Процессоры broadwell или haswell. Intel Broadwell опережает Haswell всего на три процента. Низкие тактовые частоты

За два прошедших года все уже привыкли к тому, что компания Intel поставляет процессоры Core четвертого поколения, год назад они прописались и в экстремальном сегменте, как вдруг внезапно тихое лето 2015 года сразу «провернуло колесо» на два оборота, так что на рынке с небольшим интервалом появились процессоры пятого и шестого поколений. Так оно, во всяком случае, выглядело с точки зрения тех, кто следил только лишь за рынком настольных компьютеров - а если говорить о положении дел в целом, никакой «внезапности» не было. Просто дебютировавшие в прошлом году Core пятого поколения (Broadwell) осваивали не весь рынок одним махом: первые продукты вообще основали новое семейство Core M. Позднее появились и другие двухъядерные BGA-модели, но все укладывались в младшие классы TDP: именно там освоение технологии 14 нм было наиболее оправданным. Проблема была в том, что Haswell, поставленный в жесткие условия, приходилось слишком уж «зарубать» по частотам - со всеми вытекающими. Да, разумеется, теплопакет CULV-решений сократился с «типичных» ранее 17 Вт на процессор до 15 Вт на SiP-сборку из процессора и чипсета, но добиться этого удалось, лишь «заморозив» производительность на том же уровне, который был достигнут уже в Ivy Bridge . Новый же техпроцесс позволил, как уже было сказано, начать выпуск Core M для «безвентиляторных» компьютеров, а в «обычных» ноутбуках и мини-ПК прибавить 20% производительности за те же деньги.

Несколько подзадержались с выходом лишь старшие модели Broadwell, однако, в конечном итоге, пасьянс сложился. В Broadwell-E уменьшение размеров транзисторов позволит вместить до 22 ядер вместо 18 в Haswell-E - там это вполне оправдано. А вот в массовом сегменте Intel решила не устраивать конкуренцию четвертого и пятого поколений, а найти для Broadwell специальную нишу: только модели с топовым GPU в конфигурации GT3e, т. е. с кэш-памятью четвертого уровня. Причем (как и в других сегментах) процессоры эти оказались весьма эффективны при работе на пониженных уровнях TDP, что мы уже видели в тестах. А вот «совсем» массовые Core по-прежнему продолжали использовать микроархитектуру Haswell. Они и сейчас продолжают это делать, готовясь лишь к поэтапной замене на Skylake. В новинках обещаны новые высоты интегрированной графики, однако ни GT4e, ни GT3e пока не доступны, да и в дальнейшем, возможно, «не влезут» в сокет, т. е. в этой нише некоторое время будет «жить» Broadwell. Broadwell, таким образом, сначала дополнял Haswell, а теперь дополняет Skylake, т. е. пятое поколение Core оказалось не каким-то самостоятельным универсальным, а дополняющим для других. Впрочем, такое происходит уже не первый раз - достаточно вспомнить, что и первое поколение Core занимало лишь часть сегментов, причем применявшиеся тогда нормы 32 нм и 45 нм друг с другом в одинаковых продуктах особо не пересекались.

Однако итогом этого всего оказалось то, что на данный момент на рынке «живут» несколько близких по части характеристик процессоров, выбор между которыми не всегда прост. Точнее, если нужна быстрая интегрированная графика, то выбор элементарен: пока это только Broadwell. Если требуется недорогое решение для модернизации старого компьютера - то Haswell: их уже много моделей на самый разный вкус, причем платформа хорошо отлажена и изучена, да и требуемые для нее компоненты тоже давно присутствуют на рынке. Для любителей перспективности - однозначно Skylake: тотальное использование PCIe 3.0 в больших количествах и новой памяти DDR4 теоретически должно греть душу. А если используется дискретная видеокарта? Хотелось бы оценить ее влияние на быстродействие «массового» ПО: предыдущие тестирования показали, что чем новее процессоры, тем оно меньше - а сейчас как?

В такой конфигурации мы пока доступные ныне топовые модели Core i5 и i7 не тестировали - вот и пришло время. К тому же не стоит забывать, что в нашем первом тестировании Skylake системы использовали разный объем памяти, причем на LGA 1151 пришлось использовать четыре модуля - по два на канал. Последнее вполне способно «испортить» результаты, а первое - улучшить их в сравнении с LGA1150, где памяти было вдвое меньше, так что и этот момент стоит проработать более корректно.

Конфигурация тестовых стендов

Процессор Intel Core i5-4690K Intel Core i5-5675C Intel Core i5-6600K Intel Core i7-4790K Intel Core i7-5775C Intel Core i7-6700K
Название ядра Haswell Broadwell Skylake Haswell Broadwell Skylake
Технология пр-ва 22 нм 14 нм 14 нм 22 нм 14 нм 14 нм
Частота ядра std/max, ГГц 3,5/3,9 3,1/3,6 3,5/3,9 4,0/4,4 3,3/3,7 4,0/4,2
Кол-во ядер/потоков 4/4 4/4 4/4 4/8 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128 128/128 128/128 128/128
Кэш L2, КБ 4×256 4×256 4×256 4×256 4×256 4×256
Кэш L3 (L4), МиБ 6 4 (128) 6 8 6 (128) 8
Оперативная память 2×DDR3-1600 2×DDR3-1600 2×DDR4-2133 2×DDR3-1600 2×DDR3-1600 2×DDR4-2133
TDP, Вт 88 65 91 84 65 91
Графика HDG 4600 IPG 6200 HDG 530 HDG 4600 IPG 6200 HDG 530
Кол-во EU 20 48 24 20 48 24
Частота std/max, МГц 350/1200 300/1100 350/1150 350/1250 300/1150 350/1150
Цена T-10887398 T-12645002 T-12794521 T-10820114 T-12645073 T-12794508

Итак, шесть процессоров в трех парах: cтарший Core i5 и старший Core i7 каждого из трех поколений, и в каждой тройке цены примерно равны. Заметим, что условия тестирования были все равно не совсем равные: все Broadwell имеют TDP ≤65 Вт, а вот К-модификации процессоров независимо от поколения (в пятом таких просто нет) этот уровень заметно превышают. Причем в последнее время превышают его только они: все настольные Skylake, кроме упомянутых двух моделей, тоже ≤65 Вт. В общем, если подходить к вопросу совсем уж академически, нужно было «уравнять шансы»: при помощи S-серии Haswell и «неоверклокерских» Skylake. Но это не слишком интересно (хотя со временем и будет в какой-то степени сделано): основываясь на том, что нам уже известно, Haswell точно проиграет. Да и подыгрывать Broadwell тоже смысла нет: если в семействе нет моделей с «высоким» теплопакетом (Xeon E3-1285V4 - отдельная история, и история дорогая), то это его проблемы. Особенно с точки зрения пользователей дискретных видеокарт, где счет идет на сотни ватт рассеиваемой мощности, так что бо́льшая или меньшая экономичность процессора никакого значения не имеет. Поэтому мы просто взяли топовые модели в каждом из настольных семейств.

Что касается прочих условий тестирования, то они были равными, но не одинаковыми: частота работы оперативной памяти была максимальной поддерживаемой по спецификациям. А вот ее объем (8 ГБ) и системный накопитель (Toshiba THNSNH256GMCT емкостью 256 ГБ) были одинаковыми для всех испытуемых.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков и iXBT Game Benchmark 2015 . Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

Отметим, что в первом бенчмарке процессоры тестировались два раза: с использованием интегрированного видеоядра и дискретного Radeon R7 260X, что нам нужно как раз для сравнения их эффективности в массовом ПО. А игровые тесты проводились только с дискретной видеокартой. Как обычно, в играх мы ограничились режимом минимального качества (для максимальных настроек этой дискретной видеокарты самой по себе недостаточно), но в полном разрешении Full HD (с этим-то она, в отличие от многих интегрированных решений, отлично справляется).

iXBT Application Benchmark 2015

При использовании интегрированного видеоядра процессоры выстроились по поколениям. С дискретной же видеокартой такое получилось лишь для Core i5, где разброс тактовых частот меньше. Вообще же GPU в этих тестах важен, но для Broadwell незначительно (ибо GT3e), а для Skylake - меньше, чем для Haswell. Понятная тенденция:)

Применение дискретки «больно бьет» по Core i7, причину чего мы не раз озвучивали - не хватает им в этом случае памяти. А вот пользы от нее почти никакой даже для Haswell. Для остальных испытуемых - и вовсе никакой. Отметим также, что преимущество 6700К над 4790К выше, чем 6600К над 4690К: четырехъядерные Core i5 начинают утрачивать смысл и в старшем сегменте (в низковольтных - давно так), поскольку лучше всего себя ведут процессоры в полной, а не «урезанной» конфигурации.

Чем мощнее интегрированный GPU, тем меньше пользы от его замены на внешний: в очередной раз уже, но это было предсказуемо и вовсе без тестирования. Также хорошо видно, что Broadwell все равно выглядит интересно - даже если не задействовать его основное преимущество в качестве GPU, прочие испытуемые способны продемонстрировать более высокие результаты лишь при наличии превосходства по тактовой частоте. А если его нет, то Haswell, например, и дискретная видеокарта не помогает. В общем, тем более интересно будет посмотреть - как себя поведут модификации Skylake с кэш-памятью L4.

Отметим, что здесь оба процессора «пятого поколения» заметно отстают от остальных испытуемых, хотя у разных Core i5 частоты различаются в куда меньшей степени. Почему? Как мы уже говорили, несмотря на то, что у этой программы номера версий постоянно меняются, по сути оптимизирована она еще под Core 2 с их достаточно простой архитектурой. Впрочем, принципиальных отличий большинства Core нет, вот и получается, что используются они как сильно улучшенный Core 2. Но огромный кэш четвертого уровня похоже в Illustrator только мешает. В общем, пора бы уже Adobe переписать радикально свое детище: может и на других современных процессорах результаты улучшатся:)

Как мы уже отмечали, Audition умеет использовать GPU, так что производительность зависит и от его мощности. Однако при использовании дискретной видеокарты потери из-за пересылки данных могут легко нивелировать этот эффект, в итоге чего процессоры Broadwell с видеоядром GT3e используя его работают быстрее, нежели на пару с Radeon HD 260X. Haswell же и Skylake в последнем случае ускоряются. Что интересно - у Skylake выигрыш больше, хотя и GPU мощнее. Как так могло получиться? Не забываем, что контроллер PCIe давно уже является такой же составляющей процессора, как и процессорные ядра или видеоядро. Производительность никамунинужного последнего постоянно растет - это все знают. «Процессорная» скорость растет медленно - это тоже все знают и весьма опечалены данным фактом. А вот шинный контроллер как обзавелся поддержкой PCIe 3.0 еще в Ivy Bridge, так с тех пор формально не меняется. Фактически же - мог. Как раз в сторону минимизации потерь на обмене данными с видеокартой, что и привело к такому эффекту. Возможны, конечно, и другие объяснения, но это на данный момент кажется нам вполне логичным.

Чистая «вычислялка», в которой, тем не менее, кэш-память L4 способствует быстрой работе. Но обратите внимание на то, насколько по-разному ведут себя обе группы. У Core i5 частоты ближе друг к другу, причем 4690К=6600К - и производительность у всех трех примерно одинаковая. Core i7-5775C отстает от всех - это нормально, поскольку у него и частоты намного ниже. Но вот 4790К и 6700К примерно равны по частоте, а второй намного быстрее. У Core i5 такого не наблюдается, следовательно дело не в архитектурных улучшениях. А в чем? Вспоминаем, что частоты выше 4 ГГц давались ранее очень тяжело, так что Haswell Refresh пришлось буквально «вылизывать», причем и его требования к охлаждению сравнительно с предшественниками увеличились. Но ведь и в Skylake-S они снова увеличены. Тем более, что «основная серия» процессоров для LGA1151 ранее бы считалась энергоэффективной, а вот про 6700К сразу сказано, что очень долгое время он будет самым быстрым в рамках платформы. В общем, отладка, отбор и прочий «ручной подход» могут творить чудеса. А вот в семействе Core i5 частоты ниже, так что ничего новый техпроцесс не дает.

Что интересно здесь, так это способность Core i5-5675C занять первое место в группе, несмотря на более низкую, чем у других участников тактовую частоту - кэш L4 дает о себе знать. Но не так уж и велико его влияние при выбранном режиме работы WinRAR - можно скомпенсировать частотой, что и происходит в тройке Core i7.

В данном случае, как мы уже не раз писали, от процессора требуется максимальная однопоточная производительность со всеми вытекающими. Явные аутсайдеры - только Broadwell, где частоты ниже со всеми вытекающими. И Skylake немножко лучше держит высокие частоты, чем Haswell - что уже и выше было отмечено.

Частоты и режимы энергосбережения могут сказываться на результатах, но, как и ожидалось, уровень всех испытуемых примерно равный.

К чему приходим в конечном итоге? Как и предполагалось, при использовании дискретной видеокарты процессоры с мощным интегрированным видеоядром не нужны. Впрочем, для приложений массового назначения они тоже не необходимы - интересны лишь тогда, когда для GPU можно найти серьезную нагрузку. Например, в компактной системе (куда дискретку не поставить), если ее приобретает человек, желающий иногда поиграть в 3D-игры:)

Игровые приложения

Даже самого медленного из испытуемых достаточно, чтобы даже при минимальных настройках получить все, на что способна видеокарта.

WoT - куда более процессорозависимая игра, но в целом всех испытуемых достаточно для того, чтобы о них и не задумываться. Отметим только то, что на первых местах оба Broadwell. Пусть и с символическим преимуществом.

А вот здесь - не с символическим. Хотя на практике было много, а стало слишком много:) Что поделать - многие игры вообще пишутся в первую очередь под массовые системы, так что приемлемо даже на интегрированных видеоядрах работают. Стоит чуть «усилить» систему и все - разницу только тестами выявлять.

И снова все равны - главное видеокарту помощнее иметь. Но это уже оптимизации второй игры серии...

Поскольку первая более процессорозависимая. В ней даже разница между Core i5 и Core i7 есть. Но, главное, опять видим пользу от L4.

Hitman в очередной раз ведет себя подобно Metro 2033. Единственное, что немного изменилось - вот тут уже Skylake хотя бы пытается конкурировать с Broadwell. Не слишком успешно, но лучше, чем это выходило у Haswell.





А этот набор можно уже и не комментировать - нагрузка преимущественно на видеокарту, т. е. что-то будет зависеть от процессоров только в случае наличия «избыточной» мощности у последней. Только вот вторая обычно все равно расходуется на улучшение качества картинки, т. е. ситуация, когда слишком уж весом будет вклад процессора, не наступит, скорее всего, никогда. Во всяком случае, это верно для процессоров уровня Core i5 и выше: с более медленными бывает всякое.

Итого

Что ж, в конечном итоге приходим к выводу, что при использовании дискретной видеокарты расклад такой же, как и без нее. В том смысле, конечно, что выбор сокращается до двух платформ, а Broadwell-С из рассмотрения вылетает (тоже как и ожидалось): его кэш-память четвертого уровня позволяет работать немного быстрее, но это полностью компенсируется более высокими тактовыми частотами конкурентов при более низкой цене последних. Поэтому выбирать имеет смысл между отлаженностью и современностью платформ. Характеристики самих процессоров давно уже не имеют определяющего значения: важно то, в каких условиях их придется использовать. В общем, ничего интересного с точки зрения любителей «традиционных» (т. е. больших и многокомпонентных) десктопов на рынке опять не произошло: в одном новом поколении Core для них процессоров вообще не предусмотрели, а в другом топовые модели не слишком-то отличаются от своих предшественников.

Архитектура Broadwell | Введение

Intel скрупулёзно документирует все новшества, которые реализует в своих процессорах с каждым новым поколением – об э том хорошо известно всем, кто интересуется индустрией CPU. Эту стратегию компания называет "тик-так" ("тик" – это сокращение размеров узла с целью вместить больше транзисторов на одном кристалле, а "так" – значительное обновление архитектуры). Это цикл повторяется каждый год. "Так" – это выпуск процессора Haswell На основе техпроцесса 22 нм, а теперь перед нами "тик" – сокращение площади кристалла в процессоре Haswell до 14 нм, что фактически и есть новый Broadwell .

Если вам эта стратегия уже знакома, вы должны понимать, чего мы ждём от архитектуры Broadwell – более компактных процессоров, пониженного энергопотребления, более высокой производительность на ватт мощности, а также общую производительность, сопоставимую с решениями предыдущего поколения. Так что новый продукт в этом смысле – не достижение, а демонстрацией постоянства компании в производстве решений в разрезе нескольких поколений. Но, конечно, многих может удивить, что на каком-то этапе такой последовательности появились процессоры Haswell-Y, TDP которых достаточно низок для того, чтобы использовать его в корпусах толщиной 9 мм с пассивным охлаждением. Это совершенно новая область применения для бренда Intel Core. Но об этом позже, сначала нужно рассказать о более значительном событии – появлении процессорного узла 14 нм.

Архитектура Broadwell | Узел 14 нм: второе поколение FinFET

Может показаться логичным, что нумерация моделей процессорных узлов обозначает размер (22 нм или 14 нм). Хотя это было так в случае предыдущего поколения (размер соотносился с самым малым компонентом транзистора – обычно затвором), сейчас в номенклатуре решений Intel это не отражено.

Современные узлы получают наименования на основе соотношения физического размера узла к размеру узла предыдущего поколения. То есть, если сравнить узел 22 нм с узлом 14 нм, то станет понятно, что расстояние между плавниками транзистора уменьшилось с 60 нм до 42 нм, расстояние между границами соседних затворов – c 90 нм до 70 нм, а минимальное расстояние между слоями внутрисхемных соединений – с 80 нм до 52 нм. Ячейка памяти SRAM, занимавшая на узле 22 нм до 108 нм2, в 14-нанометровом узле занимает 59 нм2.

Размеры компонентов по сравнению с предыдущим поколением узлов имеют различные коэффициенты миниатюризации – от 0,70 (расстояние между плавниками) до 0,54 (площадь ячейки SRAM). Если взять число 22 и умножить на 0,64, получится примерно 14, так что можно сказать, что Intel применяет логичную номенклатуру для своего 14-нанометрового узла. Кстати, кристалл Broadwell-Y примерно на 63% меньше по площади, чем кристалл Haswell-Y.

22-нанометровые узлы Intel – первые продукты компании, использующие FinFET-транзисторы (также известные как Tri-Gate). 14-намнометровые узлы – это второе поколение узлов, использующее FinFET-транзисторы, характеризующиеся более высокой плотностью за счёт более близкого расположения плавников. Это, вкупе с более высокими и тонкими плавниками, повышает значение управляющего тока и оптимизирует производительность транзистора. Количество плавников в транзисторе снизилось с трёх до двух, что также способствует повышению плотности при снижении электрической ёмкости.

Конкуренты Intel в настоящий момент переходят с транзисторов MOSFET на FinFET, но Intel заявляет, что ей нет равных в масштабировании логического пространства. Основываясь на информации, полученной от TSMC и альянса IBM, и используя формулу масштабирования (расстояние между затворами, помноженное на шаг металлизации), Intel утверждает, что будущий узел 16 нм от TSMC не реализует никаких улучшений в области масштабирования логики по сравнению с 20-нанометровым узлом, что, по словам компании, отбросит конкурентов назад на пару поколений. Конечно, данная формула помогает определить только один параметр сравнения, но при этом будит в нас интерес к тому, что нового покажет 16-нанометровый узел от TSMC в следующем году. Также признаемся, что у нас есть опасения, что законы физики вмешаются в ход эволюции узлов, если литография сожмётся до размеров менее 10 нм, что, в свою очередь, поможет конкурентам догнать Intel. Но в настоящий момент законы Мура всё ещё работают.

Кратко коснёмся темы выхода пригодных кристаллов. Ни один производитель не блещет откровенностью, разговаривая на эту тему, но Intel немного приоткрыла завесу. В общем и целом, компания рассказала нам, что техпроцесс 22 нм обеспечивал самый высокий выход среди последних поколений узлов, а показатель выхода 14-нанометровых SoC Broadwell демонстрирует положительную динамику и находится в приемлемых рамках. Первые продукты на продажу уже прошли квалификацию, и их появления на рынке стоит ожидать в конце 2014 года.

То есть, все эти факторы обуславливают снижение объёма утечек, энергопотребения и стоимости в расчёте на транзистор, а общая производительность и производительность в пересчёте на ватт увеличились по сравнению с узлами предыдущего поколения. Нас это не удивило, но изменения крайне положительные, особенно если это обозначает, что такие технологии можно использовать в новых типах устройств. Это особенно актуально, если принять во внимание, в каких продуктах Intel будет использовать 14-нанометровые узлы. Один из них - Broadwell-Y, мобильный чип следующего поколения, о котором Intel рассказала достаточно подробно.

Архитектура Broadwell | Конвергированное ядро Broadwell


Intel утверждает, что показатель IPC в Broadwell будет, по крайней мере, не 5% выше, чем в Haswell. Это не такое уж значительное усовершенствование, но это нас и не удивляет, если вспомнить концепцию "тик-так" и то, к какой группе относится новая архитектура.

То есть, все основные усовершенствования достигаются за счёт увеличения возможностей имеющихся элементов процессора, а не за счёт разработки новых. Повышение плотности 14-нанометрового узла – это довольно успешный шаг, который также обеспечивает дополнительное пространство для добавления дополнительных транзисторов, что Intel и сделала: в новой архитектуре выросло число записей планировщика внеочередного исполнения команд (о том, насколько оно выросло, Intel не сказала), что обуславливает более быстрый процесс перенаправления для загрузки. Буфер ассоциативной трансляции (TLB) второго уровня вырос с 1 тыс до 1,5 тыс записей, добавился новый буфер для страниц по 1 Гбайт на 16 записей. На второй странице буфера TLB имеется обработчик страничного нарушения, так что переход со страницы на страницу может осуществляться в параллельном режиме.

Умножитель с плавающей запятой теперь функционирует намного эффективней и способен выполнять за три такта задачи, которые Haswell мог обрабатывать за пять. В Broadwell также возросла скорость векторных вычислений. Intel уверяет, что алгоритмы предсказание ветвления также улучшены.

Кроме общих параметров, в новой архитектуре уделено внимание улучшению некоторых специфических характеристик, в том числе инструкций для ускорения шифрования, как и время исполнения операций виртуализации. Конечно, основной задачей Intel является снижение энергопотребления, так что компания использовала дополнительные транзисторы только для функций, которые не предполагают значительного повышения энергопотребления. Об этом мы подробнее узнаем в следующих разделах статьи.

Архитектура Broadwell | Broadwell-Y: представляем процессор Intel Core M

Новый 14-нанометровый узел подходит для использования в различных сегментах рынка – от ЦОДов до планшетов, в зависимости от количества кристаллов Broadwell . На момент написания статьи у нас была информация только о Broadwell-Y, хотя усовершенствования архитектуры Broadwell буду отражены и в других решениях. Мы рассмотрели Broadwell-Y под именем Intel Core M.

Новый бренд Core M будет использоваться во всех новых мобильных решения, в то время как бренды Celeron и Pentium M не будут иметь отношения к с SoC Broadwell-Y. Характеристики указывают на то, что такого чипа мощностью 3 Вт или 5 Вт будет достаточно для работы в устройствах толщиной от 7 до 10 мм с пассивным охлаждением и дисплеем диагональю 10,1 дюйма. Мы даже повертели в руках прототип довольно привлекательного планшета толщиной 7 мм, но не смогли запустить какое-либо приложение или посмотреть спецификации помощью панели управления. Пришлось принять на веру заявление Intel, что Broadwell-Y "обеспечивает более чем двукратное снижение TDP, имея более высокую производительность, чем Haswell-Y".

Чип Broadwell-Y имеет площадь 82 мм2, почти на 63% меньше, чем у Haswell-Y (130 мм2). Что касается размеров платы, площадь её у Broadwell-Y на 50% меньше, а толщина – на 30% меньше, чем у Haswell-Y. Сокращение размеров было осуществимо за счёт перемещения 3DL-модулей на небольшую отдельную PCB, прикреплённую снизу платы чипа Broadwell-Y. Конечно, в этом случае в материнских платах должен быть подходящий разъём.

Так как масштабирование площади у чипа 14 нм получилось более эффективным, чем ожидалось, Intel смогла распаять на плате на 20% больше транзисторов, что обеспечивает более широкий набор функций и более высокую производительность. Например, интегрированный графический модуль на Haswell-Y имеет максимум 20 регистров AU, в том время как Broadwell-Y может использовать до 24. Это означает 20%-ый прирост вычислительных ресурсов, к тому же Intel утверждает, что также на 50% увеличилась частота устройства стробирования. Кроме этих усоврешенствований, Intel упоминает об улучшениях геометрии, толщины и показателей скорости заполнения пикселя, которыми чип обязан изменениям архитектуры, хотя подробности об этом неизвестны. Также в ходе анонса продукта было сказано о поддержке 4K-дисплеев, притом на данный момент известно о поддержке теоретически двух существующих дисплеев. Имеет ли это смысл, учитывая ограничения мобильных устройств по питанию, неясно.

Архитектура Broadwell | Intel Core M: главное – низкое энергопотребление

Intel утверждает, что оптимизации, реализованные в Broadwell-Y, снижают потребление энергии вдвое по сравнению с Haswell-Y и позволяют обойтись без активного охлаждения. Потенциаль снижения энергопотребления в масштабе SoC, по сведениям, распределился таким образом: энергопотребление на 25% ниже благодаря снижению электрической ёмкости, на 20% - благодаря более низкому напряжению в сочетании с оптимизациями чипа, до 15% - благодаря повышенной производительности транзисторов на низких напряжениях, на 10% - благодаря меньшим утечкам питания и более маленьким размерам и повышенной плотности транзистора. Конечно, Intel не раскрыла подробностей о точных TDP продуктов, к которым относится данная статистика, так что нам придётся немного подождать. Мы знаем, что чипы, о которых говорит Intel, при загрузке показывают скачок потребления от 10 Вт до 15 Вт, а затем, через несколько милисекунд, потребление энергии снижается до 3-4 Вт при стабильной работе под нагрузкой.

Broadwell-Y также использует улучшенный интегрированный регулятор напряжения (FIVR) второго поколения, который способствует ускорению перехода чипа из состояния низкой частоты в простое в состояние под нагрузкой. FIVR имеет функцию нелинейного снижения частоты и поддержку нового режима FIVR-LVR. Оказывается, FIVR не особенно эффективен при очень низких напряжениях, так что его можно отключить, если необходимо сэкономить энергопотребление.

SoC также реализует ряд оптимизаций для активного энергосбережения: оптимизации техпроцесса, которые позволили снизить минимальное рабочее напряжение и динамическую электрическую ёмкость (Cdyn), изменения в архитектуре графики DDR/IO/PLL/Graphics, оптимизации Cdyn in IA/Graphics/PH и более низкие диапазоны рабочей частоты для IA/GT и кэша. Графикой можно управлять через Duty Cycling Control (DCC), чтобы снизить энергопотребление, а также её можно просто включать и отключать, если нужно. Время задержки при отключении GPU совсем небольшое, а его частота может быть понижена до 12,5% нормальной рабочей частоты.

Частота, конечно, привязана к потребляемой энергии и тепловой мощности. Имеются три порога энергопотребления, призванные обеспечивать максимальную частоту при сохранении стабильности системы. PL3 – максимально допустимый уровень, ограниченный защитой от перегрузки батареи, который можно использовать непродолжительное время. PL2 – стандартный пиковый уровень, а PL1 предназначается для длительного применения при устойчивом уровне потребления энергии и стабильности системы. При необходимости функция троттлинга может включать и выключать блоки процессора, чтобы минимизировать потребление энергии и тепловыделение.

В Broadwell реализована система управления питанием и тепловыделением, оценивающая показатели множества компонентов, а драйвер Intel контролирует потребление энергии различными компонентами.

PCH также получил некоторые изменения, направленные на повышение эффективности. Потребление энергии в простое снижено на 25% по сравнению с продуктами 2013 года, а энергопотребление в активном состоянии теперь ниже на 20% в сравнении с PCH-LP Haswell. Средства мониторинга и отчётности по снижению энергопотребления реализованы на уровне устройства, прошивки и соответственного программном обеспечении.

Кроме это, PCH дополнен функцией Audio DSP, которая имеет больше памяти SRAM и более высокий показатель скорости обработки инструкций (MIPS). Постпроцессинг был усовершенствован, включая поддержку функции wake-on-voice. В процессоре также реализованы новые возможности управления и безопасности. Стоит отметить, что PCH использует 22-нанометровый узел, и размер остался прежним в сравнении с предыдущим поколением.

Архитектура Broadwell | Первые тесты

Мы смогли оценить возможности Core M-5Y70 (Broadwell-Y, TDP 4,5Вт) в корпусе планшета без вентилятора и сравнили его с Atom Z3740D (Bay Trail, TDP менее 4 Вт). Без лишних слов перейдём непосредственно к результатам.

3DMark показал почти трёхкратный прирост скорости у Core M-5Y70. Любопытно, что прирост коснулся не только графической производительности, но и вычислений, исполняемых на CPU.


Тесты SunSpider и Cinebench также прекрасно демонстрируют сильные стороны Core M. В данных тестах новый процессор Broadwell при пониженном энергопотреблении в два с половиной раза быстрее Bay Trail.

Сравнение Core M (Broadwell-Y) с Atom (Bay Trail) может показаться несправедливым. С точки зрения это действительно так: процессор Core M сам по себе стоит примерно $300, а за такие деньги можно купить целый планшет на базе Atom – например, Dell Venue 8 Pro. Ожидается, что стоимость планшетов или трансформеров на базе Core M будет приближаться к $1000. Кроме того, максимальный объём оперативной памяти платформы Bay Trail ограничен 2 Гбайт, протестированный же Core M оснащается 4 Гбайт ОЗУ, и вполне возможно, что данный фактор мог в значительной степени сказаться на результатах.

Однако с точки зрения функциональности сравнение этих двух процессоров имеет свою логику, ведь в планшетах x86 под Windows толщиной менее 8 мм из-за ограниченного пространства внутри корпуса Haswell-Y не может быть полноценным конкурентом. Чипы Atom на базе Bay Trail – это лучшее, что было до Core M в этом сегменте, и прирост производительности, который демонстрирует Broadwell-Y в тонких и лёгких планшетах, просто поразителен. В этом классе планшетов лидирующую позицию по производительности занимал Apple iPad, но, похоже, с появлением Core M ситуация вполне может измениться.

Говоря про iPad, хочется отметить, что прототип планшета Llama Mountain от Intel с экраном диагональю 12,5 дюйма и весом 685 г напомнил нам знаменитый планшет из Купертино, только экран у образца Intel побольше.

Intel представила три демонстрационных модели: одну в алюминиевом корпусе, одну из позолоченного алюминия и одну с медным покрытием. Эти прототипы использовались для тестирования теплового пакета Core M, и, по словам представителей компании, новые процессоры Broadwell-Y способны сохранять приемлемую температуру во всех трёх версиях корпуса. В тестах производительности разницы между ними мы не заметили.

При обсуждении вопроса тепловыделения, Intel упомянула, что OEM-производители получат возможность настраивать TDP всех процессоров Core M на трёх уровнях: 3 Вт, 4,5 Вт или 6 Вт. Таким образом, производители смогут адаптировать продукты под конкретные сценарии использования. Например, TDP топового Core M 5Y70 можно установить на значение 3 Вт, чтобы максимально увеличить время автономной работы платформы. С другой стороны, в корпусе с активным охлаждением можно установить TDP 6 Вт для повышения отзывчивости устройства (следует пояснить, что решение в режиме 6 Вт не обязательно требует наличия вентилятора, с ним сможет справиться и более толстый корпус, более эффективно рассеивающий тепло).

Хотя мы приветствуем разнообразие, должны предупредить, что теперь модельный номер процессора не гарантирует установленный уровень производительности. Core M-5Y70 в режиме TDP 3 Вт определённо будет медленнее, чем аналогичный процессор с тепловым пакетом, повышенным до 6 Вт. Кроме того, более дешёвый Core M-5Y10 с TDP 6 Вт почти наверняка обгонит топовый Core M-5Y70 в режиме 3 Вт.

Intel даёт веские основания предполагать, что OEM-производители будут применять к новым процессорам те значения TDP, которые выгодны с маркетинговой точки зрения. Возможно, это и так, но дело в том, что с появлением новых процессоров Core M конкретные модели планшетов или устройств-трансформеров могут работать быстрее или медленнее в зависимости от решения производителя, а не только характееристик выбранного им процессора. В будущем между двумя устройствами с процессорами одной модели разница в производительности и функциональность может быть очень значительна.

На изображении выше, вы можете увидеть, насколько мала в размерах платформа Llama Mountain. Даже при подключённой дочерней платой на удивление компактная комбинация двух PCB весит чуть больше 90 грамм.

Помимо показателей тестов, нам на практике продемонстрировали разницу в производительности между двумя устройствами без активного охлаждения . В качестве образцов использовались недавно объявленный планшет Lenovo Helix с чипом Core M-5Y70 (подключён к монитору с правой стороны) и планшет на базе Atom Z3740 (слева).

Тесты производительности в реальных приложениях соответствую показателям синтетических бенчмарков, то есть заметную разницу в производительности между Atom и Core M. В будущем мы хотим протестировать новый процессор Intel и процессоры Haswell-Y с тепловым пакетом 11,5 Вт. Любопытно, сможет ли он догнать или даже обогнать предшественника, у которого TDP два раза выше.

Также нам продемонстрировали работу планшетов на базе Intel Moorefield . Moorefield – это платформа для чипов Intel Atom, оптимизированная для использования операционной системы Android. Ниже представлена видеодемонстрация реальной разницы в производительности между четырёхъядерной системой (слева) и восьмиядерной ARM A9 Cortex (справа):

Intel заявляет, что причина того, что их четырёхъядерный Atom обгоняет восьмиядерный A9 заключается в преимуществе решения Intel в плане количества инструкций, выполняемых за такт, а также в ограничениях ОС Android касательно эффективного распараллеливания задач.

Обратите внимание, что планшетом на базе Moorefield является модель Dell Venue 8 7000, которая была анонсирована на выставке IDF и оснащается двухкамерной системой Intel RealSense. Благодаря новому железу, планшет Dell получил интересные функции, например измерение размеров объектов на изображении. Все возможности Venue 8 7000 пока не известны, однако в теории двухкамерная система осуществлять трёхмерную съёмку.

Говоря об «апгрейде» вычислительных мощностей процессора, важно не забывать, что для Intel он не был первостепенной задачей. Рынок мобильных девайсов диктовал совсем другое требование - снижение энергопотребления. И если соотношение улучшений в производительности к необходимой энергии у Haswell составляло 1:1, то у Broadwell оно должно было быть 2:1. Естественно, это наложило свои ограничения на выбор «новшеств», которые Intel могла бы внести в дизайн архитектуры Broadwell. Более того, пришлось поработать и над уже имеющимся соотношением производительности к энергопотреблению. Грубо говоря, 5% улучшений в производительности обойдутся всего в 2,5% увеличения немедленного потребления энергии.

Компания продолжит оптимизацию энергопотребления не только для Intel Core M, но и для всех будущих продуктов Broadwell. Больше внимания будет уделяться отключению тех частей CPU, которые не используются и уменьшению потребления энергии различными блоками по мере необходимости. Эти доработки в совокупности с увеличением энергоэффективности от использования 14-нм техпроцесса - основные способы снижения потребления энергии в Intel Core M.

Улучшения в GPU

В целом принцип «тик-так» работает и для графической подсистемы процессоров Intel: значительные архитектурные изменения на стадии «так» и улучшения техпроцесса имеющейся архитектуры на стадии «тик». Но с одним отличием: обычно для GPU доработки на стадии «тик» гораздо существеннее, нежели для CPU. И Broadwell - не исключение.

Графическая подсистема Broadwell основана на Gen8 GPU - это продолжение архитектуры Intel Gen7, впервые появившейся в процессорах Ivy Bridge и доработанной версии Gen7,5 в Haswell. На фундаментальном уровне это тот же самый GPU, только более оптимизированный и «отшлифованный».

Введение

Мы стремимся уважать информацию личного характера, касающуюся посетителей нашего сайта. В настоящей Политике конфиденциальности разъясняются некоторые из мер, которые мы предпринимаем для защиты Вашей частной жизни.

Конфиденциальность информации личного характера

"Информация личного характера" обозначает любую информацию, которая может быть использована для идентификации личности, например, фамилия или адрес электронной почты.

Использование информации частного характера.

Информация личного характера, полученная через наш сайт, используется нами, среди прочего, для целей регистрирования пользователей, для поддержки работы и совершенствования нашего сайта, отслеживания политики и статистики пользования сайтом, а также в целях, разрешенных вами.

Раскрытие информации частного характера.

Мы нанимаем другие компании или связаны с компаниями, которые по нашему поручению предоставляют услуги, такие как обработка и доставка информации, размещение информации на данном сайте, доставка содержания и услуг, предоставляемых настоящим сайтом, выполнение статистического анализа. Чтобы эти компании могли предоставлять эти услуги, мы можем сообщать им информацию личного характера, однако им будет разрешено получать только ту информацию личного характера, которая необходима им для предоставления услуг. Они обязаны соблюдать конфиденциальность этой информации, и им запрещено использовать ее в иных целях.

Мы можем использовать или раскрывать Ваши личные данные и по иным причинам, в том числе, если мы считаем, что это необходимо в целях выполнения требований закона или решений суда, для защиты наших прав или собственности, защиты личной безопасности пользователей нашего сайта или представителей широкой общественности, в целях расследования или принятия мер в отношении незаконной или предполагаемой незаконной деятельности, в связи с корпоративными сделками, такими как разукрупнение, слияние, консолидация, продажа активов или в маловероятном случае банкротства, или в иных целях в соответствии с Вашим согласием.

Мы не будем продавать, предоставлять на правах аренды или лизинга наши списки пользователей с адресами электронной почты третьим сторонам.

Доступ к информации личного характера.

Если после предоставления информации на данный сайт, Вы решите, что Вы не хотите, чтобы Ваша персональная информация использовалась в каких-либо целях, связавшись с нами по следующему адресу: [email protected].

Наша практика в отношении информации неличного характера.

Мы можем собирать информацию неличного характера о Вашем посещении сайта, в том числе просматриваемые вами страницы, выбираемые вами ссылки, а также другие действия в связи с Вашим использованием нашего сайта. Кроме того, мы можем собирать определенную стандартную информацию, которую Ваш браузер направляет на любой посещаемый вами сайт, такую как Ваш IP-адрес, тип браузера и язык, время, проведенное на сайте, и адрес соответствующего веб-сайта.

Использование закладок (cookies).

Файл cookie - это небольшой текстовый файл, размещаемый на Вашем твердом диске нашим сервером. Cookies содержат информацию, которая позже может быть нами прочитана. Никакие данные, собранные нами таким путем, не могут быть использованы для идентификации посетителя сайта. Не могут cookies использоваться и для запуска программ или для заражения Вашего компьютера вирусами. Мы используем cookies в целях контроля использования нашего сайта, сбора информации неличного характера о наших пользователях, сохранения Ваших предпочтений и другой информации на Вашем компьютере с тем, чтобы сэкономить Ваше время за счет снятия необходимости многократно вводить одну и ту же информацию, а также в целях отображения Вашего персонализированного содержания в ходе Ваших последующих посещений нашего сайта. Эта информация также используется для статистических исследований, направленных на корректировку содержания в соответствии с предпочтениями пользователей.

Агрегированная информация.

Мы можем объединять в неидентифицируемом формате предоставляемую вами личную информацию и личную информацию, предоставляемую другими пользователями, создавая таким образом агрегированные данные. Мы планируем анализировать данные агрегированного характера в основном в целях отслеживания групповых тенденций. Мы не увязываем агрегированные данные о пользователях с информацией личного характера, поэтому агрегированные данные не могут использоваться для установления связи с вами или Вашей идентификации. Вместо фактических имен в процессе создания агрегированных данных и анализа мы будем использовать имена пользователей. В статистических целях и в целях отслеживания групповых тенденций анонимные агрегированные данные могут предоставляться другим компаниям, с которыми мы взаимодействуем.

Изменения, вносимые в настоящее Заявление о конфиденциальности.

Мы сохраняeм за собой право время от времени вносить изменения или дополнения в настоящую Политику конфиденциальности - частично или полностью. Мы призываем Вас периодически перечитывать нашу Политику конфиденциальности с тем, чтобы быть информированными относительно того, как мы защищаем Вашу личную информацию. С последним вариантом Политики конфиденциальности можно ознакомиться путем нажатия на гипертекстовую ссылку "Политика конфиденциальности", находящуюся в нижней части домашней страницы данного сайта. Во многих случаях, при внесении изменений в Политику конфиденциальности, мы также изменяем и дату, проставленную в начале текста Политики конфиденциальности, однако других уведомлений об изменениях мы можем вам не направлять. Однако, если речь идет о существенных изменениях, мы уведомим Вас, либо разместив предварительное заметное объявление о таких изменениях, либо непосредственно направив вам уведомление по электронной почте. Продолжение использования вами данного сайта и выход на него означает Ваше согласие с такими изменениями.

Связь с нами. Если у Вас возникли какие-либо вопросы или предложения по поводу нашего положения о конфиденциальности, пожалуйста, свяжитесь с нами по следующему адресу: [email protected].


Серьезного обновления в ряду настольных процессоров Intel не было уже давно, с 2013 г. Да, в 2014 г. вышел Haswell-E с поддержкой DDR4, но, по сути, кроме увеличенного числа ядер и слегка обновленной платформы, ничего нового в нем не было. Вообще, LGA 2011 в любых своих проявлениях - удел мощных рабочих станций, где, в первую очередь, обращают внимание на производительность в ограниченном кругу приложений, а о тепловыделении, энергопотреблении и стоимости думают во вторую-третью. Для рядового пользователя начинка ПК одинаково важна со всех сторон, и платформа LGA 1150 в течение последних трех лет была оптимальным выбором: богатый ассортимент процессоров и системных плат, умеренная цена, скромное энергопотребление. Фактически, золотая середина. Но нужно двигаться вперед.

Под «движением вперед» подразумевался переход на 14-нм техпроцесс со всеми его приятными последствиями: меньше площадь кристалла, ниже энергопотребление (и тепловыделение), выше тактовые частоты. Однако с самого начала дело не заладилось. То возникали проблемы с транзисторами, то появлялся большой процент брака.
На протяжении года в новостных лентах проскакивали обрывочные сведения, но не было никакой точной и достоверной информации. Даже те, кто не собирались менять начинку ПК сразу после выхода очередного семейства процессоров, ожидали появления новинок. Исключительно из интереса к результату столь продолжительных стараний.
В обязательном порядке стоит упомянуть десктопные модели на базе ядра Broadwell, которые как-то быстро промелькнули в новостных лентах в июле 2015 г. и пропали.
Сам я на первых порах чуть было не принял эти процессоры за долгожданную обновку, изрядно удивившись сохранению процессорного разъема (и типа оперативной памяти заодно) при 14-нм техпроцессе и нестандартном ядре. Ведь Intel хлебом не корми, дай только новой платформой пользователя озаботить, а поди же ты, третье поколение - и все 1150. Но нет, Broadwell (или, точнее говоря, Broadwell-DT) были скоротечным промежуточным звеном между двумя поколениями, больше ориентированным на мобильный сегмент, нежели на настольный. Как следствие, повышенный интерес к ним испытывают желающие получить преимущества мобильных решений, сохранив десктопный формат компьютера.
Долгожданный выход на рынок новинки на ядре Skylake состоялся в конце лета 2015г.

Здесь необходимо заметить, что тот Skylake, что сокетирован, правильнее называть Skylake-S, потому что есть и другие версии Skylake - U, Y и H, рассчитанные на установку в мобильных системах и выпускаемые в BGA упаковке.

Всего в сокетированное семейство Skylake-S входит 20 моделей процессоров с TDP от 35 до 91 Вт. Узнать их в прайс-листах очень просто - в маркировке первая цифра будет 6. Количественные характеристики изменились незначительно: количество ядер - от двух до четырех, частота - от 2,2 до 4 ГГц, кеш L3 - от 3 до 8 Мбайт.

Компания Intel по-прежнему оставляет решения с шестью и более ядрами для высокопроизводительной платформы LGA 2011, что является оправданным решением. В повседневной работе толку от высоких тактовых частот больше, чем от увеличения числа потоков (которое напрямую зависит от количества ядер). Так что четыре ядра, раскачанные технологией Hyperthreading до восьми потоков, в настоящее время можно считать оптимальным значением для «бытовых нужд».

Skylake-S выпускается под платформу LGA 1151, выполненную на базе системной логики 100-й серии: Z170, H170, H110, B150, Q170 и Q150. Обилие чипсетов обусловлено разным набором функций, используемых в различных областях. Энтузиастов, оверклокеров и стремящихся к самому-самому совершенному, заинтересует Z170, а вот Q170 и H170 лишены некоторых возможностей Z170, их удел - «простые» высокопроизводительные компьютеры.

Чипсеты B150 и H110 рассчитаны на системы начального уровня, из-за чего часть линий PCI-E отсутствует. Общие для 100-го семейства нововведения: шина DMI третьей версии для общения процессора с PCH, PCI Express за номером 3.0, десять USB 3.0 вместо прежних восьми, десять линий PCI Express (в топовых версиях чипсета).

Ситуация с оперативной памятью интересная: решения Skylake-S поддерживают как DDR3, так и DDR4, но пока о DDR3 в отношении LGA 1151 как-то забыли. Полагаю, дело в маркетинговой составляющей и малой распространенности бюджетных решений под новый процессорный разъем.
Однако, фактически, DDR3-2400 ничем не уступает DDR4-2400, а стоит дешевле при том же объеме. Некоторые аналитики предрекают массовый переход на DDR4 в течение 2016–2017 гг., но мы-то знаем, что реальная картина совсем иная.
Учитывая распространенность платформ с DDR3 памятью и отсутствие скачкообразного роста производительности в настольном сегменте, еще в течение четырех-пяти лет третья версия будет активно использоваться.
Больше всего нововведений в самом процессоре. Как явствует из предыдущего абзаца, по соседству с контроллером DDR3 установлен DDR4. Выросло число операций, исполняемых за такт, повысилась пропускная способность кольцевой шины данных и кеша L3, увеличились внутренние буферы. Все это, по заверениям Intel, обеспечивает рост производительности по сравнению с Haswell при прочих равных условиях, но нужна хорошая оптимизация програмного обеспечения, чтобы раскрытить все преимущества.
Проще говоря, сразу Skylake-S не выстрелит, надобно подождать адаптации кода ПО.
Важное нововведение для оверклокеров: контроллер питания выведен из ядра процессора и больше не ставит палки в колеса при разгоне. Минус решения - удорожание системных плат вследствие необходимости организовывать систему питания. Здесь палка о двух концах: на бюджетных решениях не к чему городить мощный конвертер, и тогда наценка будет незаметна. А для оверлокерских моделей можно не скупиться и поставить на них ставить сложные преобразователи с большим запасом по мощности, за что можно просить серьезные деньги.

Видеоядро, теперь называющееся Intel HD 530, состоит из 24 блоков. Полностью аналогичное по архитектуре GT2 в Haswell - которое HD Graphics 4600 - насчитывало 20 блоков. В распоряжении Intel есть куда более производительное и совершенное с технологической точки зрения GT3e, применяемое в Broadwell. Но чтобы исключить взаимную конкуренцию процессоров в системах без дискретной
видеокарты, решено было установить в Skylake-S чуть более раскачанное GT2.

Исследование производительности процессоров Core i5-6600K и i7-6700K, предоставленных компанией Intel, производилось на системной плате ASUS Z170 Pro Gaming, основанной на топовой версии системной логики. Для сравнения были взяты четыре процессора: Core i5-4770K, один из топовых для платформы LGA1150 на архитектуре Haswell, Core i5-5775C, один из немногих сокетированных Broadwell,
и Core i7-5930K, устанавливаемый на платформу LGA 2011v3.

Такой набор из практически топовых решений на Haswell, Haswell-E, Broadwell-DT и Skylake-S позволит оценить производительность платформ в повседневных приложениях. Особенно стоит отметить, что данное сравнение показателей носит общий характер и не отвечает на вопросы вроде «насколько быстрее HD 530 относительно HD 4600?» и «сколь велик разгонный потенциал i7-6600K относительно i7-4770K?». Без сомнения, ответы на них интересны, и с вышеназванной четверкой можно провести множество других тестов, позволяющих понять нюансы работы того или иного процессора в разных условиях. Сваливать все в один материал - не лучшее решение; гораздо разумнее идти от общего к частному, а не пытаться объять все на десятке страниц печатного текста.

На роль тестовых приложений максимально привлекались реальные программы, а минимально - синтетические бенчмарки, а именно, PCMark 8 и LuxMark 2.0. Остальные шесть - часто используемые в работе приложения и бенчмарки на их движке.

В Adobe After Effects CC 2015 измерялось время наложения спецэффектов на отрезок видео, в Adobe Photoshop CS6 - время наложения фильтров на снимок высокого разрешения.

В Autodesk 3ds Max 2016 вычислялось количество отрисованных кадров при использовании рендера V-Ray, в MediaCoder x64 0.8.36 - время сжатия кодеком x264 MPEG2 видеоролика. В 7-Zip и Cinebench R15 использовались встроенные тесты замера производительности.


Уже с первого же взгляда на баллы в тесте PC Mark 8 становится понятно, что никакой конкретики по процессорам он не дает, вся четверка на одном уровне, разница
лишь в пределах погрешности. На других графиках ситуация понятнее.

Так, After Effects очень положительно относится к многоядерным процессорам с высокой тактовой частотой. Та же зависимость прослеживается в LuxMark. Всю пользу
от платформы LGA 2011v3 иллюстрируют Cinebench, 3ds Max, 7-Zip, Photoshop, MediaCoder x64. Добавление двух ядер при сравнительно невысокой для данного класса процессоров частоте - 3,5 ГГц - приводит четырехъядерные модели к опережению по результатам на треть и более. Наглядный ответ на вопрос о предназначении 2011-й платформы в целом. Четыре канала памяти дают некоторый плюс, но по сравнению с двухканальным режимом он малозаметен, 1–3% в зависимости от приложения.


Результаты, продемонстрированные Core i5-6600K, неоднозначны: в Photoshop, MediaCoder x64, 3ds Max он идет практически вровень с i7-4770K, а в After Effects, 7-Zip и Cinebench значительно отстает от него. Причина такого поведения заключается в непонятном мне решении Intel оставить 6600K без технологии Hyper-threading, хотя это один из двух топовых процессоров в линейке Skylake-S.
Производительнее только i7-6700K, у которого и частота выше на 400 МГц, и Hyper-threading наличествует. Плюсы от высокой тактовой частоты и обновленного ядра хорошо видны на графиках: среди четырехъядерников 6700K везде первый, уступает только плотнее укомплектованному ядрами 5930K.
Результаты i5-5775C представляются странными: то чуть ли не последний (After Effects, MediaCoder), то идет на уровне с 4770K, несмотря на 3,3 ГГц тактовой частоты (7-Zip, Photoshop), а кое-где даже обгоняет его (Cinebench R15, 3ds Max)! Дело в том, что при схожей с Haswell архитектуре были увеличены внутренние буферы, улучшен алгоритм предсказания ветвлений, добавлены ускоренные операции умножения и деления, появился дополнительный кеш L4 объемом 128 Мбайт (так называемая eDRAM), используемый встроенным видеоядром как видеопамять при отсутствии дискретной видеокарты. Распространенное в мобильном сегменте решение, ничего кардинально нового. И да, Hyper-threading не отключен. Фактически, это те результаты, которые должен показывать Skylake-S на 3,3 ГГц. Поэтому на 6ххх и не поставили новое ядро Iris Pro 6200: при текущих раскладах заинтересованная в 5775C и 6600K аудитория не так сильно пересекается.

Последний график демонстрирует энергопотребление процессора в трех режимах: простой, кодирование видео кодеком x264 и стресс-тест программой LinX. Замерялось
потребление только процессора, без влияния видеокарты, накопителей и потерь в блоке питания. На графике хорошо видны плюсы от перехода на 14-нм технологию: энергопотребление при сильной загрузке уменьшилось на 24 Вт и при слабой - на 2 Вт. Шестиядерный процессор прожорлив соответственно своим вычислительным способностям даже в режиме покоя.

Итог таков: обе 14-нм новинки, выпущенные Intel в 2015 г., интересны каждая по-своему. Broadwell-DT в целом и Core i7-5775C в частности могут приглянуться тем,
кому нужна шустрая и экономичная платформа без особых графических мощностей. А Skylake-S в данный момент выглядит хорошим преемником Haswell: снижено энергопотребление, множество полезных (пусть и не фундаментальных) доработок в ядре, сохранены тактовые частоты.

Все приведенные графики красноречиво свидетельствуют в пользу новинки. Не стоит забывать, что платформа LGA 1151 еще находится на старте, а потому выглядит непривлекательно рядом с LGA 1150: комплектующих мало и они дороги (системные платы с памятью типа DDR4, в первую очередь), а также не введены оптимизации в программный код приложений для использования всех новшеств Skylake.
Следовательно, практически нет никакого смысла переходить с сопоставимых по классу процессоров Haswell на Skylake, разве что очень хочется побыстрее заполучить
новинку, да и денег не жалко. В будущем же замена LGA 1150 на LGA 1151 начнет приобретать смысл.