны/коммутируемых виртуальных сетей — PVC, SVC. Сеть Frame Relay не гарантирует надежную доставку пакета. Также возможна потеря целостности и контроля пакетов. Это следствие того, что сеть реализует большую скорость коммутации без промежуточной буферизации.

Сеть реализует синхронный формат HDLC с длиной поля данных до 4 кбайт и полем CRC — 2 байт. Мультиплексирование кадров реализуется по 2-4 байтам заголовка, следующего за флагом-разделителем начала пакета. Формат заголовка показан на рис.1. Пакеты передаются по одной или более виртуальных цепей, который определяются по идентификатору DLCI. DLCI — 10 битное поле. Каждый DLCI имеет настроенный маршрут коммутации к определенному получателю.

Рисунок — 1, а- байты 1-2, б — байты 3 и 4

Флаг C/R (команда/ответ) используется по усмотрению приложения. Контроль потока не предусмотрен, однако при заказе линии (56 кбит/с или Т1) указывается допустимая скорость транспортировки CIR для каждого DLCI. Такую скорость сеть поддерживает при нормальных условиях. Если транспортировать пакеты с большей скоростью, то те кадры которые помечены флагом DE (кандидат на отбрасывания) при перегрузках будут отброшены первыми.Сеть предупреждает о начале перегрузки с помощью флагов FECN и BECN (перегрузка в прямом и обратном направлениях). С помощью них интерфейс может уменьшить скорость транспортировки до того, как начнут пропадать кадры.

Оборудование в таких сетях CPE периодически опрашивает коммутатор для анализа состояния сети и соединений DLCI. Приблизительно каждые 10 секунд реализуется обмен пакетами, которые передают данные о исправности соединения. Приблизительно раз в минуту реализован обмен пакетами FS (полное состояние), они дают данные о настроенных и активных DLCI.

Сеть Frame Relay является сетью с коммутацией кадров или сетью с ретрансляцией кадров, ориентированной на использование цифровых линий связи. Ретрансляция кадров (frame relay) - это метод доставки данных в сетях с коммутацией пакетов, а также и с коммутацией каналов и сообщений. Frame Relay поддерживает физический и канальный уровни OSI. Данная технология применяет при передаче данных технику коммутируемых и постоянных виртуальных соединений. Скорость передачи данных до 44 Мбит/с, но без гарантии целостности данных и достоверности их доставки. Обычно применяется при построении территориально распределённых корпоративных сетей, а также в составе решений, связанных с обеспечением гарантированной пропускной способности канала передачи данных (IP-телефония, видеоконференции и прочее).

В технологии Frame Relay на канальном уровне выполняется мультиплексирование потока данных в кадры. При этом осуществляется мультиплексирование в одном канале связи нескольких потоков данных. Кадры при передаче через коммутатор не подвергаются преобразованиям, поэтому сеть получила название ретрансляции кадров. Следовательно, сеть коммутирует уже не пакеты, а кадры.

Отдельный кадр FR имеет в себе минимальное управляющей информации, что приводит к достаточно высокой эффективности передачи данных. При этом изначально допускается, что каналы передачи данных должны быть достаточно надежными, а функции управления потоком выполняются протоколами верхних уровней. Это обусловлено тем, что технология FR не оснащена встроенными функциями контроля доставки и управления потоком кадров. Основу сети Frame Relay образуют специализированные коммутаторы - FRAD (Frame Relay Access Device, устройство доступа к сети с ретрансляцией кадров). Коммутаторы FR применяют технологию сквозной коммутации, когда каждый кадр посылается на следующий транзитный узел сразу же по прочтении адресной информации. В случае возникновения ошибок, коммутаторы FR не пытаются их восстановить кадры и отбраковывают. Отправленные данные восстанавливаются оборудованием конечного пользователя, и промежуточное оборудование освобождено от нужды выявления и исправления ошибок. При этом накладные расходы по обработке данных из расчета на кадр уменьшаются, что существенно повышает пропускную способность.

Изначально информационное взаимодействие технологии FR реализовывалось лишь на физическом и канальном уровне. Принципиальное отличие технологии FR от ранее имевшихся технологий построения сетей заключалось именно в отсутствии сетевого уровня взаимодействия и заключается. На физическом уровне FR поддерживает интерфейсы по стандартам как ITU-T, так и ANSI: X.21, V.24, V.35, DDN, DDS, интерфейсы BRI и PRI сетей ISDN, полные и дробные протоколы T1/E1, SDH. На уровне звена данных используется процедура доступа LAPF, стандартизованная Рекомендацией Q.922 ITU-T. Столлингс Вильям: Компьютерные сети, протоколы и технологии Интернета / Кондукова Е.Ф. М.: BHV, 2005 г. - 832 с. Стек протоколов FR передает кадры при установленном виртуальном соединении по протоколам физического и канального уровней. Функции сетевого уровня перемещены на канальный уровень, поэтому необходимость в сетевом уровне отпала. Тем самым, указанные особенности и обеспечивают преимущества сетей, которые построены по технологии FR.

Кадр протокола FR содержит минимально необходимое количество служебных полей. Структура и формат кадра FR состоит из следующих элементов: Пятибратов А.П. Вычислительные системы, сети и телекоммуникации: учебное пособие. - М.: Кнорус, 2013. - 376 с.

HEADER (2-4 Byte)

Данные (переменный размер)

Поле FLAG. Каждый кадр начинается и замыкается "флагом" - последовательностью "01111110". Данное поле выполняет функцию обрамления кадра. Чтобы предотвратить случайную имитацию последовательности "флаг" внутри кадра, в процессе его передачи проверяется всё его содержание между двумя флагами и после каждой последовательности, состоящей из пяти идущих подряд бит "1", вставляется бит "0". Данная процедура неукоснительно должна выполняться при формировании любого кадра FR, при приёме эти биты "0" отбрасываются. Принцип формирования поля FLAG в кадре FR соответствует принципам формирования поля FLAG в кадре других технологий. Узлам сети FR разрешено уничтожать искаженные кадры, не уведомляя об этом пользователя. Искаженным считается кадр, которому присущ какой-либо из следующих признаков:

Наблюдается менее пяти октетов между флагами;

Искажено поле адреса (для случая, когда проверка не выявила ошибки в FCS);

Имеется ошибка в FCS;

Отсутствует корректное ограничение флагов;

Отсутствует целое число октетов после удаления бит обеспечения прозрачности;

Превышен допустимый максимальный размер;

Имеется несуществующий DLCI.

Поле HEADER. Поле заголовка кадра содержит информацию, которая используется для управления виртуальными соединениями и процессами передачи данных в сети Frame Relay. Данное поле кадра FR, помимо собственно адресной информации, содержит также и дополнительные поля управления потоком данных и уведомлений о перегрузке канала (Приложение А): Пятибратов А.П. Вычислительные системы, сети и телекоммуникации: учебное пособие. - М.: Кнорус, 2013. - 376 с.

Механизмы уведомления о возникновении перегрузок и их устранения реализуются посредством битов FECN и BECN в заголовке кадра LAPF. Информационные биты FECN и BECN выставляются в момент попадания кадра в затор трафика. Если узел сети FR обнаруживает, что его входные очереди начинают переполняться, предыдущему узлу (источнику трафика) передается пакет с установленным битом BECN, чтобы приостановить поступление данных до разрешения ситуации. Маршрутизаторы с интерфейсом FR могут расшифровать значения этих битов и активизировать управление потоком на базе протокола верхлежащего уровня, например, - TCP/IP. При этом представленный механизм не вписался бы в концепцию регламентирования пропускной способности сети, поддерживаемую FR, без введения соглашения о согласованной скорости передачи информации (Committed Information Rate, CIR). Столлингс Вильям: Компьютерные сети, протоколы и технологии Интернета / Кондукова Е.Ф. М.: BHV, 2005 г. - 832 с.

Поле данных. Поле полезной нагрузки в кадре Frame Relay имеет переменную длину и предназначено для переноса блоков данных протоколов верхних уровней. Поле полезной нагрузки имеет минимальную длину в 1 октет, максимальную согласно стандарту - 1600 октетов, тем не менее в реализациях некоторых производителей FR-оборудования допускается превышение максимального размера (до 4096 октетов).

Поле FCS. Проверочная последовательность кадра (FCS) применяется для выявления возможных ошибок при его передаче и состоит из 2 октетов. FCS формируется аналогично циклическому коду HDLC. Пескова, С.А.Сети и телекоммуникации: учеб. пособие для вузов / Пескова, С.А., Кузин, А.В., Волков, А.Н. - М.: Академия, 2008. - 350 с.

Сети Х.25 являются на сегодняшний день самыми популярными сетями с коммутацией пакетов в основном из-за того, что долгое время они были единственными доступными сетями такого типа, а также из-за того, что они хорошо работают на ненадежных линиях. Стандарт X.25 "Интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования" был разработан комитетом МККТТ для предоставления терминалам доступа к многочисленным удаленным мейнфреймам через сеть коммутации пакетов. Поэтому этот стандарт наилучшим образом подходит для передачи трафика низкой интенсивности, характерного для терминалов, и в меньшей степени соответствует более высоким требованиям трафика локальных сетей.

Сеть коммутации пакетов состоит из центров коммутации пакетов (ЦКП), расположенных в различных географических точках и соединенных высокоскоростными каналами обмена (рисунок 17.7).

Рис. 17.7. Сеть коммутации пакетов X. 25

В сети предусмотрено преодоление отказов каналов связи между ЦКП путем обхода поврежденного участка сети. Сеть обычно формируется, функционирует и контролируется системой управления сетью, расположенной в одном из центров коммутации пакетов.

Этот стандарт основан на синхронной передаче данных. Асинхронные старт-стопные терминалы подключаются к сети через так называемые пакетные адаптеры данных (ПАД). Они могут быть встроенными или удаленными. Встроенный ПАД обычно расположен в стойке ЦКП. Удаленный ПАД представляет собой небольшое автономное устройство, подключенное к ЦКП через один канал связи X.25. Один ПАД обычно обеспечивает доступ для 8, 16 или 24 асинхронных терминалов.

К основным функциям ПАД относятся:

Сборка символов, полученных от асинхронных терминалов, в пакеты,

Разборка полей данных в пакетах и вывод данных на асинхронные терминалы,

Управление процедурами установления соединения и разъединения, сброса и прерывания,

Передача символов, включающих стартстопные сигналы и биты проверки на четность. по требованию асинхронного терминала,

Продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

На физическом уровне определены протоколы X.21 и X.21bis. Протокол физического уровня X.21 определяет интерфейс между компьютером и цифровым каналом связи, а X.21bis - между компьютером и аналоговым каналом (с использованием модемов).

На канальном уровне используется подмножество протокола HDLC. обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрена возможность выбора из двух процедур доступа к каналу: LAP или LAPB.

На сетевом уровне определен протокол X.25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных.

Сетевой уровень реализуется с использованием 14 различных типов пакетов. Так как надежную передачу данных обеспечивает уже упомянутый протокол LAP-B, то протокол X.25/3 выполняет функции маршрутизации пакетов и управления потоком пакетов.

Прежде, чем пакет будет передан через сеть, необходимо установить соединение между исходными ООД - терминалами и компьютерами. Существует два типа соединений - коммутируемый виртуальный канал (SVC - Switched Virtual Channel) и постоянный виртуальный канал (PVC - Permament Virual Channel). SVC можно сравнить с коммутируемым каналом телефонной сети общего пользования. Для установления соединения необходимо знать сетевой номер - адрес пользователя. Рекомендация X. 121 МККТТ определяет международную систему нумерации адресов для сетей передачи данных общего пользования.

Постоянный виртуальный канал подобен выделенному каналу в том, что не требуется устанавливать соединение или разъединение. Обмен пакетами по PVC может происходить в любой момент времени. PVC формируется системой управления сетью. Отличие PVC от выделенной линии типа 64 Кб/с в том, что пользователь не имеет никаких гарантий относительно действительной пропускной способности PVC. Поэтому использование PVC обычно намного дешевле, чем аренда выделенной линии.

Маршрутизация на основе виртуальных каналов - это обычный прием, используемый в глобальных сетях. Кроме сетей X.25, такая техника применяется в сетях frame relay и АТМ. Суть такой маршрутизации показана на рисунке 17.8. При установлении соединения между конечными узлами используется специальный тип пакета - запрос на установление соединения - который содержит длинный адрес узла-адресата, а также номер виртуального соединения, присвоенного данному виртуальному соединению в узле-отправителе, например, 15. Адрес назначения используется для маршрутизации пакета на основании таблиц маршрутизации, аналогичных тем, которые использовались при описании протоколов RIP или OSPF. В приведенном примере оказалось необходимым передать пакет с порта 1 на порт 0. Одновременно с передачей пакета маршрутизатор изменяет у пакета номер виртуального соединения - он присваивает пакету первый неиспользованный номер виртуального канала для данного коммутатора. Каждый конечный узел и каждый коммутатор ведет свой список использованных и свободных номеров виртуальных соединений. В таблице коммутации входного порта маршрутизатор отмечает, что в дальнейшем пакеты, прибывшие на этот порт с номером 15, должны передаваться на порт 0, причем номер виртуального канала должен быть изменен на 10, Одновременно делается и соответствующая запись в таблице коммутации порта 0 - пакеты с номером 10 нужно передавать на порт с номером 1, меняя номер виртуального канала на 15.

Рис. 17.8. Коммутация в сетях с виртуальными соединениями.

В результате действия такой схемы пакеты данных уже не несут длинные адреса конечных узлов, а имеют в служебном поле только номер виртуального канала, на основании которого и производится маршрутизация всех пакетов, кроме пакета запроса на установление соединения. В сети прокладывается виртуальный канал, который не изменяется в течение всего времени существования соединения. Пакеты в виртуальном канале циркулируют в двух направлениях, причем конечные узлы не замечают изменений номеров виртуальных каналов при прохождении пакетов через сеть.

За уменьшение служебного заголовка приходится платить невозможностью баланса трафика внутри виртуального соединения. При отказе какого-либо канала соединение приходится также устанавливать заново.

Протокол X.25 допускает использование следующих максимальных значений длины поля данных: 16, 32, 64, 128, 256, 512 и 1024 байта. Предпочтительной является длина 128 байтов. Пакеты данных циклически нумеруются от 0 до 7 или от 0 до 127. В заголовке пакета помещаются два номера: порядковый номер передачи и порядковый номер приема. Порядковый номер передачи необходим для обеспечения последовательной транспортировки данных по виртуальному каналу, обнаружения потерь пакетов и для управления интенсивностью поступления пакетов в сеть передачи данных.

Услуги по стандарту Х.25 предоставляются многими общественными сетями передачи данных - в США Sprint/Telenet, BT/Tymnet, Infonet и другими, в России - "Исток-К". "Спринт Сеть", ИАСНЕТ, РОСПАК, ИНФОТЕЛ, Релком и другими. Сети Х.25 часто являются единственной возможностью для создания международной сети, так как почти во всех странах имеются сети данного типа. Можно построить и свою собственную сеть Х.25, купив коммутационное оборудование Х.25 и арендовав выделенные линии.

Сети frame relay - сравнительно новые сети, которые гораздо лучше подходят для передачи трафика локальных сетей по сравнению с сетями X.25. Преимущество сетей frame relay заключается в их низкой избыточности, высокой емкости при низких задержках и надежности передачи данных по существующим общественным сетям. Они специально разработаны как общественные сети для соединения частных локальных сетей. Сети frame relay стандартизованы подкомитетом СС1ТТ 1.122. Они обеспечивают скорость передачи данных до 2 Мб/с и позволяют потребителю наращивать требуемую пропускную способность частями по 56 Кб/с.

Сети frame relay обеспечивают высокую пропускную способность и низкие задержки за счет исключения избыточных операций по коррекции ошибок, так как они рассчитаны на использование надежных цифровых и волоконно-оптических линий связи. Протокол frame relay занимается обнаружением ошибок только на первых двух уровнях модели OSI. в то время как в протоколе X.25 этим занимаются три уровня. Протокол frame relay, так как он работает только на первых двух уровнях модели OSI, является независимым от верхних уровней стека протокола, из-за чего его легко встраивать в сети. Существует спецификация RFC 1490, определяющая методы инкапсуляции в трафик frame relay трафика SNA и локальных сетей.

Протокол frame relay подразумевает, что коммуникационное оборудование конечных пользователей (а, точнее, протоколы сетевого и транспортного уровней, подобные IP и TCP) будут обнаруживать и корректировать ошибки за счет повторной передачи пакетов сетевого или более высоких уровней. Это требует некоторой степени интеллектуальности от конечного оборудования, что по большей части справедливо для современных локальных сетей.

Frame relay предлагает независимую адресацию пакетов. Сети frame relay, как и сети X.25, позволяют устанавливать частные виртуальные каналы между локальными сетями без добавления задержки между узлами. После установления виртуального соединения кадры frame relay маршрутизируются (транслируются, передаются, если более точно следовать переводу глагола relay) через коммутаторы сети. Стандарт frame relay определяет как постоянные виртуальные каналы (PVC), так и коммутируемые (SVC), но в большинстве коммерческих сетей frame relay реализованы в основном сервисы постоянных коммутируемых каналов.

Поле номера виртуального соединения (DLCI) состоит из 11 битов и называется идентификатором связи данных. Это поле содержит номер виртуального канала, соответствующий определенному порту сетевого моста или маршрутизатора. Посылающее устройство помещает этот адрес в кадр (фрейм) и передает кадр в сеть для перемещения к приемному устройству.

Поле данных может иметь размер до 4056 байтов.

В сетях frame relay предусмотрена процедура заказа качества обслуживания, отсутствующая в сетях Х.25. Для каждого виртуального соединения определяются несколько параметров, Два параметра определяют среднюю скорость соединения:

CIR (Committed Information Rate) - средняя скорость, с которой сеть согласна передавать данные пользователя,

CBS (Committed Burst Size) - максимальное количество битов, которое сеть согласна передать от этого пользователя за интервал времени Т.

Если эти величины определены, то время Т определяется формулой

На рисунке 17.9 приведен пример использования сети frame relay пятью удаленными региональными отделениями корпорации. Обычно доступ к сети осуществляется каналами с большей пропускной способностью, чем CIR - пропускная способность канала должна быть равна по крайней мере величине CBS/T. Но при этом пользователь платит не за пропускную способность канала, а за заказанные величины CIR и CBS.

Для управления потоком кадров в сетях frame relay используются механизмы оповещения конечных пользователей о том, что в коммутаторах сети возникли перегрузки (переполнение необработанными кадрами). Бит FECN

Рис. 17.9. Пример использования сети frame relay

(Forward Explicit Congestion Bit) кадра извещает об этом принимающую сторону. На основании значения этого бита принимающая сторона должна с помощью протоколов более высоких уровней (TCP/IP. SPX и т.п.) известить передающую сторону о том, что та должна снизить интенсивность отправки пакетов в сеть.

Бит BECN (Backward Explicit Congestion Bit) извещает о переполнении в сети передающую сторону и является рекомендацией немедленно снизить темп передачи. Бит BECN обычно отрабатывается на уровне устройств доступа к сети frame relay - маршрутизаторов, мультиплексоров и устройств CSU/DSU.

В общем случае биты FECN и BECN могут игнорироваться. Но если конечный пользователь нарушает условия, определяемые параметрами его соединения CIR и CBS, то сеть может просто отбрасывать (не передавать) "избыточные кадры" пользователя, выходящие за рамки договоренностей. Для этого в кадре имеется бит DE (Discard Eligible) -"удаление желательно", который устанавливается при превышения конечным узлом максимальной интенсивности трафика. И если в коммутаторе сети возникает перегрузка, то он может отбрасывать кадры с установленным битом DE.

Сервис frame relay обычно предоставляют те же операторы, которые эксплуатируют сети X.25. Большая часть производителей выпускает сейчас коммутаторы, которые могут работать как по протоколам Х.25, так и по протоколам frame relay.

2. Технология Frame Relay


Frame Relay первоначально замышлялся как протокол для использования в интерфейсах ISDN, и исходные предложения, представленные в CCITT в 1984 г., преследовали эту цель. Была также предпринята работа над Frame Relay в аккредитованном ANSI комитете по стандартам T1S1 в США.

Крупное событие в истории Frame Relay произошло в 1990 г., когда Cisco Systems, StrataCom, Northern Telecom и Digital Equipment Corporation образовали консорциум, чтобы сосредоточить усилия на разработке технологии Frame Relay и ускорить появление изделий Frame Relay, обеспечивающих взаимодействие сетей. Консорциум разработал спецификацию, отвечающую требованиям базового протокола Frame Relay, рассмотренного в T1S1 и CCITT; однако он расширил ее, включив характеристики, обеспечивающие дополнительные возможности для комплексных окружений межсетевого об"единения. Эти дополнения к Frame Relay называют обобщенно local management interface (LMI) (интерфейс управления локальной сетью).


Основы технологии

Frame Relay обеспечивает возможность передачи данных с коммутацией пакетов через интерфейс между устройствами пользователя (например, маршрутизаторами, мостами, главными вычислительными машинами) и оборудованием сети (например, переключающими узлами). Устройства пользователя часто называют терминальным оборудованием (DTE), в то время как сетевое оборудование, которое обеспечивает согласование с DTE, часто называют устройством завершения работы информационной цепи (DCE). Сеть, обеспечивающая интерфейс Frame Relay, может быть либо общедоступная сеть передачи данных и использованием несущей, либо сеть с оборудованием, находящимся в частном владении, которая обслуживает отдельное предприятие.

В роли сетевого интерфейса, Frame Relay является таким же типом протокола, что и Х.25. Однако Frame Relay значительно отличается от Х.25 по своим функциональным возможностям и по формату. В частности, Frame Relay является протоколом для линии с большим потоком информации, обеспечивая более высокую производительность и эффективность.

В роли интерфейса между оборудованием пользователя и сети, Frame Relay обеспечивает средства для мультиплексирования большого числа логических информационных диалогов (называемых виртуальными цепями) через один физический канал передачи, которое выполняется с помощью статистики. Это отличает его от систем, использующих только технику временного мультиплексирования (TDM) для поддержания множества информационных потоков. Статистическое мультиплексирование Frame Relay обеспечивает более гибкое и эффективное использование доступной полосы пропускания. Оно может использоваться без применения техники TDM или как дополнительное средство для каналов, уже снабженных системами TDM.

Другой важной характеристикой Frame Relay является то, что она использует новейшие достижения технологии передачи глобальных сетей. Более ранние протоколы WAN, такие как Х.25, были разработаны в то время, когда преобладали аналоговые системы передачи данных и медные носители. Эти каналы передачи данных значительно менее надежны, чем доступные сегодня каналы с волоконно-оптическим носителем и цифровой передачей данных. В таких каналах передачи данных протоколы канального уровня могут предшествовать требующим значительных временных затрат алгоритмам исправления ошибок, оставляя это для выполнения на более высоких уровнях протокола. Следовательно, возможны большие производительность и эффективность без ущерба для целостности информации. Именно эта цель преследовалась при разработке Frame Relay. Он включает в себя алгоритм проверки при помощи циклического избыточного кода (CRC) для обнаружения испорченных битов (из-за чего данные могут быть отвергнуты), но в нем отсутствуют какие-либо механизмы для корректирования испорченных данных средствами протокола (например, путем повторной их передачи на данном уровне протокола).

Другим различием между Frame Relay и Х.25 является отсутствие явно выраженного управления потоком для каждой виртуальной цепи. В настоящее время, когда большинство протоколов высших уровней эффективно выполняют свои собственные алгоритмы управления потоком, необходимость в этой функциональной возможности на канальном уровне уменьшилась. Таким образом, Frame Relay не включает явно выраженных процедур управления потоком, которые являются избыточными для этих процедур в высших уровнях. Вместо этого предусмотрены очень простые механизмы уведомления о перегрузках, позволяющие сети информировать какое-либо устройство пользователя о том, что ресурсы сети находятся близко к состоянию перегрузки. Такое уведомление может предупредить протоколы высших уровней о том, что может понадобиться управление потоком.

Стандарты Current Frame Relay адресованы перманентным виртуальным цепям (PVC), определение конфигурации которых и управление осуществляется административным путем в сети Frame Relay. Был также предложен и другой тип виртуальных цепей - коммутируемые виртуальные цепи (SVC). Протокол ISDN предложен в качестве средства сообщения между DTE и DCE для динамичной организации, завершения и управления цепями SVC.


Форматы блока данных

Формат блока данных изображен на Рис. 2.2.1. Флаги (flags) ограничивают начало и конец блока данных. За открывающими флагами следуют два байта адресной (address) информации. 10 битов из этих двух байтов составляют идентификацию (ID) фактической цепи (называемую сокращенно DLCI от "data link connection identifier").


Длина поля, в байтах 1 2 Variable 2 1

Flag Address Data FCS Flag

Рис. 2.2.1 Кадр Frame Relay


Центром заголовка Frame Relay является 10-битовое значение DLCI. Оно идентифицирует ту логическую связь, которая мультиплексируется в физический канал. В базовом режиме адресации (т.е. не расширенном дополнениями LMI), DLCI имеет логическое значение; это означает, что конечные усторойства на двух противоположных концах связи могут использовать различные DLCI для обращения к одной и той же связи. На рис. 2.2.2 представлен пример использования DLCI при адресации в соответствии с нерасширенным Frame Relay.

Рис. 2.2.2 предполагает наличие двух цепей PVC: одна между Aтлантой и Лос-Анджелесом, и вторая между Сан Хосе и Питтсбургом. Лос Анджелес может обращаться к своей PVC с Атлантой, используя DLCI=12, в то время как Атланта обращается к этой же самой PVC, используя DLCI=82. Аналогично, Сан Хосе может обращаться к своей PVC с Питтсбургом, используя DLCI=62. Сеть использует внутренние патентованные механизмы поддержания двух логически значимых идентификаторов PVC различными.

В конце каждого байта DLCI находится бит расширенного адреса (ЕА). Если этот бит единица, то текущий байт является последним байтом DLCI. В настоящее время все реализации используют двубайтовый DLCI, но присутствие битов ЕА означает, что может быть достигнуто соглашение об использовании в будущем более длинных DLCI.

Бит C/R, следующий за самым значащим байтом DLCI, в настоящее время не используется.


Рис. 2.2.2 Адресация Frame Relay


И наконец, три бита в двубайтовом DLCI являются полями, связанными с управлением перегрузкой. Бит "Уведомления о явно выраженной перегрузке в прямом направлении" (FECN) устанавливается сетью Frame Relay в блоке данных для того, чтобы сообщить DTE, принимающему этот блок данных, что на тракте от источника до места назначения имела место перегрузка. Бит "Уведомления о явно выраженной прегрузке в обратном направлении" (BECN) устанавливается сетью Frame Relay в блоках данных, перемещающихся в направлении, противоположном тому, в котором перемещаются блоки данных, встретившие перегруженный тракт. Суть этих битов заключается в том, что показания FECN или BECN могут быть продвинуты в какой-нибудь протокол высшего уровня, который может предпринять соответствующие действия по управлению потоком. (Биты FECN полезны для протоколов высших уровней, которые используют управление потоком, контролируемым пользователем, в то время как биты BECN являются значащими для тех протоколов, которые зависят от управления потоком, контролируемым источником ("emitter-controlled").

Бит "приемлемости отбрасывания" (DE) устанавливается DTE, чтобы сообщить сети Frame Relay о том, что какой-нибудь блок данных имеет более низшее значение, чем другие блоки данных и должен быть отвергнут раньше других блоков данных в том случае, если сеть начинает испытывать недостаток в ресурсах. Т.е. он представляет собой очень простой механизм приоритетов. Этот бит обычно устанавливается только в том случае, когда сеть перегружена.


Может применяться высококачественная витая пара. Рис. 3. Структурная схема сети Frame Relay. На рисунке представлена структурная схема сети Frame Relay, где изображены основные элементы: DTE (Data Terminal Equipment) – аппаратура передачи данных (маршрутизаторы, мосты, ПК). DCE (Data Circuit-Terminating Equipment) – оконечное оборудование канала передачи данных (телекоммуникационное...





Туннелирования показан на рис. 6. Рис. 6. Туннелирование с использованием GRE Две локальные сети, использующие протокол IPX, разделены некоторой сетью, работающей по протоколу IP. При использовании GRE маршрутизаторы Cisco, находящиеся на краях этой сети (назовем ее IP WAN) могут инкапсулировать дейтаграммы IPX в пакеты IP для передачи первых через сеть IP. Внутри туннелированных сетей сетевые...

Подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети. Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей...





Предлагается, для самого дешевого решения, на каждый из клиентских компьятеров установить ОС Windows 95. Администрация Владимирской области обладает лицензией на использование данного продукта. Фирма Shiva, крупнейший поставщик оборудования и программного обеспечения для корпоративных территориальных сетй связи, помогла фирме Microsoft внедрить в Windows 95 функции удаленного доступа. ...

Лекция 6. Принципы построения сетей Frame Relay и АТМ

Сети Frame Relay. Сеть Frame Relay является сетью с коммутацией кадров или сетью с ретрансляцией кадров, ориентированной на использование цифровых линий связи. Первоначально технология Frame Relay была стандартизирована как служба в сетях ISDN со скоростью передачи данных до 2 Мбит/с. В дальнейшем эта технология получила самостоятельное развитие. Frame Relay поддерживает физический и канальный уровни OSI. Технология Frame Relay использует для передачи данных технику виртуальных соединений (коммутируемых и постоянных).

Стек протоколов Frame Relay передает кадры при установленном виртуальном соединении по протоколам физического и канального уровней. В Frame Relay функции сетевого уровня перемещены на канальный уровень, поэтому необходимость в сетевом уровне отпала. На канальном уровне в Frame Relay выполняется мультиплексирование потока данных в кадры.

Frame Relay осуществляет мультиплексирование в одном канале связи нескольких потоков данных. Кадры при передаче через коммутатор не подвергаются преобразованиям, поэтому сеть получила название ретрансляции кадров. Таким образом, сеть коммутирует кадры, а не пакеты. Скорость передачи данных до 44 Мбит/с, но без гарантии целостности данных и достоверности их доставки.

Frame Relay ориентирована на цифровые каналы передачи данных хорошего качества, поэтому в ней отсутствует проверка выполнения соединения между узлами и контроль достоверности данных на канальном уровне. За счет этого сети Frame Relay обладают высокой производительностью.

Технология Frame Relay в основном используется для маршрутизации протоколов локальных сетей через общие (публичные) коммуникационные сети. Frame Relay обеспечивает передачу данных с коммутацией пакетов через интерфейс между оконечными устройствами пользователя DTE (маршрутизаторами, мостами, ПК) и оконечным оборудованием канала передачи данных DCE (коммутаторами сети типа "облако").

Коммутаторы Frame Relay используют технологию сквозной коммутации, т. е. кадры передаются с коммутатора на коммутатор сразу после прочтения адреса назначения, что обеспечивает высокую скорость передачи данных.

На рисунке 6.1 представлена структурная схема сети Frame Relay, где изображены основные элементы:

DTE (data terminal equipment) – аппаратура передачи данных (маршрутизаторы, мосты, ПК);

DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).

Рисунок 6.1 – Cтруктурная схема сети Frame Relay

Физический уровень Frame Relay. На физическом уровне FR используют цифровые выделенные каналы связи, протокол физического уровня I.430/431.

Канальный уровень Frame Relay. Протокол канального уровня LAP-F в сетях Frame Relay имеет два режима работы – основной (core) и управляющий (control). В основном режиме, который практикуется в сегодняшних сетях FR, кадры передаются без преобразования и контроля, как и в коммутаторах локальных сетей. За счет этого сети FR обладают высокой производи- тельностью, так как кадры в коммутаторах не подвергаются преобразованию, а сеть не передает квитанции подтверждения между коммутаторами на каждый пользовательский кадр. Структура стека (рисунок 6.2) отражает происхождение технологии FR в недрах технологии ISDN, так как сети FR заимствуют многое из стека протоколов ISDN (процедуры установления SVC).

Основу технологии составляет протокол LAP-F core, который является упрощенной версией протокола LAP-D.

Протокол LAP-F (стандарт Q.922 ITU-T) работает на любых каналах сети ISDN, а также на каналах типа Т1/Е1. Терминальное оборудование посылает в сеть кадры LAP-F в любой момент времени, считая что виртуальный канал в сети коммутаторов проложен. При использовании PVC оборудованию Frame Relay нужно поддерживать только протокол LAP-F core. Протокол LAP-F contol является необязательной надстройкой над LAP-F core, которая выполняет функции контроля доставки кадров и управления потоком. При этом control сетью реализуется служба frame switching.

Рисунок 6.2 – Стек протоколов Frame Relay

Технология ATM. В 80-е годы во многих промышленных развитых странах началась разработка широкополосной цифровой сети с интеграцией служб (B-ISDN). Создание такой сети позволяет организовать такие службы, как высококачественная видеотелефония, видеоконференции, высокоскорост- ная передача данных, передача телевизионных программ высокого качества, поиск видеоинформации и ряд других. Для этого требуются скорости передачи, превышающие 2 Мбит/с, являющуюся максимальной скоростью, предостав- ляемой пользователю узкополосной ISDN. В результате исследований, проводившихся с середины 80-х годов, МККТТ (ныне МСЭ-Т) принял в 1988 г. рекомендацию I.121, определившую общие принципы B-ISDN. Наиболее важный из них – использование асинхронного режима переноса информации (АТМ), реализующего процессы передачи и коммутации выше физического уровня. Решающее значение при выборе АТМ имело то, что большинство источников информации работают в прерывистом режиме. Например, коэффициент активности речи составляет 0,3 – 0,4, еще меньше он в интер- активных системах передачи данных, весьма разнообразна видеоинформация и т. д. Поэтому применение синхронного режима переноса (STM), при котором выделяется постоянная полоса пропускания, соответствующая наивысшей мгновенной скорости передачи информации, оказывается весьма неэффек- тивным. В то же время асинхронный режим переноса, основанный на статистических (пакетных) методах, позволяет гибко распределять полосу пропускания, обеспечивая совместную работу разнообразных служб в условиях изменения параметров служб и нагрузки.

В соответствии с определениями рекомендаций I.113 и I.121 термин АТМ обозначает специфический пакетно-ориентированный режим переноса информации, использующий метод асинхронного временного разделения, при котором поток информации организуется в блоки фиксированной длины, называемые ячейками. Для прояснения терминологии следует заметить, что согласно рекомендации G.803 различают термины "передача" (transmission), обозначающий физический процесс распространения сигнала по каналу связи, и "перенос" (transfer) – процесс перемещения информации по сети. Ячейка (cell) имеет длину 53 байта, из которых 48 байтов – информация пользователя и 5 байт – заголовок. Основное назначение заголовка – идентификация ячеек, принадлежащих одному и тому же виртуальному каналу. АТМ является методом, ориентированным на установление соединений. До начала передачи информации между пользователями должен быть организован виртуальный канал. Сигнальная и пользовательская информация передаются по отдельным виртуальным каналам. Группа виртуальных каналов, проходящих на некоторых участках сети по одному и тому же направлению, может объединяться в виртуальный тракт. Поскольку АТМ предполагает использование высоко- скоростных и обладающих высокой помехозащищенностью цифровых систем передачи (как правило, на основе волоконно-оптических линий), повышение верности осуществляется только в оборудовании пользователей. Отказ от повышения верности в узлах коммутации значительно упрощает алгоритм их функционирования и позволяет применять в них аппаратные средства, имеющие значительно более высокое быстродействие, чем программируемые микропроцессоры. Высокая пропускная способность трактов передачи, быстродействие коммутационных устройств и короткая длина ячеек обеспечивают, как правило, быструю доставку ячеек по сети. Контроль за их доставкой осуществляется в оконечном оборудовании пользователей. По своей сути метод АТМ представляет собой разновидность метода коммутации пакетов – так называемую быструю коммутацию пакетов – наиболее близкую по своим пользовательским характеристикам методу коммутации каналов.



Сеть АТМ способна не только быть основой для организации самых разнообразных служб в рамках B-ISDN, предназначенных для передачи данных, изображений и т.д. Она также может служить транспортной средой для телефонной сети, узкополосной ISDN, связи городских сетей передачи данных (MAN) и др. (рисунок 6.3).

Рисунок 6.3 – Логическая схема возможного использования сети АТМ

Использования технологии АТМ позволяет строить гибкие сети, эффективно использующие пропускную способность трактов передачи за счет их статистического мультиплексирования. Универсальность АТМ состоит еще и в том, что это первая технология, которая может использоваться в сетях любого масштаба: локальных (LAN), городских (MAN) и территориальных (WAN).

Упрощенная архитектура сети АТМ представлена на рисунке 6.4.

Рисунок 6.4 – Структура сети АТМ

Она состоит из связанных между собой АТМ коммутаторов. Находящееся за пределами сети оборудование пользователя взаимодействует с коммутаторами через интерфейс пользователь – сеть (UNI). Для взаимодей- ствия коммутаторов между собой служит интерфейс сетевого узла (NNI). МСЭ-Т стандартизировал в рекомендации I.432 два типа интерфейса UNI: на скоростях 155 и 622 Мбит/с (это скорости 1-го и 4-го уровней SDH). Подготовлены стандарты по использованию технологии АТМ на первичной скорости европейской иерархии 2 Мбит/с.

Стек протоколов ATM (рисунок 6.5) включает уровень адаптации ATM и физический уровень.

Рисунок 6.5 – Стек протоколов АТМ

Уровень адаптации АТМ (AAL) осуществляет преобразование пользовательской информации в информационные поля ячеек и наоборот. Именно наличие AAL придают АТМ присущую ей способность переносить разнообразную пользовательскую информацию в стандартных ячейках. Следует подчеркнуть, что процедуры ААL реализуются вне пределов сети АТМ в оконечном оборудовании пользователя. Уровень адаптации может использовать для своих нужд до 4 байт в пределах 48-байтного информационного поля ячейки, оставляя, таким образом, непосредственно для полезной информации пользователей 44 байта. AAL делится, в свою очередь, на два подуровня: подуровень конвергенции (CS) и подуровень разборки и сборки (сегментации и реассемблирования) (SAR).

Верхний из них – CS – получает информацию от пользователя и разбивает ее на протокольные единицы данных этого подуровня, длина которых определяется конкретным типом уровня адаптации. Далее к ним добавляются заголовок и окончание, содержащие служебную информацию о виде передаваемого трафика и размере протокольной единицы, а также позволяющие осуществлять контроль и исправление ошибок на приеме. При необходимости этот подуровень обеспечивает также синхронизацию. Подуровень разборки и сборки принимает полученные протокольные единицы CS и разбивает их на фрагменты, длина которых от 44 до 48 байтов. К ним могут добавляться заголовок (1 – 2 байта), идентифицирующий тип данного фрагмента, и окончание (до 2 байт), содержащее контрольную сумму. В результате получается 48-байтная последовательность, образующая информационное поле ячейки АТМ. Описанный выше алгоритм варьируется в зависимости от типа уровня адаптации. На приеме все процедуры выполняются в обратной последовательности. Уровень АТМ добавляет к полученным от подуровня SAR 48-байтным последовательностям 5-байтовые заголовки, формируя таким образом ячейки АТМ, передаваемые затем на физический уровень. К функциям уровня АТМ относятся также: управление входным потоком на интерфейсе пользователь-сеть; мультиплексирование ячеек, принадлежащим различным виртуальным каналам и трактам, в единый поток; преобразование идентификаторов виртуальных каналов в узлах коммутации. На приемной стороне уровень АТМ осуществляет демультиплексирование потока ячеек и удаление заголовков.

Физический уровень также состоит из двух подуровней: подуровень конвергенции передачи (TC) и подуровень, зависящий от физической среды (PMD). Подуровень ТС осуществляет согласование потока ячеек с используемой системой передачи (например, упаковывает ячейки АТМ в контейнеры SDH). Подуровень PMD ответственен за передачу и прием битов, передаваемых в конкретной физической среде (оптическое волокно, коаксиальный кабель).

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Какую технику для передачи данных использует технология FR?

2. Какие два режима работы в сетях FR имеет протокол канального уровня LAP-F?

3. В чем заключается универсальность АТМ?

4.Какие уровни включает стек протоколов ATM?

5. Объясните структуру сети АТМ.