Принцип работы пзс матрицы. Размеры матриц фотоаппаратов. ПЗС. Физический принцип работы ПЗС. ПЗС-матрица

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

Общее устройство и принцип работы

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Обозначения на схеме субпикселя ПЗС : 1 - фотоны света, прошедшие через объектив фотоаппарата ;
2 - ;
3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;
4 - прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова ;
5 - оксид кремния;
6 - кремниевый канал n-типа: зона генерации носителей - зона внутреннего фотоэффекта ;
7 - зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда ;
8 - кремниевая подложка p-типа .

Классификация по способу буферизации

Матрицы с полнокадровым переносом

Сформированное объективом изображение попадает на ПЗС-матрицу, то есть лучи света падают на светочувствительную поверхность ПЗС-элементов, задача которых-преобразовать энергию фотонов в электрический заряд. Происходит это примерно следующим образом.

Для фотона, упавшего на ПЗС-элемент, есть три варианта развития событий- он либо «срикошетит» от поверхности, либо будет поглощён в толще полупроводника (материала матрицы), либо «пробьёт насквозь» её «рабочую зону». Очевидно, что от разработчиков требуется создать такой сенсор, в котором потери от «рикошета» и «прострела навылет» были бы минимизированы. Те же фотоны, которые были поглощены матрицей, образуют пару электрон-дырка, если произошло взаимодействие с атомом кристаллической решётки полупроводника, или же только электрон (либо дырку), если взаимодействие было с атомами донорных либо акцепторных примесей, а оба перечисленных явления называются внутренним фотоэффектом. Разумеется, внутренним фотоэффектом работа сенсора не ограничивается - необходимо сохранить «отнятые» у полупроводника носители заряда в специальном хранилище, а затем их считать.

Элемент ПЗС-матрицы

В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p-типа оснащается каналами из полупроводника n-типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n -типа создаётся потенциальная яма, назначение которой- хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком, и усилить его.

Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига, которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.

Таким образом, при помощи регистра можно преобразовать в аналоговый сигнал заряды строки из ПЗС-элементов. Фактически, последовательный регистр сдвига в ПЗС-матрицах реализуется с помощью тех же самых ПЗС-элементов, объединённых в строку. Работа такого устройства базируется на способности приборов с зарядовой связью (именно это обозначает аббревиатура ПЗС) обмениваться зарядами своих потенциальных ям. Обмен осуществляется благодаря наличию специальных электродов переноса (transfer gate), расположенных между соседними ПЗС-элементами. При подаче на ближайший электрод повышенного потенциала заряд «перетекает» под него из потенциальной ямы. Между ПЗС-элементами могут располагаться от двух до четырёх электродов переноса, от их количества зависит «фазность» регистра сдвига, который может называться двухфазным, трёхфазным либо четырёхфазным.

Подача потенциалов на электроды переноса синхронизирована таким образом, что перемещение зарядов потенциальных ям всех ПЗС-элементов регистра происходит одновременно. И за один цикл переноса ПЗС-элементы как бы «передают по цепочке» заряды слева направо (или же справа налево). Ну а оказавшийся «крайним» ПЗС-элемент отдаёт свой заряд устройству, расположенному на выходе регистра- то есть усилителю.

В целом, последовательный регистр сдвига является устройством с параллельным входом и последовательным выходом. Поэтому после считывания всех зарядов из регистра есть возможность подать на его вход новую строку, затем следующую и таким образом сформировать непрерывный аналоговый сигнал на основе двумерного массива фототоков. В свою очередь, входной параллельный поток для последовательного регистра сдвига (то есть строки двумерного массива фототоков) обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая именуется параллельным регистром сдвига, а вся конструкция в целом как раз и является устройством, именуемым ПЗС-матрицей.

«Вертикальные» последовательные регистры сдвига, составляющие параллельный, называются столбцами ПЗС-матрицы, а их работа полностью синхронизирована. Двумерный массив фототоков ПЗС-матрицы одновременно смещается вниз на одну строку, причём происходит это только после того, как заряды предыдущей строки из расположенного «в самом низу» последовательного регистра сдвига ушли на усилитель. До освобождения последовательного регистра параллельный вынужден простаивать. Ну а сама ПЗС-матрица для нормальной работы обязательно должна быть подключена к микросхеме (или их набору), подающей потенциалы на электроды как последовательного, так и параллельного регистров сдвига, а также синхронизирующей работу обоих регистров. Кроме того, нужен тактовый генератор.

Полнокадровая матрица

Данный тип сенсора является наиболее простым с конструктивной точки зрения и именуется полнокадровой ПЗС-матрицей (full-frame CCD-matrix). Помимо микросхем «обвязки», такой тип матриц нуждается также в механическом затворе, перекрывающем световой поток после окончания экспонирования. До полного закрытия затвора считывание зарядов начинать нельзя - при рабочем цикле параллельного регистра сдвига к фототоку каждого из его пикселов добавятся лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full-frame matrix smear).

Таким образом, скорость считывания кадра в такой схеме ограничена скоростью работы как параллельного, так и последовательного регистров сдвига. Также очевидно, что необходимо перекрывать световой поток, идущий с объектива, до завершения процесса считывания, поэтому интервал между экспонированием тоже зависит от скорости считывания.

Матрицы с буферизацией кадра

Существует усовершенствованный вариант полнокадровой матрицы, в котором заряды параллельного регистра не поступают построчно на вход последовательного, а «складируются» в буферном параллельном регистре. Данный регистр расположен под основным параллельным регистром сдвига, фототоки построчно перемещаются в буферный регистр и уже из него поступают на вход последовательного регистра сдвига. Поверхность буферного регистра покрыта непрозрачной (чаще металлической) панелью, а вся система получила название матрицы с буферизацией кадра (frame - transfer CCD). Матрица с буферизацией кадра В данной схеме потенциальные ямы основного параллельного регистра сдвига «опорожняются» заметно быстрее, так как при переносе строк в буфер нет необходимости для каждой строки ожидать полный цикл последовательного регистра. Поэтому интервал между экспонированием сокращается, правда при этом также падает скорость считывания- строке приходится «путешествовать» на вдвое большее расстояние. Таким образом, интервал между экспонированием сокращается только для двух кадров, хотя стоимость устройства за счёт буферного регистра заметно возрастает. Однако наиболее заметным недостатком матриц с буферизацией кадра является удлинившийся «маршрут» фототоков, который негативно сказывается на сохранности их величин. И в любом случае между кадрами должен срабатывать механический затвор, так что о непрерывном видеосигнале говорить не приходится.

Матрицы с буферизацией столбцов

Специально для видеотехники был разработан новый тип матриц, в котором интервал между экспонированием был минимизирован не для пары кадров, а для непрерывного потока. Разумеется, для обеспечения этой непрерывности пришлось предусмотреть отказ от механического затвора.

Фактически данная схема, получившая наименование матрицы с буферизацией столбцов (interline CCD -matrix), в чём-то сходна с системами с буферизацией кадра- в ней также используется буферный параллельный регистр сдвига, ПЗС-элементы которого скрыты под непрозрачным покрытием. Однако буфер этот не располагается единым блоком под основным параллельным регистром- его столбцы «перетасованы» между столбцами основного регистра. В результате рядом с каждым столбцом основного регистра находится столбец буфера, а сразу же после экспонирования фототоки перемещаются не «сверху вниз», а «слева направо» (или «справа налево») и всего за один рабочий цикл попадают в буферный регистр, целиком и полностью освобождая потенциальные ямы для следующего экспонирования. Попавшие в буферный регистр заряды в обычном порядке считываются через последовательный регистр сдвига, то есть «сверху вниз». Поскольку сброс фототоков в буферный регистр происходит всего за один цикл, даже при отсутствии механического затвора не наблюдается ничего похожего на «размазывание» заряда в полнокадровой матрице. А вот время экспонирования для каждого кадра в большинстве случаев по продолжительности соответствует интервалу, затрачиваемому на полное считывание буферного параллельного регистра. Благодаря всему этому появляется возможность создать видеосигнал с высокой частотой кадров- не менее 30кадров секунду. Матрица с буферизацией столбцов Зачастую в отечественной литературе матрицы с буферизацией столбцов ошибочно именуют «чересстрочными». Вызвано это, наверное, тем, что английские наименования «interline» (буферизация строк) и «interlaced» (чересстрочная развёртка) звучат очень похоже. На деле же при считывании за один такт всех строк можно говорить о матрице с прогрессивной разверткой (progressive scan), а когда за первый такт считываются нечётные строки, а за второй- чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan).

Размеры матриц фотоаппаратов

Обозначение Ширина Высота Диагональ Площадь Пример
Полнокадровые,
плёнка типа 135 .
1 - 1,01 35,8 - 36 23,8 - 24 43 - 43,3 852-864 Canon EOS 5D , Canon EOS-1Ds (КМОП-матрица)
APS-H 1,26 - 1,28 28,1 - 28,7 18,7 - 19,1 33,8 - 34,5 525,5 - 548,2 Canon EOS-1D Mark III (КМОП-матрица)
1,33 27 18 32,4 486 Leica M8
APS-C , , 1.8" 1,44 - 1,74 20,7 - 25,1 13,8 - 16,7 24,9 - 30,1 285,7 - 419,2 Pentax K10D
Foveon X3 1,74 20,7 13,8 24,9 285,7 Sigma SD14
4/3 " 1,92 - 2 17,3 - 18 13 −13,5 21,6 - 22,5 224,9 - 243 Olympus E-330
1" 2,7 12,8 9,6 16 122,9 Sony ProMavica MVC-5000
2/3" 3,93 8,8 6,6 11 58,1 Pentax EI-2000
1/1,6" ≈4 8 6 10 48 Panasonic Lumix DMC-LX3
1/1,65" ≈4 Panasonic Lumix DMC-LX2
1/1,7" ≈4,5 7,6 5,7 9,5 43,3 Canon PowerShot G10
1/1,8" 4,84 7,176 5,319 8,9 38,2 Casio EXILIM EX-F1
1/1,9" ≈5 Samsung Digimax V6
1/2" 5,41 6,4 4,8 8 30,7 Sony DSC-D700
1/2,3" ≈6 6,16 4,62 7,70 28,46 Olympus SP-560 UZ
1/2,35" ≈6 Pentax Optio V10
1/2,4" ≈6 Fujifilm FinePix S8000fd
1/2,5" 5,99 5,8 4,3 7,2 24,9 Panasonic Lumix DMC-FZ8
1/2,6" ≈6 HP Photosmart M447
1/2,7" 6,56 5,27 3,96 6,6 20,9 Olympus C-900 zoom
1/2,8" ≈7 Canon DC40
1/2,9" ≈7 Sony HDR-SR7E
1/3" 7,21 4,8 3,6 6 17,3 Canon PowerShot A460
1/3,1" ≈7 Sony HDR-SR12E
1/3,2" 7,62 4,536 3,416 5,7 15,5 Canon HF100
1/3,4" ≈8 Canon MVX35i
1/3,6" 8,65 4 3 5 12 JVC GR-DZ7
1/3,9" ≈9 Canon DC22
1/4" Canon XM2
1/4,5" Samsung VP-HMX10C
1/4,7" Panasonic NV-GS500EE-S
1/5" Sony DCR-SR80E
1/5,5" JVC Everio GZ-HD7
1/6" 14,71 2,4 1,7 2,9 4,1 Sony DCR-DVD308E
1/8" Sony DCR-SR45E

Размеры матриц цифровых кинокамер

Обозначение соответствие
формату
кинопленки
Ширина

Сенсор - главный элемент цифровой камеры

ердцем любой цифровой видео- или фотокамеры (в настоящее время границы между этими типами устройств постепенно стираются) является светочувствительный сенсор. Он преобразует видимый свет в электрические сигналы, используемые для дальнейшей обработки с помощью электронных схем. Из школьного курса физики известно, что свет можно рассматривать как поток элементарных частиц - фотонов. Фотоны, попадая на поверхность некоторых полупроводниковых материалов, способны приводить к образованию электронов и дырок (напомним, что дыркой в полупроводниках принято называть вакантное место для электрона, образующееся в результате разрыва ковалентных связей между атомами полупроводникового вещества). Процесс генерации электронно-дырочных пар под воздействием света возможен только в том случае, когда энергии фотона достаточно, чтобы «оторвать» электрон от «родного» ядра и перевести его в зону проводимости. Энергия фотона напрямую связана с длиной волны падающего света, то есть зависит от так называемого цвета излучения. В диапазоне видимого (то есть воспринимаемого человеческим глазом) излучения энергии фотонов оказывается достаточно для того, чтобы порождать генерацию электронно-дырочных пар в таких полупроводниковых материалах, как, например, кремний.

Поскольку количество образующихся фотоэлектронов прямо пропорционально интенсивности светового потока, появляется возможность математически связывать количество падающего света с величиной порождаемого им заряда. Именно на этом простом физическом явлении и основан принцип действия светочувствительных сенсоров. Сенсор выполняет пять основных операций: поглощает фотоны, преобразует их в заряд, накапливает его, передает и преобразует в напряжение. В зависимости от технологии изготовления различные сенсоры осуществляют задачи хранения и накопления фотоэлектронов по-разному. Кроме того, могут использоваться различные методы преобразования накопленных электронов в электрическое напряжение (аналоговый сигнал), которое, в свою очередь, преобразуется в цифровой сигнал.

ПЗС-сенсоры

Исторически первыми в качестве светочувствительных элементов для видеокамер были использованы так называемые ПЗС-матрицы, массовое производство которых началось в 1973 году. Аббревиатура ПЗС расшифровывается как прибор с зарядовой связью; в английской литературе используется термин CCD (Charge-Coupled Device). Простейший ПЗС-сенсор представляет собой конденсатор, способный под воздействием света накапливать электрический заряд. Обычный конденсатор, состоящий из двух разделенных слоем диэлектрика металлических пластин, здесь не подойдет, поэтому используют так называемые МОП-конденсаторы. По своей внутренней структуре такие конденсаторы представляют собой сандвич из металла, оксида и полупроводника (от первых букв используемых компонентов они и получили свое название). В качестве полупроводника используется легированный кремний p-типа, то есть такой полупроводник, в котором за счет добавления атомов примеси (легирования) образуются избыточные дырки. Над полупроводником расположен тонкий слой диэлектрика (оксида кремния), а сверху - слой металла, выполняющий функцию затвора, если следовать терминологии полевых транзисторов (рис. 1).

Как уже отмечалось, под воздействием света в полупроводнике образуются электронно-дырочные пары. Однако наряду с процессом генерации происходит и обратный процесс - рекомбинация дырок и электронов. Поэтому следует предпринять меры, чтобы разделить образующиеся электроны и дырки и сохранять их в течение необходимого времеми. Ведь именно количество образованных фотоэлектронов несет информацию об интенсивности поглощенного света. Для этого и предназначены затвор и слой изолирующего диэлектрика. Предположим, что на затвор подан положительный потенциал. В этом случае под воздействием созданного электрического поля, проникающего сквозь диэлектрик в полупроводник, дырки, являющиеся основными носителями заряда, начнут сдвигаться в сторону от диэлектрика, то есть в глубь полупроводника. На границе полупроводника с диэлектриком образуется обедненная основными носителями, то есть дырками, область, причем размер этой области зависит от величины приложенного потенциала. Именно эта обедненная область и является «хранилищем» для фотоэлектронов. Действительно, если полупроводник подвергнуть воздействию света, то образующиеся электроны и дырки будут двигаться в противоположных направлениях - дырки в глубь полупроводника, а электроны к обедненному слою. Так как в этом слое нет дырок, то электроны будут сохраняться там без процесса рекомбинации в течение требуемого времени. Естественно, что процесс накопления электронов не может происходить бесконечно. По мере увеличения количества электронов между ними и положительно заряженными дырками возникает наведенное электрическое поле, направленное противоположно полю, создаваемому затвором. В результате поле внутри полупроводника уменьшается до нуля, после чего процесс пространственного разделения дырок и электронов становится невозможным. Как следствие - образование электронно-дырочной пары сопровождается ее рекомбинацией, то есть число «информационных» электронов в обедненном слое перестает увеличиваться. В этом случае можно говорить о переполнении емкости сенсора.

Рассмотренный нами сенсор способен выполнять две важные задачи - преобразовывать фотоны в электроны и накапливать их. Осталось решить задачу передачи этих информационных электронов в соответствующие блоки преобразования, то есть задачу съема информации.

Представим себе не один, а несколько близко расположенных затворов на поверхности одного и того же диэлектрика (рис. 2). Пусть в результате фотогенерации под одним из затворов накоплены электроны. Если на соседний затвор подать более высокий положительный потенциал, то электроны начнут перетекать в область более сильного поля, то есть перемещаться от одного затвора к другому. Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то, подавая на них соответствующие управляющие напряжения, можно перемещать локализованный зарядовый пакет вдоль такой структуры. Именно на этом простом принципе и основаны приборы с зарядовой связью.

Замечательное свойство ПЗС состоит в том, что для перемещения накопленного заряда достаточно всего трех типов затворов - одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причем одноименные затворы таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3). Это и есть простейший трехфазный регистр сдвига на ПЗС.

До сих пор мы рассматривали ПЗС-сенсор только в одной плоскости - вдоль бокового разреза. Вне поля нашего зрения остался механизм удержания электронов в поперечном направлении, при котором затвор подобен длинной полоске. Учитывая, что освещение полупроводника неоднородно в пределах такой полоски, скорость образования электронов под воздействием света будет меняться по длине затвора. Если не принять мер по локализации электронов вблизи области их образования, то в результате диффузии концентрация электронов выравняется и информация об изменении интенсивности света в продольном направлении будет утеряна. Естественно, можно было бы сделать размер затвора одинаковым как в продольном, так и поперечном направлении, но это потребовало бы изготовления слишком большого числа затворов на ПЗС-матрице. Поэтому для локализации образующихся электронов в продольном направлении используют так называемые стоп-каналы (рис. 4), представляющие собой узкую полоску полупроводника с повышенным содержанием легирующей примеси. Чем больше концентрация примеси, тем больше дырок образуется внутри такого проводника (каждый атом примеси приводит к образованию дырки). Но от концентрации дырок зависит, при каком конкретно напряжении на затворе под ним образуется обедненная область. Интуитивно понятно, что чем больше концентрация дырок в полупроводнике, тем труднее их отогнать вглубь.

Рассмотренная нами структура ПЗС-матрицы носит название ПЗС с поверхностным каналом передачи, так как канал, по которому передается накопленный заряд, находится на поверхности полупроводника. Поверхностный способ передачи имеет ряд существенных недостатков, связанных со свойствами границы полупроводника. Дело в том, что ограничение полупроводника в пространстве нарушает идеальную симметрию его кристаллической решетки со всеми вытекающими отсюда последствиями. Не вникая в тонкости физики твердого тела, заметим, что подобное ограничение приводит к образованию энергетических ловушек для электронов. В результате накопленные под воздействием света электроны могут захватываться этими ловушками, вместо того чтобы передаваться от одного затвора к другому. Помимо прочего такие ловушки могут непредсказуемо высвобождать электроны, причем не всегда, когда это действительно нужно. Получается, что полупроводник начинает «шуметь» - иначе говоря, количество накопленных под затвором электронов не будет точно соответствовать интенсивности поглощенного излучения. Избежать подобных явлений можно, но для этого сам канал переноса нужно отодвинуть в глубь проводника. Такое решение было реализовано специалистами фирмы Philips в 1972 году. Идея заключалась в том, что в поверхностной области полупроводника p-типа создавался тонкий слой полупроводника n-типа, то есть полупроводника, в котором основными носителями заряда являются электроны (рис. 5).

Хорошо известно, что контакт двух полупроводников с различными типами проводимости приводит к образованию обедненного слоя на границе перехода. Происходит это за счет диффузии дырок и электронов во взаимно противоположных направлениях и их рекомбинации. Подача положительного потенциала на затвор увеличивает размер обедненной области. Характерно, что теперь сама обедненная область, или емкость для фотоэлектронов, находится не на поверхности, а следовательно, отсутствуют и поверхностные ловушки для электронов. Такой канал переноса называется скрытым, и все современные ПЗС изготавливаются именно со скрытым каналом переноса.

Рассмотренные нами основные принципы функционирования ПЗС-сенсора используются для построения различных по архитектуре ПЗС-матриц. Конструктивно можно выделить две основные схемы матриц: с покадровым переносом и с межстрочным переносом.

В матрице с покадровым переносом имеются две равнозначные секции с одинаковым числом строк: накопления и хранения. Каждая строка в этих секциях образована тремя затворами (передающий, принимающий и изолирующий). Кроме того, как уже отмечалось выше, все строки разделены множеством стоп-каналов, формирующих ячейки накопления в горизонтальном направлении. Таким образом, наименьший структурный элемент ПЗС-матрицы (пиксел) создается из трех горизонтальных затворов и двух вертикальных стоп-каналов (рис. 6).

За время экспозиции в секции накопления образуются фотоэлектроны. После этого тактовые импульсы, подаваемые на затворы, переносят накопленные заряды из секции накопления в затененную секцию хранения, то есть фактически происходит передача всего кадра целиком. Поэтому такая архитектура и получила название ПЗС с покадровым переносом. После переноса секция накопления очищается и может повторно накапливать заряды, в то время как из секции памяти заряды поступают в горизонтальный регистр считывания. Структура горизонтального регистра аналогична структуре ПЗС-сенсора - те же три затвора для переноса заряда. Каждый элемент горизонтального регистра имеет зарядовую связь с соответствующим столбцом секции памяти, и за каждый тактовый импульс из секции накопления в регистр считывания поступает вся строка целиком, которая после этого передается в выходной усилитель для дальнейшей обработки.

Рассмотренная схема ПЗС-матрицы имеет одно несомненное достоинство - высокий коэффициент заполнения (fill factor). Этим термином принято называть отношение фоточувствительной площади матрицы к ее общей площади. У матриц с покадровым переносом коэффициент заполнения достигает практически 100%. Такая особенность позволяет создавать на их основе очень чувствительные приборы.

Кроме рассмотренного преимущества матрицы с покадровым переносом обладают и рядом недостатков. Прежде всего отметим, что сам процесс переноса не может осуществляться мгновенно. Именно это обстоятельство приводит к ряду негативных явлений. В процессе переноса заряда из секции накопления в секцию хранения первая остается освещенной и в ней продолжается процесс накопления фотоэлектронов. Это приводит к тому, что яркие участки изображения успевают внести свой вклад в чужой зарядовый пакет даже за то короткое время, в течение которого он проходит через них. В результате на кадре появляются характерные искажения в виде вертикальных полос, простирающихся через весь кадр от ярких участков изображения. Конечно, для борьбы с подобными явлениями можно применять различные ухищрения, однако наиболее радикальным способом является разделение секции накопления и секции переноса, с тем чтобы перенос протекал в затененной области. Матрицы такой архитектуры получили название ПЗС с межстрочным переносом (рис. 7).

В отличие от описанной ранее матрицы с покадровым переносом, в качестве элементов накопления заряда здесь выступают фотодиоды (более подробно фотодиоды будут рассмотрены позже). Заряды, накопляемые фотодиодами, передаются в затененные ПЗС-элементы, которые осуществляют дальнейший перенос заряда. Обратим внимание, что перенос всего кадра от фотодиодов в вертикальные ПЗС-регистры переноса происходит за один такт. Возникает закономерный вопрос: почему такая архитектура получила название межстрочного переноса (встречается также термин «чересстрочный перенос»)? Чтобы разобраться в происхождении названия межстрочного, а также и покадрового переноса, вспомним основной принцип вывода изображения на экран формирования видеосигнала. Кадровый сигнал состоит из сигналов строк, разделенных межстрочным промежутком, то есть временем, необходимым для того, чтобы электронный луч, сканирующий по экрану, успел переместиться от конца одной строки к началу следующей. Имеются также межкадровые промежутки - время, необходимое для перемещения луча от конца последней строки к началу первой строки (переход на новый кадр).

Если вспомнить архитектуру ПЗС-матрицы с межкадровым переносом, то становится понятно, что перенос кадра из секции накопления в секцию хранения происходит во время межкадрового промежутка видеосигнала. Это и понятно, так как для переноса всего кадра потребуется значительный интервал времени. В архитектуре с межстрочным переносом передача кадра происходит за один такт, и для этого достаточно небольшого промежутка времени. Далее изображение поступает в горизонтальный регистр сдвига, причем передача происходит по строкам во время межстрочных интервалов видеосигнала.

Помимо двух рассмотренных типов ПЗС-матриц существуют и иные схемы. Например, схема, объединяющая межкадровый и межстрочный механизм (строчно-кадровый перенос), получается при добавлении к ПЗС-матрице межстрочного переноса секции хранения. При этом перенос кадра от фоточувствительных элементов происходит за один такт во время межстрочного интервала, а во время межкадрового интервала кадр передается в секцию хранения (межкадровый перенос); из секции хранения кадр передается в горизонтальный регистр сдвига во время межстрочных интервалов (межкадровый перенос).

В последнее время получили распространение так называемые супер-ПЗС (Super CCD), использующие оригинальную сотовую архитектуру, которую образуют восьмиугольные пикселы. За счет этого увеличивается рабочая поверхность кремния и повышается плотность пикселов (количество пикселов ПЗС). Кроме того, восьмиугольная форма пикселов увеличивает площадь светочувствительной поверхности.

КМОП-сенсоры

Принципиально другим типом сенсора является так называемый КМОП-сенсор (КМОП - комплиментарный металл-оксид-полупроводник; в англоязычной терминологии - CMOS).

Внутренняя архитектура КМОП-сенсоров может быть различной. Так, в качестве фоточувствительного элемента могут выступать фотодиоды, фототранзисторы или фотовентили. Независимо от типа фоточувствительного элемента неизменным остается принцип разделения дырок и электронов, получаемых в процессе фотогенерации. Рассмотрим наиболее простой тип фотодиода, на примере которого легко понять принцип действия всех фотоэлементов.

Простейший фотодиод представляет собой контакт полупроводников n- и p-типов. На границе контакта этих полупроводников образуется обедненная область, то есть слой без дырок и электронов. Такая область формируется в результате диффузии основных носителей зарядов во взаимно противоположных направлениях. Дырки движутся из p-полупроводника (то есть из области, где их находится в избытке) в n-полупроводник (то есть в область, где их концентрация мала), а электроны движутся в противоположном направлении, то есть из n-полупроводника в p-полупроводник. В результате такой рекомбинации дырки и электроны исчезают и создается обедненная область. Кроме того, на границах обедненной области оголяются ионы примеси, причем в n-области ионы примеси имеют положительный заряд, а в p-области - отрицательный. Эти заряды, распределенные по границе обедненной области, образуют электрическое поле, подобное тому, что создается в плоском конденсаторе, состоящем из двух пластин. Именно это поле выполняет функцию пространственного разделения дырок и электронов, образующихся в процессе фотогенерации. Наличие такого локального поля (его также называют потенциальным барьером) является принципиальным моментом в любом фоточувствительном сенсоре (не только в фотодиоде).

Предположим, что фотодиод освещается светом, причем свет падает на n-полупроводник, а p-n-переход перпендикулярен лучам света (рис. 8). Фотоэлектроны и фотодырки будут диффундировать в глубь кристалла, и некоторая их доля, не успевшая рекомбинировать, достигнет поверхности p-n-перехода. Однако для электронов существующее электрическое поле является непреодолимым препятствием - потенциальным барьером, поэтому электроны не смогут преодолеть p-n-переход. Дырки же, напротив, ускоряются электрическим полем и проникают в p-область. В результате пространственного разделения дырок и электронов n-область заряжается отрицательно (избыток фотоэлектронов), а p-область - положительно (избыток фотодырок).

Основное отличие КМОП-сенсоров от ПЗС-сенсоров заключается не в способе накопления заряда, а в способе его дальнейшего переноса. Технология КМОП, в отличие от ПЗС, позволяет осуществлять большее количество операций прямо на кристалле, на котором расположена фоточувствительная матрица. Кроме высвобождения электронов и их передачи, КМОП-сенсоры могут также обрабатывать изображения, выделять контуры изображения, уменьшать помехи и производить аналого-цифровые преобразования. Более того, имеется возможность создавать программируемые КМОП-сенсоры, следовательно, можно получить очень гибкое многофункциональное устройство.

Столь широкий набор функций, выполняемых одной микросхемой, - основное преимущество технологии КМОП над ПЗС. При этом сокращается количество необходимых внешних компонентов. Использование в цифровой камере КМОП-сенсора позволяет устанавливать на освободившееся место другие чипы - например, цифровые сигнальные процессоры (DSP) и аналого-цифровые преобразователи.

Бурное развитие КМОП-технологий началось в 1993 году, когда были созданы активные пиксельные сенсоры. При этой технологии у каждого пиксела имеется свой считывающий транзисторный усилитель, что и позволяет преобразовывать заряд в напряжение непосредственно на пикселе. Кроме того, появилась возможность для произвольного доступа к каждому пикселу сенсора (подобно тому, как работает оперативная память с произвольным доступом). Считывание заряда с активных пикселов КМОП-сенсора производится по параллельной схеме (рис. 9), что позволяет считывать сигнал с каждого пиксела или с колонки пикселов напрямую. Произвольный доступ позволяет КМОП-сенсору считывать не только всю матрицу целиком, но и выборочные области (метод оконного считывания).

Несмотря на кажущиеся преимущества КМОП-матриц перед ПЗС (основным из которых является более низкая цена), они обладают и рядом недостатков. Наличие дополнительных схем на кристалле КМОП-матрицы приводит к появлению ряда помех, таких как транзисторные и диодные рассеивания, а также эффект остаточного заряда, то есть КМОП-матрицы на сегодняшний день являются более «шумными». Поэтому в профессиональных цифровых камерах в ближайшее время будут использовать качественные ПЗС-матрицы, а КМОП-сенсоры осваивают рынок более дешевых устройств, к которому, в частности, относятся Web-камеры.

Как получается цвет

Рассмотренные выше фоточувствительные сенсоры способны реагировать лишь на интенсивность поглощаемого света - чем выше интенсивность, тем больший заряд накапливается. Возникает закономерный вопрос: как же получается цветное изображение?

Чтобы камера могла различать цвета, непосредственно на активный пиксел накладывается массив цветных фильтров (CFA, color filter arrays). Принцип действия цветного фильтра очень прост: он пропускает свет только определенного цвета (иначе говоря, только свет с определенной длиной волны). Но сколько же таких фильтров потребуется, если количество различных цветовых оттенков практически не ограниченно? Оказывается, любой цветовой оттенок можно получить смешиванием в определенных пропорциях нескольких основных (базовых) цветов. В наиболее популярной аддитивной модели RGB (Red, Green, Blue) таких цвета три: красный, зеленый и синий. Значит, и цветных фильтров потребуется всего три. Отметим, что цветовая модель RGB не единственная, но в подавляющем большинстве цифровых Web-камер используется именно она.

Наиболее популярными являются массивы фильтров цветовой модели Байера (Bayer pattern). В этой системе красные, зеленые и синие фильтры расположены в шахматном порядке, а количество зеленых фильтров в два раза больше, чем красных или синих. Порядок расположения таков, что красные и синие фильтры расположены между зелеными (рис. 10).

Такое соотношение зеленых, красных и синих фильтров объясняется особенностями зрительного восприятия человека: наши глаза более чувствительны к зеленому цвету.

В ПЗС-камерах совмещение трех цветовых каналов производится в устройстве формирования изображения уже после преобразования сигнала из аналогового вида в цифровой. В КМОП-сенсорах это совмещение может происходить и непосредственно в чипе. В любом случае первичные цвета каждого фильтра математически интерполируются с учетом цвета соседних фильтров. Следовательно, для того чтобы получить истинный цвет пиксела изображения, необходимо знать не только интенсивность света, прошедшего через светофильтр этого пиксела, но и значения интенсивностей света, прошедшего через светофильтры окружающих пикселов.

Как уже отмечалось, в цветовой модели RGB используется три основных цвета, с помощью которых можно получить любой оттенок видимого спектра. сколько же всего оттенков позволяют различать цифровые камеры? Максимальное количество различных цветовых оттенков определяется глубиной цвета, которая, в свою очередь, определяется количеством битов, используемых для кодирования цвета. В популярной модели RGB 24 с глубиной цвета 24 бита для каждого цвета отводится по 8 битов. С помощью 8 битов можно задать 256 различных цветовых оттенков соответственно красного, зеленого и синего цветов. Каждому оттенку присваивается значение от 0 до 255. К примеру, красный цвет может принимать 256 градаций: от чисто красного (255) до черного (0). Максимальное значение кода соответствует чистому цвету, а код каждого цвета принято располагать в следующем порядке: красный, зеленый и синий. Например, код чистого красного цвета записывается в виде (255, 0, 0), код зеленого цвета - (0, 255, 0), а код синего цвета - (0, 0, 255). Желтый цвет можно получить смешением красного и зеленого, и его код записывается в виде (255, 255, 0).

Кроме модели RGB широкое применение нашли также модели YUV и YСrCb, которые похожи друг на друга и основаны на разделении сигналов яркости и цветности. Сигнал Y - это сигнал яркости, который определяется смешением красного, зеленого и синего цветов. Сигналы U и V (Cr, Cb) являются цветоразностными. Так, сигнал U близок к разности между синими и желтыми компонентами цветного изображения, а сигнал V близок к разности между красными и зелеными компонентами цветного изображения.

Основное достоинство модели YUV (YCrCb) заключается в том, что этот метод кодирования хотя и более сложен, чем RGB, однако требует меньшей полосы пропускания. Дело в том, что чувствительность человеческого глаза к яркостному Y-компоненту и цветоразностным компонентам неодинакова, поэтому вполне допустимым представляется выполнение этого преобразования с прореживанием (интерливингом) цветоразностных компонентов, когда для группы из четырех соседних пикселов (2×2) вычисляются Y-компоненты, а цветоразностные компоненты используются общие (так называемая схема 4:1:1). Нетрудно подсчитать, что уже схема 4:1:1 позволяет сократить выходной поток вдвое (вместо 12 байтов для четырех соседних пикселов достаточно шести). При кодировании по схеме YUV 4:2:2 сигнал яркости передается для каждой точки, а цветоразностные сигналы U и V - только для каждой второй точки в строке.

Как работают цифровые

Web-камеры

ринцип работы всех типов цифровых камер примерно одинаков. Рассмотрим типичную схему наиболее простой Web-камеры, основное отличие которой от других типов камер - наличие USB-интерфейса для подключения к компьютеру.

Помимо оптической системы (объектива) и светочувствительного ПЗС- или КМОП-сенсора обязательным является наличие аналого-цифрового преобразователя (АЦП), который преобразует аналоговые сигналы светочувствительного сенсора в цифровой код. Кроме того, необходима и система формирования цветного изображения. Еще одним важным элементом камеры является схема, отвечающая за компрессию данных и подготовку к передаче в нужном формате. К примеру, в рассматриваемой Web-камере видеоданные передаются в компьютер по интерфейсу USB, поэтому на ее выходе должен наличествовать контроллер USB-интерфейса. Структурная схема цифровой камеры изображена на рис. 11 .

Аналого-цифровой преобразователь предназначен для дискретизации непрерывного аналогового сигнала и характеризуется частотой отсчетов, определяющих промежутки времени, через которые производится замер аналогового сигнала, а также своей разрядностью. Разрядность АЦП - это количество битов, используемых для представления каждого отсчета сигнала. Например, если используется 8-разрядный АЦП, то для представления сигнала используется 8 битов, что позволяет различать 256 градаций исходного сигнала. При использовании 10-разрядного АЦП имеется возможность различать уже 1024 различных градаций аналогового сигнала.

Из-за низкой пропускной способности USB 1.1 (всего 12 Мбит/с, из которых Web-камера использует не более 8 Мбит/с) перед передачей в компьютер данные необходимо сжимать. Например, при разрешении кадра 320×240 пикселов и глубине цвета 24 бита размер кадра в несжатом виде будет составлять 1,76 Мбит. При ширине полосы пропускания канала USB 8 Мбит/с максимальная скорость передачи несжатого сигнала составит всего 4,5 кадров в секунду, а для получения качественного видео необходима скорость передачи 24 или более кадров в секунду. Таким образом, становится понятно, что без аппаратного сжатия передаваемой информации нормальное функционирование камеры невозможно.

В соответствии с технической документацией данная КМОП-матрица имеет разрешение 664×492 (326 688 пикселов) и может функционировать со скоростью до 30 кадров в секунду. Сенсор поддерживает как прогрессивный, так и строчной тип развертки и обеспечивает отношение «сигнал/шум» более 48 дБ.

Как видно из блок-схемы, блок цветоформирования (аналоговый сигнальный процессор) имеет два канала - RGB и YСrCb, причем для модели YСrCb яркостный и цветоразностные сигналы вычисляются по формулам:

Y = 0,59G + 0,31R + 0,11B,

Cr = 0,713 × (R – Y),

Cb = 0,564 × (B – Y).

Аналоговые сигналы RGB и YCrCb, формируемые аналоговым сигнальным процессором, обрабатываются двумя 10-битными АЦП, каждый из которых работает на скорости 13,5 MSPS, что обеспечивает синхронизацию с пиксельной скоростью. После оцифровки данные поступают на цифровой преобразователь, формирующий видеоданные в 16-битном формате YUV 4:2:2 или 8-битном формате Y 4:0:0, которые направляются в выходной порт по 16-битной или 8-битной шине.

Кроме того, рассматриваемый КМОП-сенсор обладает широким спектром возможностей по коррекции изображения: предусмотрены установка баланса белого цвета, управление экспозицией, гамма-коррекцией, цветовой коррекции и т.д. Управлять работой сенсора можно по интерфейсу SCCB (Serial Camera Control Bus).

Микросхема OV511+, блок-схема которой показана на рис. 13 , представляет собой USB-контроллер.

Контроллер позволяет передавать видеоданные по USB-шине со скоростью до 7,5 Мбит/с. Нетрудно подсчитать, что такая полоса пропускания не позволит передавать видеопоток с приемлемой скоростью без предварительного сжатия. Собственно, компрессия - это и есть основное назначение USB-контроллера. Обеспечивая необходимую компрессию в реальном времени вплоть до степени сжатия 8:1, контроллер позволяет передавать видеопоток со скоростью 10-15 кадров в секунду при разрешении 640×480 и со скоростью 30 кадров в секунду при разрешении 320×240 и меньшем.

За компрессию данных отвечает блок OmniCE, реализующий фирменный алгоритм сжатия. OmniCE обеспечивает не только необходимую скорость видеопотока, но и быструю декомпрессию при минимальной загрузке центрального процессора (по крайней мере, по утверждению разработчиков). Степень сжатия, обеспечиваемая блоком OmniCE, варьируется от 4 до 8 в зависимости от требуемой скорости видеопотока.

КомпьютерПресс 12"2001

Твердотельные фотоэлектрические преобразователи (ТФЭП) изображений являются аналогами передающих ЭЛТ.

ТФЭП ведут начало с 1970г., с так называемых ПЗС и формируются на основе отдельных ячеек, представляющих собой конденсаторы МДП- или МОП-структуры. Одной из обкладок такого элементарного конденсатора является металлическая пленка М, второй – полупроводниковая подложка П (p - или n -проводимости), диэлектриком Д служит полупроводник, наносимый в виде тонкого слоя на подложку П. В качестве подложки П применяется кремний, легированный акцепторной (p -типа) или донорной (n -типа) примесью, а в качестве Д – окисел кремния SiO 2 (см. рис.8.8).

Рис. 8.8. Конденсатор МОП-структуры

Рис. 8.9. Перемещение зарядов под действием электрического поля

Рис. 8.10. Принцип работы трехфазной системы ПЗС

Рис. 8.11. Перемещение зарядов в двухфазной системе ПЗС

При подаче на металлический электрод напряжения, под ним образуется «карман» или потенциальная яма, в которой могут «скапливаться» неосновные носители (в нашем случае электроны), а основные носители, дырки, будут отталкиваться от М. На каком-то расстоянии от поверхности, концентрирование неосновных носителей может оказаться выше концентрации основных. Вблизи диэлектрика Д в подложке П возникает инверсионный слой, в котором тип проводимости изменяется на обратный.

Зарядовый пакет в ПЗС может быть введен электрическим путем или с помощью световой генерации. При световой генерации фотоэлектрические процессы, возникающие в кремнии, приведут к накоплению неосновных носителей в потенциальных ямах. Накопленный заряд пропорционален освещенности и времени накопления . Направленная передача заряда в ПЗС обеспечивается расположением МОП-конденсаторов на столь близком расстоянии друг от друга, что их обедненные области перекрываются и потенциальные ямы соединяются. При этом подвижный заряд неосновных носителей будет накапливаться в том месте, где глубже потенциальная яма.

Пусть под воздействием света накоплен заряд под электродом U 1 (см. рис.8.9). Если теперь на соседний электрод U 2 подать напряжение U 2 > U 1 , то рядом появится другая потенциальная яма, более глубокая (U 2 > U 1). Между ними возникнет область электрического поля и неосновные носители (электроны) будут дрейфовать (перетекать) в более глубокий «карман» (см. рис.8.9). Чтобы исключить двунаправленность в передаче зарядов, используют последовательность электродов, объединенных в группы по 3 электрода (см. рис.8.10).

Если, например, накоплен заряд под электродом 4 и необходимо передать его вправо, то на правый электрод 5 подается более высокое напряжение (U 2 > U 1) и заряд перетекает к нему и т.д.


Практически вся совокупность электродов подсоединена к трем шинам:

I – 1, 4, 7, …

II – 2, 5, 8, …

III – 3, 6, 9, …

В нашем случае напряжение «приема» (U 2) будет на электродах 2 и 5, но электрод 2 отделен от электрода 4, где хранится заряд, электродом 3 (у которого

U 3 = 0), поэтому перетекания влево не будет.

Трехтактная работа ПЗС предполагает наличие трех электродов (ячеек) на один элемент ТВ-изображения, что уменьшает полезную площадь, используемую световым потоком. Для сокращения числа ячеек (электродов) ПЗС металлические электроды и слой диэлектрика формируются ступенчатой формы (см. рис.8.11). Это позволяет при подаче на электроды импульсов напряжения создавать под разными его участками потенциальные ямы разной глубины. В более глубокую яму стекает большинство зарядов из соседней ячейки.

При двухфазной системе ПЗС сокращается число электродов (ячеек) в матрице на одну треть, что благоприятно сказывается на считывании потенциального рельефа.

ПЗС вначале предлагали использовать в вычислительной технике в качестве запоминающих устройств, регистров сдвига. В начале цепочки ставили инжектирующий диод, вводящий в систему заряд, а в конце цепи – выводной диод, обычно это n-p- или p-n- переходы МОП структуры, образующие с первым и последним электродами (ячейками) цепочки ПЗС полевые транзисторы.

Но скоро выяснилось, что ПЗС очень чувствительны к свету, и поэтому их лучше и эффективнее использовать в качестве светоприемников, а не в качестве запоминающих устройств.

Если ПЗС-матрица используется в качестве фотоприемника, то накопление заряда под тем или иным электродом может быть осуществлено оптическим методом (инжекция светом). Можно говорить, что ПЗС-матрицы по сути своей являются светочувствительными аналоговыми сдвиговыми регистрами. Сегодня ПЗС не используются в качестве запоминающих устройств (ЗУ), а только в качестве фотоприемников. Они используются в факсимильных аппаратах, сканерах (линейки ПЗС), в фотокамерах и видеокамерах (матрицы ПЗС). Обычно в ТВ камерах используются так называемые ПЗС-чипы.

Мы предполагали, что все 100% зарядов передаются в соседний карман. Однако на практике приходится считаться с потерями. Одним из источников потерь является «ловушки», способные захватывать и удерживать некоторое время заряды. Эти заряды не успевают перетечь в соседний карман, если скорость передачи будет велика.

Второй причиной является сам механизм перетекания. В первый момент перенос зарядов происходит в сильном электрическом поле - дрейф в Е . Однако по мере перетекания зарядов напряженность поля падает и дрейфовый процесс затухает, поэтому последняя порция перемещается за счет диффузии, в 100 раз медленнее дрейфа. Дождаться последней порции – значит снизить быстродействие. Дрейф дает более 90% переноса. Но именно последние проценты являются основными при определении потерь.

Пусть коэффициент передачи одного цикла переноса равен k = 0,99, полагая число циклов равным N = 100, определим суммарный коэффициент передачи:

0,99 100 = 0,366

Становится очевидным, что при большом числе элементов даже незначительные потери на одном элементе приобретают большое значение для цепочки в целом.

Поэтому вопрос о сокращении числа переносов зарядов в матрице ПЗС является особо важным. В этом отношении у матрицы двухфазной ПЗС коэффициент передачи зарядов будет несколько большим, чем в трехфазной системе.

| ПЗС-матрица (Прибор с зарядовой связью ) или CCD-матрица (на англ. Charge-Coupled Device ) – это аналоговая интегральная микросхема, в состав которой входят светочувствительные фотодиоды, выполненные на основе кремния или оксида олова. Данная микросхема использует технологию ПЗС (Приборов с зарядовой связью).

История CCD-матрицы

Первый прибор с зарядовой связью был разработан в 1969 году Джорджем Смитом (George Smith) и Уиллардом Бойлом (Willard Boyle) в Лабораториях Белла (AT&T Bell Labs) в США. Разработки велись в области видеотелефонии (Picture Phone) и развитии актуальной в то время, «полупроводниковой пузырьковой памяти» (Semiconductor Bubble Memory). Вскоре приборы с зарядовой связью начали использоваться как устройства памяти, в которых можно было поместить заряд во входной регистр микросхемы. Но позднее способность элемента памяти устройства получать заряд за счет фотоэлектрического эффекта сделала применение CCD устройств основным.

В 1970 году исследователи Лаборатории Белла научились фиксировать изображения с помощью простейших линейных устройств.

Вскоре, под руководством Кадзуо Ивамы, компания Sony стала активно разрабатывать и заниматься CCD технологиями, вложив в это огромные средства, и сумела наладить массовое производство ПЗС-матриц для своих видео камер.

Кадзуо Ивама скончался в августе 1982 года. Для увековечения его вклада, микросхема ПЗС-матрицы была установлена на его надгробной плите.

В 2006 году за работы над CCD, Уиллард Бойл и Джордж Смит были награждены Национальной Инженерной Академией США (USA National Academy of Engineering).

Позднее, в 2009 году создатели были награждены Нобелевской премией по физике.

Принцип работы ПЗС-матрицы

CCD-матрица в основном состоит из поликремния, отделённого от кремниевой подложки мембраной, у которой при подаче напряжения питания через поликремневые затворы сильно изменяются электрические потенциалы вблизи электродов проводника.

До экспонирования и подачей определённой комбинации напряжений на электроды, происходит сброс всех зарядов образовавшихся ранее и преобразование всех элементов в идентичное или первоначальное состояние.

Затем комбинация напряжений на электродах создаёт потенциальный запас или яму, в которой накапливаться электроны, образовавшиеся в определенном пикселе матрицы в результате воздействия световых лучей при экспонировании. Чем интенсивней сила светового потока во время экспозиции, тем больше накапливается запас электронов в потенциальной яме, соответственно тем выше мощность итогового заряда определенного пикселя.

После экспонирования, последовательные изменения напряжения питания на электродах формируются в каждом отдельно взятом пикселе и рядом с ним происходит распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным пикселям ПЗС-матрицы.

Пример пикселя CCD-матрицы с карманом n-типа

Примечание: архитектура субпикселей у каждого производителя своя.

Обозначения пикселя CCD на схеме:

1 - Частицы света (фотоны), прошедшие через объектив видеокамеры;
2 - Микролинза субпикселя;
3 - Красный светофильтр субпикселя (является фрагментом фильтра Байера);
4 - Светопропускающий электрод из оксида олова или поликристаллического кремния;
5 - Изолятор (состоит из оксида кремния);
6 - Специальный кремниевый канал n-типа. Зона внутреннего фотоэффекта (зона генерации носителей);
7 - Зона возможного запаса или ямы (карман n-типа). Место где собираются электроны из зоны генерации носителей;
8 - Кремниевая подложка p-типа.

Полнокадровый перенос CCD-матрицы

Полностью сформированное объективом видео изображение попадает на CCD-матрицу, то есть световые лучи падают на светочувствительную поверхность CCD-элементов, цель которых - преобразовать энергию частиц (фотонов) в электрический заряд.
Данный процесс протекает следующим образом.
Для фотона, попавшего на CCD-элемент, есть три варианта развития событий - он либо «отлетит» от поверхности, либо поглотится толщей полупроводника (состав материала матрицы), либо пробьет его поверхность. Поэтому от разработчиков требуется создать такой сенсор, в котором потери от отражения и поглащения были бы минимизированы. Те же частицы, которые были поглощены CCD-матрицей, образуют пару электрон-дырка, если произошло слабое взаимодействие с атомом кристаллической решётки полу проводника, или взаимодействие было с атомами донорских, либо акцепторных примесей. Оба из вышеперечисленных явлений называются - внутренним фотоэффектом. Но, внутренним фотоэффектом работа сенсора не ограничивается – главное необходимо сохранить «отнятые» у полупроводника носители заряда в специализированном хранилище, а потом их считать.

Строение элементов CCD-матрицы

В общем виде конструкция CCD-элемента выглядит примерно так: кремниевая подложка p-типа снабжается каналами из полу проводника n-типа. Над этими каналами размещаются электроды из поликристаллического кремния с изолирующей мембраной из оксида кремния. После подачи на этот электрод электрического потенциала, в ослабленной зоне под каналом n-типа создаётся потенциальная ловушка (яма), задача которой - сохранить электроны. Частица света, проникающая в кремний, приводит к генерации электрона, который притягивается потенциальной ловушкой и «застревает» в ней. Огромное количество фотонов или яркий свет обеспечивает больший заряд ловушки. Потом надо считать значение полученного заряда, также именуемого фототоком, и затем усилить его.

Считывание фототоков CCD-элементов происходит с так называемыми последовательными регистрами сдвига, которые конвертируют строку зарядов на входе в серию импульсов на выходе. Созданная серия импульсов – это и есть аналоговый сигнал, который в дальнейшем поступает на усилитель.

Так, при помощи регистра возможно преобразовать в аналоговый сигнал заряды строки из CCD-элементов. Практически, последовательный регистр сдвига в CCD-матрицах реализуется с помощью тех же CCD-элементов, объединённых в одну строку. Работа данного устройства базируется на умении приборов с зарядовой связью обмениваться зарядами своих потенциальных ловувшек. Этот обмен происходит благодаря наличию специализированных электродов переноса (по англ. Transfer Gate), расположенных между соседними CCD-элементами. При подаче повышенного потенциала на ближайший электрод, заряд «мигрирует» под него из потенциальной ловушки. Между CCD-элементами обычно располагаются от двух до четырёх электродов переноса, и от их количества зависит фазность регистра сдвига, который также называется двухфазным, трёхфазным или четырёхфазным.

Подача разных потенциалов на электроды переноса синхронизирована так, что перетекание зарядов потенциальных ловушек всех CCD-элементов регистра происходит практически одновременно. Так за один цикл переноса, CCD-элементы передают по цепочке заряды справа налево или слева направо. А крайний CCD-элемент отдаёт свой заряд усилителю, размещенного на выходе регистра.

Итак, последовательный регистр сдвига это и есть устройство с последовательным выходом и параллельным входом. После считывания абсолютно всех зарядов из регистра возникает возможность подать на его вход новую строку, потом следующую и так сформировать непрерывный аналоговый сигнал в основе которых лежит двумерный массив фототоков. Затем, входной параллельный поток для последовательного регистра сдвига обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая называется параллельным регистром сдвига, а вся конструкция в сборе как раз и является устройством, называемое CCD-матрицей.

Впервые принцип ПЗС с идеей сохранять и затем считывать электронные заряды был разработан двумя инженерами корпорации BELL в конце 60-х годов в ходе поиска новых типов памяти для ЭВМ, способных заменить память на ферритовых кольцах (да – да, была и такая память). Эта идея оказалась бесперспективной, но способность кремния реагировать на видимый спектр излучения была замечена и мысль использовать этот принцип для обработки изображений получила своё развитие.

Начнем с расшифровки термина.

Аббревиатура ПЗС означает "Приборы с Зарядовой Связью" - этот термин образовался от английского "Сharge-Сoupled Devices" (CCD).

Данный тип приборов в настоящее время имеет очень широкий круг применений в самых различных оптоэлектронных устройствах для регистрации изображения. В быту это цифровые фотоаппараты, видеокамеры, различные сканеры.

Что же отличает ПЗС-приемник от обычного полупроводникового фотодиода, имеющего светочувствительную площадку и два электрических контакта для съема электрического сигнала?

Во-первых , таких светочувствительных площадок (часто их называют пикселами - элементами, принимающими свет и преобразующими его в электрические заряды) в ПЗС-приемнике очень много, от нескольких тысяч до нескольких сотен тысяч и даже нескольких миллионов. Размеры отдельных пикселов одинаковы и могут быть от единиц до десятков микрон. Пиксели могут быть выстроены в один ряд - тогда приемник называется ПЗС-линейкой, или ровными рядами заполнять участок поверхности - тогда приемник называют ПЗС-матрицей.

Раcположение светоприемных элементов (прямоугольники синего цвета) в ПЗС-линейке и ПЗС-матрице.

Во-вторых , в ПЗС-приёмнике, внешне похожем на обычную микросхему, нет огромного числа электрических контактов для вывода электрических сигналов, которые, казалось бы, должны идти от каждого светоприемного элемента. Зато к ПЗС-приемнику подключается электронная схема, которая позволяет извлекать с каждого светочувствительного элемента электрический сигнал, пропорциональный его засветке.

Действие ПЗС можно описать следующим образом: каждый светочувствительный элемент - пиксель - работает как копилка для электронов. Электроны возникают в пикселях под действием света, пришедшего от источника. В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света, как ведро, выставленное на улицу во время дождя. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются. Все это возможно за счет определенной структуры кристалла, где размещаются светочувствительные элементы, и электрической схемы управления.

Практически точно так же работает и ПЗС-матрица. После экспонирования (засветки проецируемым изображением) электронная схема управления прибором подаёт на него сложный набор импульсных напряжений, которые начинают сдвигать столбцы с накопленными в пикселях электронами к краю матрицы, где находится аналогичный измерительный ПЗС-регистр, заряды в котором сдвигаются уже в перпендикулярном направлении и попадают на измерительный элемент, создавая в нем сигналы, пропорциональные отдельным зарядам. Таким образом, для каждого последующего момента времени мы можем получить значение накопленного заряда и сообразить, какому пикселю на матрице (номер строки и номер столбца) он соответствует.

Кратко о физике процесса.

Для начала отметим, что ПЗС относятся к изделиям так называемой функциональной электроники, Их нельзя представить как совокупность отдельных радиоэлементов - транзисторов, сопротивлений и конденсаторов. В основе работы лежит принцип зарядовой связи. Принцип зарядовой связи использует два известных из электростатики положения:

  1. одноимённые заряды отталкиваются,
  2. заряды стремятся расположиться там, где их потенциальная энергия минимальна. Т.е. грубо – «рыба ищет там, где глубже».

Для начала представим себе МОП-конденсатор (МОП - сокращение от слов металл-окисел- полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов. В электрофизике «дыркой» называют заряд, обратный заряду электрона, т.е. положительный заряд.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, возникшие здесь под действием света, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. сваливаются в потенциальную яму (рис. 1).


Рис. 1
Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и в конце концов могут полностью его скомпенсировать, так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Пусть теперь рядом с затвором расположен ещё один затвор, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 2). Если только затворы расположены достаточно близко, их потенциальные ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если она «глубже».
Рис. 2
Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в то место, где потенциальная яма глубже.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры. Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. (Термин шина в электронике - проводник электрического тока, соединящиий однотипные элементы, тактовая шина - проводники по которым передается смещенное по фазе напряжение.) Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3).


Рис. 3
Простейший трёхфазный ПЗС-регистр.
Заряд в каждой потенциальной яме разный.

Это и есть простейший трёхфазный регистр сдвига на ПЗС. Тактовые диаграммы работы такого регистра показаны на рис. 4.




Рис. 4
Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов.
При смене потенциалов происходит передвижение зарядов.

Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и, по крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.

Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп-каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 5).


Рис. 5.
Вид на регистр "сверху".
Канал переноса в боковом направлении ограничивается стоп-каналами.

Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме.

Проблемы

Если при производстве цифровых приборов разброс параметров по пластине может достигать нескольких крат без заметного влияния на параметры получаемых приборов (поскольку работа идёт с дискретными уровнями напряжения), то в ПЗС изменение, скажем, концентрации легирующей примеси на 10% уже заметно на изображении. Свои проблемы добавляет и размер кристалла, и невозможность резервирования, как в БИС памяти, так что дефектные участки приводят к негодности всего кристалла.

Итог

Разные пикселы ПЗС матрицы технологически имеют разную чувствительность к свету и эту разницу необходимо корректировать.

В цифровых КМА эта коррекция называется системой Auto Gain Control (AGC)

Как работает система AGC

Для простоты рассмотрения не будем брать что-то конкретное. Предположим, что на выходе АЦП узла ПЗС есть некие потенциальные уровни. Предположим, что 60 - средний уровень белого.



  1. Для каждого пикселя линейки ПЗС считывается значение при освещении его эталонным белым светом (а в более серьезных аппаратах – и считывание «уровня черного»).
  2. Значение сравнивается с опорным уровнем (например, средним).
  3. Разница между выходным значением и опорным уровнем запоминается для каждого пиксела.
  4. В дальнейшем, при сканировании эта разница компенсируется для каждого пиксела.

Инициализация системы AGC производится каждый раз при инициализации системы сканера. Наверное, вы замечали, что при включении машины через какое-то время каретка сканера начинает совершать поступательно-возвратные движения (елозить у ч/б полоски). Это и есть процесс инициализации системы AGC. Система так же учитывает и состояние лампы (старение).

Так же Вы наверняка обращали внимание, что малые МФУ, снабженные цветным сканером, «зажигают лампу» тремя цветами по очереди: красным, синим и зеленым. Затем только подсветка оригинала зажигается белым. Это сделано для лучшей коррекции чувствительности матрицы раздельно по каналам RGB.

Тест полутонов (SHADING TEST) позволяет инициировать эту процедуру по желанию инженера и привести значения корректировки к реальным условиям.

Попробуем рассмотреть все это на реальной, «боевой» машине. За основу возьмем широкоизвестный и популярный аппарат SAMSUNG SCX-4521 (Xerox Pe 220).

Необходимо отметить, что в нашем случае CCD становится CIS (Contact Image Sensor), но суть происходящего в корне от этого не меняется. Просто в качестве источника света используются линейки светодиодов.

Итак:

Сигнал изображения от CIS имеет уровень около 1,2 В и поступает на АЦП-секцию (САЦП) контроллера аппарата (САЦП). После САЦП аналоговый сигнал CIS будет преобразован в 8-битовый цифровой сигнал.

Процессор обработки изображения в САЦП прежде всего использует функцию коррекции тона, а затем функцию гамма-коррекции. После этого данные подаются на различные модули в соответствии с режимом работы. В режиме Text данные изображения поступают на модуль LAT, в режиме Photo данные изображения поступают на модуль "Error Diffusion", в режиме PC-Scan данные изображения поступают прямо на персональный компьютер через доступ DMA.

Перед осуществлением тестирования положите на стекло экспонирования несколько чистых листов белой бумаги. Само собой разумеется, что оптика, ч/б полоса и вообще узел сканера изнутри должны быть предварительно «вылизаны»

  1. Выберите в TECH MODE
  2. Нажмите кнопку ENTER (Ввод) для сканирования изображения.
  3. После сканирования будет распечатан "CIS SHADING PROFILE" (профиль полутонов CIS). Пример такого листа приведен ниже. Не обязательно, что он должен быть копией Вашего результата, но близок по изображению.
  4. Если распечатанное изображение сильно отличается от изображения, показанного на рисунке, значит CIS неисправен. Обратите внимание – внизу листа отчета написано “Results: OK”. Это означает, что система серьезных претензий к модулю CIS не имеет. В противном случае будут даны результаты ошибок.

Пример распечатки профиля:

Удачи Вам!!

За основу взяты материалы статей и лекций преподавателей СПбГУ (ЛГУ), СПбЭТУ (ЛЭТИ) и Axl. Спасибо им.

Материал подготовлен В. Шеленбергом