Распространение звука. Звуковые волны. Скорость звука. Теория звука и акустики понятным языком Пространство в котором распространяется звук

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?

Предисловие.

Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха.

Теперь немного поразмышляем. Если, например, в горах упал камень, а рядом не было никого, кто мог бы слышать звук его падения, существовал звук или нет? На вопрос можно ответить и положительно и отрицательно в равной степени, так как слово «звук» имеет двоякое значение. Поэтому нужно условиться, что же считать звуком – физическое явление в виде распространения звуковых колебаний в воздухе или ощущения слушателя. Первое по существу является причиной, второе следствием, при этом первое понятие о звуке – объективное, второе – субъективное.

В первом случае звук действительно представляет собой поток энергии, текущей подобно речному потоку. Такой звук может изменить среду, через которую он проходит, и сам изменяется ею. Во втором случае под звуком мы понимаем те ощущения, которые возникают у слушателя при воздействии звуковой волны через слуховой аппарат на мозг. Слыша звук, человек может испытывать различные чувства. Самые разнообразные эмоции вызывает у нас тот сложный комплекс звуков, который мы называем музыкой . Звуки составляют основу речи , которая служит главным средством общения в человеческом обществе. И, наконец, существует такая форма звука, как шум . Анализ звука с позиций субъективного восприятия более сложен, чем при объективной оценке.

Распространение звука в пространстве и его воздействие на органы слуха человека.

При достижении звуковой волной какой-либо точки пространства, частицы вещества, до того не совершавшие упорядоченных движений, начинают колебаться. Любое движущееся тело, в том числе и колеблющееся, способно совершать работу, то есть оно обладает энергией. Следовательно, распространение звуковой волны сопровождается распространением энергии. Источником этой энергии является колеблющееся тело, которое и излучает в окружающее пространство(вещество) энергию.

Органы слуха человека способны воспринимать колебания с частотой от 15-20 герц до 16-20 тысяч герц. Механические колебания с указанными частотами называются звуковыми или акустическими(акустика – учение о звуке)

Итак, звук – это волновой колебательный процесс, происходящий в упругой среде и вызывающий слуховое ощущение. Однако восприимчивость человека к звукам избирательна, поэтому мы говорим о слышимых и неслышимых звуках. Совокупность тех и других в общем напоминает спектр солнечных лучей, в котором есть видимая область – от красного до фиолетового цвета и две невидимые – инфракрасная и ультрафиолетовая. По аналогии с солнечным спектром звуки, которые не воспринимаются человеческим ухом, называются инфразвуками , ультразвуками и гиперзвуками .

Что же происходит в органах слуха с различными системами и процессами преобразования слуха? Рассмотрим строение слухового аппарата человека.

Наружное ухо состоит из ушной раковины и слухового прохода, соединяющих её с барабанной перепонкой. Основная функция наружного уха – определение направления на источник звука. Слуховой проход представляющий сужающуюся внутрь трубку длиной в два сантиметра, предохраняет внутренние части уха и играет роль резонатора. Слуховой проход заканчивается барабанной перепонкой – мембраной, которая колеблется под действием звуковых волн. Именно здесь, на внешней границе среднего уха, и происходит преобразование объективного звука в субъективный. За барабанной перепонкой расположены три маленьких соединённых между собой косточки: молоточек, наковальня и стремя, с помощью которых колебания передаются внутреннему уху.

Там, в слуховом нерве, они преобразуются в электрические сигналы. Малая полость, где находится молоточек, наковальня и стремя, наполнена воздухом и соединена с полостью рта евстахиевой трубой. Благодаря последней поддерживается одинаковое давление на внутреннюю и внешнюю сторону барабанной перепонки. Обычно евстахиева труба закрыта, а открывается лишь при внезапном изменении давления(при зевании, глотании) для выравнивания его. Если у человека евстахиева труба закрыта, например, в связи с простудным заболеванием, то давление не выравнивается, и человек ощущает боль в ушах.

Сила, действующая на барабанную перепонку, равна произведению давления на площадь барабанной перепонки.

Но настоящие таинства слуха начинаются с овального окна. Звуковые волны распространяются в жидкости (перилимфе ), которой наполнена улитка. Этот орган внутреннего уха, по форме напоминающий улитку, имеет длину три сантиметра и по всей длине разделён перегородкой на две части. Звуковые волны доходят до перегородки, огибают её и далее распространяются по направлению почти к тому же месту, где они впервые коснулись перегородки, но уже с другой стороны.

Перегородка улитки состоит из основной мембраны , очень толстой и тугой. Звуковые колебания создают на её поверхности волнообразную рябь, при этом гребни для разной частоты лежат в совершенно определённых участках мембраны.

Механические колебания преобразуются в электрические в специальном органе(органе Корти ), размещённом над верхней частью основной мембраны.

Над органом Корти расположена текториальная мембрана . Оба эти органа погружены в жидкость – эндолимфу и отделены от остальной части улитки мембраной Рейснера . Волоски, растущие из органа Корти почти пронизывают текториальную мембрану, и при возникновении звука они соприкасаются – происходит преобразование звука, теперь он закодирован в виде электрических сигналов.

Заметную роль в усилении нашей способности к восприятию звуков играет кожный покров и кости черепа, что обусловлено их хорошей проводимостью. Например, если приложить ухо к рельсу, то движение приближающегося поезда можно обнаружить задолго до его появления.

Свойства звука и его характеристики.

Основные физические характеристики звука – частота и интенсивность колебаний. Они и влияют на слуховое восприятие людей.

Периодом колебания называется время, в течение которого совершается одно полное колебание. Можно привести в пример качающийся маятник, когда он из крайнего левого положения перемещается в крайнее правое и возвращается обратно в исходное положение.

Частота колебаний – это число полных колебаний(периодов)за одну секунду. Эту единицу называют герцем (Гц). Чем больше частота колебаний, тем более высокий звук мы слышим, то есть звук имеет более высокий тон . В соответствии с принятой международной системой единиц, 1000 Гц называется килогерцем (кГц), а 1.000.000 – мегагерцем (МГц).

Распределение по частотам: слышимые звуки – в пределах 15Гц-20кГц, инфразвуки – ниже 15Гц; ультразвуки – в пределах 1,5·10 4 – 10 9 Гц; гиперзвуки - в пределах 10 9 – 10 13 Гц.

Ухо человека наиболее чувствительно к звукам с частотой от 2000 до 5000 кГц. Наибольшая острота слуха наблюдается в возраст 15-20 лет. С возрастом слух ухудшается.

С периодом и частотой колебаний связано понятие о длине волны. Длиной звуковой волны называется расстояние между двумя последовательными сгущениями или разрежениями среды. На примере волн, распространяющихся на поверхности воды, - это расстояние между двумя гребнями.

Звуки различаются также по тембру . Основной тон звука сопровождается второстепенными тонами, которые всегда выше по частоте(обертона). Тембр – это качественная характеристика звука. Чем больше обертонов накладывается на основной тон, тем «сочнее» звук в музыкальном отношении.

Вторая основная характеристика – амплитуда колебаний . Это наибольшее отклонение от положения равновесия при гармонических колебаниях. На примере с маятником – максимальное отклонение его в крайнее левое положение, либо в крайнее правое положение. Амплитуда колебаний определяет интенсивность(силу) звука.

Сила звука, или его интенсивность, определяется количеством акустической энергии, протекающей за одну секунду через площадь в один квадратный сантиметр. Следовательно, интенсивность акустических волн зависит от величины акустического давления, создаваемого источником в среде.

С интенсивностью звука в свою очередь связана громкость . Чем больше интенсивность звука, тем он громче. Однако эти понятия не равнозначны. Громкость – это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковое по своей громкости слуховое восприятие. Каждый человек обладает своим порогом слышимости.

Звуки очень большой интенсивности человек перестаёт слышать и воспринимает их как ощущение давления и даже боли. Такую силу звука называют порогом болевого ощущения.

Шум. Музыка. Речь.

С точки зрения восприятия органами слуха звуков, их можно разделить в основном на три категории: шум , музыка и речь . Это разные области звуковых явлений, обладающие специфической для человека информацией.

Шум – это бессистемное сочетание большого количества звуков, то есть слияние всех этих звуков в один нестройный голос. Считается, что шум – это категория звуков, которая мешает человеку или раздражает.

Люди выдерживают лишь определённую дозу шума. Но если проходит час – другой, и шум не прекращается, то появляется напряжение, нервозность и даже боль.

Звуком можно убить человека. В средние века существовала даже такая казнь, когда человека сажали под колокол и начинали в него бить. Постепенно колокольный звон убивал человека. Но это было в средние века. В наше время появились сверхзвуковые самолёты. Если такой самолёт пролетит над городом на высоте 1000-1500 метров, то в домах лопнут стёкла.

Музыка – это особое явление в мире звуков, но, в отличие от речи, она не передаёт точных смысловых или лингвистических значений. Эмоциональное насыщение и приятные музыкальные ассоциации начинаются в раннем детстве, когда у ребёнка ещё словесного общения. Ритмы и напевы связывают его с матерью, а пение и танцы являются элементом общения в играх. Роль музыки в жизни человека настолько велика, что в последние годы медицина приписывает ей целебные свойства.

С помощью музыки можно нормализовать биоритмы, обеспечить оптимальный уровень деятельности сердечно-сосудистой системы.

А ведь стоит лишь вспомнить, как солдаты идут в бой. Испокон веков песня была непременным атрибутом солдатского марша.

Речь – важнейшее средство мышления и общения людей. Речь состоит из более или менее длительных шумов и тонов, составляющих группы. Овладение речью происходит еще в младенческом возрасте, когда ребёнок еще только слушает и пытается воспроизвести самые несложные и легко произносимые слова: «мама» и «папа».

Законы распространения звука.

К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция , то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Инфразвук, ультразвук, гиперзвук.

Инфразвук – упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 15-4- Гц; такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения, и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределённа. В настоящее время область его изучения простирается вниз примерно до 0,001 Гц. Таким образом диапазон инфразвуковых частот охватывает около 15-ти октав.

Инфразвуковые волны распространяются в воздушной и водной среде, а также в земной коре(в этом случае их называют сейсмическими и их изучает сейсмология). К инфразвукам относятся также низкочастотные колебания крупногабаритных конструкций, в частности транспортных средств, зданий.

Основная особенность инфразвука, обусловленная его низкой частотой, - это малое поглощение. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько Дб (децибелл). Из-за большой длины волны на инфразвуковых частотах мало и рассеяние звука в естественных средах; заметное рассеяние создают лишь очень крупные объекты – холмы, горы, крупные здания и др.. Вследствие малого поглощения и рассеяния инфразвук может распространяться на очень большие расстояния. Известно, что звуки извержения вулканов, атомных взрывов могут многократно обходить вокруг земного шара, сейсмические волны могут пересекать всю толщу Земли. По этим же причинам инфразвук почти невозможно изолировать, и все звукопоглощающие материалы теряют свою эффективность на инфразвуковых частотах.

Источниками инфразвука, связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолётов, акустическое излучение реактивных двигателей и др.. Всякий очень громкий звук несёт с собой, как правило, и инфразвуковую энергию. Характерно, что излучением инфразвука сопровождается процесс речеобразования. Существенный вклад в инфразвуковое загрязнение среду дают транспортные шумы как аэродинамического, так и вибрационного происхождения.

Установлено, что инфразвук с высоким уровнем интенсивности(120Дб и более) оказывает вредное влияние на человеческий организм. Ещё более вредными являются инфразвуковые вибрации, поскольку при их воздействии могут возникать опасные резонансные явления отдельных органов. Мощный инфразвук может вызывать разрушение и повреждение конструкций, оборудования. Вместе с тем инфразвук вследствие большой дальности распространения находит полезное практическое применение при исследовании океанической среды, верхних слоёв атмосферы, при определении места извержения или взрыва. Инфразвуковые волны, излучаемые при подводных извержениях, позволяют предсказать возникновение цунами.

Ультразвук – упругие волны с частотами приблизительно от (1,5 – 2)·10 4 Гц (15 – 20 кГц) до 10 9 Гц(1ГГц); область частотных волн от 10 9 до 10 12 – 10 13 Гц принято называть гиперзвуком. По частоте ультразвук удобно подразделять на 3 диапазона: ультразвук низких частот(1,5·10 4 – 10 5 Гц), ультразвук средних частот(10 5 – 10 7 Гц), область высоких частот ультразвука(10 7 – 10 9 Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.

По физической природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн, имеет место ряд особенностей распространения ультразвука.

Ввиду малой длины волны ультразвука, характер его определяется прежде всего молекулярной структурой среды. Ультразвук в газе, и в частности в воздухе, распространяется с большим затуханием. Жидкости и твёрдые тела представляют собой, как правило, хорошие проводники ультразвука, - затухание в них значительно меньше. Поэтому области использования ультразвука средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и в газах применяют ультразвук только низких частот.

Ультразвуковым волнам было найдено больше всего применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см 2 .

Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

Гиперзвук – это упругие волны с частотами от 10 9 до 10 12 – 10 13 Гц. По физической природе гиперзвук ничем не отличается от звуковых и ультразвуковых волн. Благодаря более высоким частотам и, следовательно, меньшей, чем в области ультразвука, длинам волн значительно более существенными становятся взаимодействия гиперзвука с квазичастицами в среде – с электронами проводимости, тепловыми фононами и др.. Гиперзвук также часто представляют как поток квазичастиц – фононов.

Область частот гиперзвука соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов(так называемые сверхвысокие частоты).Частота 10 9 Гц в воздухе при нормальном атмосферном давлении и комнатной температуре должна быть одного порядка с длиной свободного пробега молекул в воздухе при этих же условиях. Однако упругие волны могут распространяться в среде только при условии, что их длина волны заметно больше длины свободного пробега частиц в газах или больше межатомных расстояний в жидкостях и твёрдых телах. Поэтому в газах (в частности в воздухе) при нормальном атмосферном давлении гиперзвуковые волны распространяться не могут. В жидкостях затухание гиперзвука очень велико и дальность распространения мала. Сравнительно хорошо гиперзвук распространяется в твёрдых телах – монокристаллах, особенно при низкой температуре. Но даже в таких условиях гиперзвук способен пройти расстояние лишь в 1, максимум 15 сантиметров.

План.

1. Распространение звука в пространстве и его воздействие на органы слуха человека.

2. Свойства звука и его характеристики.

3. Шум. Музыка. Речь.

4. Законы распространения звука.

5. Инфразвук, ультразвук, гиперзвук.

Список использованной литературы.

1.Хорбенко Иван Григорьевич: «За пределами слышимого»;2-е издание,1986г..

2.Клюкин Игорь Иванович: «Удивительный мир звука»;2-е издание, 1986г..

3. Кошкин Н. И., Ширкевич М.Г.: «Справочник по элементарной физике»; 10-е изд., 1988г.

4. Интернет: онлайн-библиотека Мошкова( www . lib . ru ). Научно-популярная литература, Физика – онлайн-энциклопедия в 5 томах, «З», ультразвук, инфразвук, гиперзвук. http://www.physicum.narod.r u

5. Рисунок – интернет:

http://www.melfon.ru/TOMSK/kvz.htm

Министерство Культуры Российской Федерации

Санкт-Петербургский Государственный Университет Кино и Телевидения

Вечернее отделение.

Контрольная работа

по дисциплине Введение в специальность

«Исследование звука. Основные свойства слуха

человека».

Выполнила студентка группы № 7252:

Принял декан вечернего отделения, доцент:

Тарасов Б.Н.

Санкт-Петербург 2002г.

звук колебание волна отражение

Мы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Сжатие и разрежение воздуха (вызванные колебаниями источника и распространяющиеся благодаря возникновению упругих сил) достигают нашего уха и приводят барабанную перепонку в колебательное движение. В результате у нас возникают определенные слуховые ощущения. Таким образом, воздух служит передающей средой, т. е. веществом, в котором звук распространяется от источника к приемнику, в частности к нашему уху. Если между источником и приемником удалить упругую звукопередающую среду, то звук распространяться не будет и, следовательно, приемник не воспримет его. Продемонстрируем это на опыте. Поместим под колокол воздушного насоса часы-будильник. Пока в колоколе находится воздух, звук звонка мы слышим ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон. Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы. Положим на один конец деревянной доски карманные часы, а сами отойдем к другому концу. Приложив ухо к доске, мы ясно услышим ход часов. Привяжем к металлической ложке бечевку. Конец бечевки приложим к уху. Ударяя по ложке, услышим сильный звук. Еще более сильный звук услышим, если бечевку заменим проволокой. Мягкие и пористые тела -- плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает. Жидкости хорошо проводят звук. Рыбы, например, хорошо слышат шаги и голоса на берегу, это известно опытным рыболовам. Итак, звук распространяется в любой упругой среде -- твердой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества.

Звуковые волны. Скорость звука

Известно, что звук распространяется в пространстве только при наличии какой-либо упругой среды. Среда необходима для передачи колебаний от источника звука к приемнику, например к уху человека. Другими словами, колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя ее колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука. В газах и жидкостях могут существовать только продольные упругие волны. Звук в воздухе, например, передается продольными волнами, т. е. чередующимися сгущениями и разрежениями воздуха, идущими от источника звука. Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определенной скоростью. Простейшие наблюдения позволяют убедиться в этом. Например, когда мы издалека наблюдаем за стрельбой из ружья, то сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела. Дым появляется в то же время, когда происходит первое звуковое колебание. Измерив промежуток времени t между моментом возникновения звука (момент появления дыма) и моментом, когда он доходит до уха, можно определить скорость распространения звука: Измерения показывают, что скорость звука в воздухе при О °С и нормальном атмосферном давлении равна 332 м/с. Скорость звука в газах тем больше, чем выше их температура. Например, при 20 °С скорость звука в воздухе равна 343 м/с, при 60 °С -- 366 м/с, при 100 °С -- 387 м/с. Объясняется это тем, что с повышением температуры возрастает упругость газов, а чем больше упругие силы, возникающие в среде при ее деформации, тем быстрее передаются колебания от одной точки к другой. Скорость звука зависит также от свойств среды, в которой распространяется звук. Например, при 0 °С скорость звука в водороде равна 1284 м/с, а в углекислом газе -- 259 м/с.

В настоящее время скорость звука может быть измерена в любой среде.

Отражение звука. Эхо

Каждый из вас знаком с таким звуковым явлением, как эхо. Эхо образуется в результате отражения звука от различных преград -- стен большого пустого помещения, леса, сводов высокой арки в здании. Но почему мы не слышим эха в небольшой квартире? Ведь и в ней звук должен отражаться от стен, потолка, пола. Оказывается, мы слышим эхо лишь в том случае, когда отраженный звук воспринимается отдельно от произнесенного. Для этого нужно, чтобы промежуток времени между воздействием этих двух звуков на ушную барабанную перепонку составлял не менее 0,06 с. Давайте определим, через какое время после произнесенного вами короткого возгласа отраженный от стены звук достигнет вашего уха, если вы стоите на расстоянии 3 м от этой стены. Звук должен пройти двойное расстояние -- до стены и обратно, т, е. 6 м, распространяясь со скоростью 340 м/с. На это потребуется время t = s:v, т. е. t = 6м: 340 м/с ~ 0,02 с. В данном случае интервал между двумя воспринимаемыми вами звуками -- произнесенным и отраженным -- значительно меньше того, который необходим, чтобы услышать эхо. Кроме того, образованию эха в комнате препятствует находящаяся в ней мебель, шторы и другие предметы, частично поглощающие отраженный звук. Поэтому в таком помещении речь людей и другие звуки не искажаются эхом и звучат четко и разборчиво. Большие полупустые помещения с гладкими стенами, полом и потолком обладают свойством очень хорошо отражать звуковые волны. В таком помещении благодаря набеганию предшествующих звуковых волн на последующие получается наложение звуков, и образуется гул. Для улучшения звуковых свойств больших залов и аудиторий их стены часто облицовывают звукопоглощающими материалами. На свойстве звука отражаться от гладких поверхностей основано действие рупора -- расширяющейся трубы обычно круглого или прямоугольного сечения. При использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается и он распространяется на большее расстояние.

Звуковой резонанс

Мы знаем, что амплитуда установившихся вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с собственной частотой колебательной системы. Это явление называется резонансом. Например, довольно тяжелый нитяной маятник можно сильно раскачать, если периодически дуть на него (даже очень слабой струей) в направлении его движения с частотой, равной его собственной частоте. Резонанс может быть вызван и действием звуковых волн. Ящики, на которых установлены камертоны, способствуют усилению звука и наиболее полной передаче энергии от одного камертона к другому. Усиление звука происходит за счет колебаний самого ящика и особенно столба воздуха в нем. Размеры ящика подбирают таким образом, чтобы собственная частота воздушного столба в нем совпадала с частотой колебаний камертона. При этом столб воздуха колеблется в резонанс с камертоном, т. е. амплитуда его колебаний и, соответственно, громкость звука достигают наибольших значений. Камертон, снабженный таким ящиком (резонатором), издает более громкий, но менее длительный звук (по закону сохранения энергии). В музыкальных инструментах роль резонаторов выполняют части их корпусов. Например, в гитаре, скрипке и других подобных им струнных инструментах резонаторами служат деки, которые усиливают издаваемые струнами звуки и придают звучанию инструмента характерную для него окраску -- тембр. Тембр звука зависит не только от формы и размера резонатора, но и от того, из какого дерева он изготовлен, и даже от состава лака, покрывающего его. Тембр определяется также материалом, из которого сделана струна, и тем, гладкая она или витая. Резонаторы имеются и в нашем голосовом аппарате. Источники звука в голосовом аппарате -- голосовые связки. Они приходят в колебание благодаря продуванию воздуха из легких и возбуждают звук, основной тон которого зависит от их натяжения. Этот звук богат обертонами. Гортань усиливает те из обертонов, частота колебаний которых близка к ее собственной частоте. Дальше звуковые волны попадают в полость рта. Для произнесения каждой гласной необходимо особое положение губ, языка и определенная форма резонаторной полости во рту.

Влияние звуков на человека

Ежедневно каждый из нас, людей, живущих в городских условиях, подвергается довольно агрессивному воздействию множества факторов. Это и «ароматы» выхлопных газов, и отопление, и излучение различных приборов, и, конечно, звуки. Звуки окружают нас повсюду, зачастую мы не можем их выбирать - шум проезжающих машин, работ на стройке, чья-то речь или навязчивая музыка в маршрутке. Все звуки, осознаем мы это или нет, оказывают сильное влияние на наше сознание и самочувствие. Конечно, от звукового фона города можно отгородиться плеером. О том, что в таком случае полезнее всего в нем слушать, я хочу поговорить сегодня. Тишина, которая сегодня идет на вес золота, просто необходима человеку, особенно в ночное время. Доказано, что отсутствие тишины во время сна отрицательно сказывается на самочувствии - организму не удается восстановиться полностью, возникает преждевременная (а при постоянном шумовом воздействии - перманентная) усталость, раздражительность. Вы, конечно, помните, как важно правильно отдыхать и хорошо спать, поэтому необходимо принять меры по звукоизоляции своей квартиры - установку стеклопакетов, использование звукоизоляционных материалов, а в качестве крайней меры - переезд в более тихое место. Чем выше уровень шума, который воздействует на человека, тем больший вред он наносит здоровью и психике. Например, люди, занятые на производстве с высоким уровнем шумового воздействия, теряют не только слух, сильно страдают жизненно важные органы: сердце, пищеварительная система, печень. Ок, эти люди получают надбавку за вредные условия работы, которая хоть как-то компенсирует нанесенный вред. А что насчет простых людей, которые ежедневно подвергаются, например, шумовому воздействию среднего уровня - открывая окно своего рабочего кабинета или перемещаясь по городу? Оказывается, даже небольшой шум создает серьезную нагрузку на нервную систему человека, влияет на психическое здоровье. Не случайно одной из пыток, которые раньше использовали китайцы, было монотонное воздействие шума на протяжении долгого времени. Это может привести даже к полной потере рассудка. Если шум не настолько навязчив, сознание и организм адаптируются, мы можем даже не осознавать, что слышим шум, но это не значит, что он на нас не влияет. При этом звуки, которые производит сам человек, не оказывают на него негативного влияния, а посторонний шум может «наградить» различными заболеваниями. Вредные звуки Итак, с точки зрения психологии, изучения мозговой деятельности человека, слухового аппарата и влияния различных звуков на человека, отрицательное влияние имеет следующие звуки: Современная коммерческая музыка - хип-хоп, рок, хард рок, электронная и поп-музыка - пишется на низких частотах, что, согласно исследованиям, оказывает воздействие схожее с грохотом землетрясения, обрушением здания или сходом снежной лавины. Человек подсознательно ощущает угрозу, кроме того, может почувствовать упадок сил и депрессию. Длительное воздействие низких частот вызывает изменение функционирования желез, ответственных за гормональный фон, изменяется уровень инсулина в крови, а также снижается или исчезает полностью способность к самоконтролю. Бранная и нецензурная речь, тексты песен с негативным посылом, оказывают на человека сильнейшее влияние. Помните, как меняется вода в зависимости от сказанных ей слов? Человек, постоянно слышащий вокруг мат, крики, негативные речи, просто зачахнет, если не задумается о том, чтобы защитить себя. Полезные звуки: в первую очередь, это, конечно, звуки природы: журчание ручья, пение птиц, звуки волн и дождя, песни дельфинов. Эти звуки позволяют отключиться от городской суеты и направить свой внутренний взор к собственным истокам - живой природе. Результат: снятие стресса, состояние покоя и релаксации, снижение артериального давления, улучшение самочувствия в целом, улучшение настроения. В Интернете звуки природы представлены в огромном количестве, например, неплохая коллекция здесь. Классическая музыка пиштся на высоких частотах, которые благоприятно воздействуют на сознание и организм человека. Произведения Моцарта активизируют процессы головного мозга, дают энергетическую подзарядку. Слушая Баха и Вивальди, вы обретете состояние гармонии, равновесия, и очень поможете своему сердцу: произведения этих композиторов имеют идеальный музыкальный ритм (60 ударов в минуту), который соответствует нормальному, здоровому биению сердца. Людям с сердечными заболеваниями рекомендуется также слушать Моцарта. Народная и религиозная музыка, мантры, церковные песнопения, индийская классическая музыка, вальс - именно эти стили музыки гармонизируют работу чакр человека, выравнивают его энергетическое поле. Написанные Бахом и Генделем произведения в стиле «барокко» улучшают память, помогают в изучении иностранных языков. Звукотерапия Для решения многих психологических проблем и лечения определенных органов, настраивания организм на исцеление, используется звукотерапия - прослушивание игры на определенных музыкальных инструментах: Скрипка способствует самопознанию, развивает сострадание, лечит душевные раны. Флейта снимает озлобленность и раздражительность, помогает излечиться от несчастной любви, очищает бронхи и всю дыхательную систему. Арфа и струнные нормализует кровяное давление и работу сердца, помогает при истерии. Пианино благотворно воздействует на почки и мочевой пузырь, щитовидную железу. Саксофон активизирует сексуальную энергию, благоприятен для половой системы. Звуки балалайки прекрасно исцеляют пищеварительную систему. Аккордеон и баян активизируют работу органов брюшной полости. Орган помогает привести в порядок мысли, гармонизирует потоки энергии в позвоночнике. Кларнет улучшает кровообращение и избавляет от уныния. Труба исцеляет радикулит, а цимбала - печень. Барабан стимулирует кровеносную систему, восстанавливает нормальный ритм сердца. Гитара, контрабас и виолончель лечат почки, благоприятно воздействуют на сердце и тонкую кишку.

Воздействие инфразвука на человека весьма своеобразно. Известен такой интересный случай. Как-то в театре для пьесы о временах Средневековья заказали знаменитому физику Р. Вуду (1868--1955) огромную органную трубу, около 40 метров длиной. Труба издает тем ниже звук, чем она длиннее. Такая длинная труба должна была издать уже не слышимый человеческим ухом звук. Звуковая волна в 40 м длиной соответствует частоте около 8 Гц. А это вдвое ниже нижнего предела слышимости человека по высоте. Конфуз получился, когда попробовали на спектакле воспользоваться этой трубой. Инфразвук такой частоты хотя и не был слышим, но близко подошел к так называемому альфа-ритму человеческого мозга (5 -- 7 Гц). Колебания такой частоты вызвали у людей чувство страха и паники. Зрители разбежались, устроив при этом давку. Такие частоты вообще опасны для человека.

Интересные факты о звуке

Звук - это призывающий и творческий символ. Многие мифы о творении свидетельствуют, что Вселенная была создана с помощью звука. Согласно Гермесу Трисмегисту, звук был первым, что потревожило предвечную тишину, и посему он являлся причиной всего созданного в мире, предшествуя свету, воздуху и огню. В индуизме звук Аум привел космос к бытию.

Сила звука измеряется в единицах, получивших название белл - в честь Александра Белла, изобретателя телефона. Однако на практике оказалось более удобным использовать десятые доли бела, то есть децибелы. Максимальным порогом силы звука для человека является интенсивность 120...130 децибел. Звук такой силы вызывает боль в ушах.

Звук, который вы слышите, когда «ломаете» суставы, фактически является звуком разрывания пузырей газа азота.

Первое определение скорости распространения звука в воздухе было произведено французским физиком и философом Пьером Гассенди в середине XVII в - она оказалась равной 449 метрам в секунду. Звук рева тигра можно услышать на расстоянии 3 км.

Интересный факт: быть глухим не значит ничего не слышать, и тем более не значит не иметь «музыкальный слух». Великий композитор Бетховен, например, вообще был глухим. Он приставлял к роялю конец своей трости, а другой ее конец прижимал к зубам. И звук доходил до его внутреннего уха, которое было здоровым.

Томас Эдисон считал свой аппарат для записи и воспроизведения звука игрушкой, непригодной для серьезного практического применения.

Громкая музыка, звучащая из наушников, очень нагружает нервы в слуховой системе и в мозге. Этот факт приводит к ухудшению способности различать звуки, причем сам человек даже не ощущает, что его слуховое здоровье ухудшается.

Кузнечики издают звук при помощи задних ног.

Шелест листьев производит шум силой 30 децибел, громкая речь - 70 децибел, оркестр - 80 децибел, а реактивный двигатель - от 120 до 140 децибел.

Если взять в зубы тикающие наручные часы и заткнуть себе уши, то тиканье превратится в сильные, тяжелые удары -- настолько оно усилится.

Гранит проводит звук в десять раз лучше, чем воздух.

Водопад Ниагара производит шум, сравнимый с шумом фабричного цеха (90-100 децибел).

Громкий храп может достигать того же уровня звука, что и отбойный молоток. Ударяясь о барабанную перепонку в ухе, звук колеблет ее, и она повторяет колебания воздушных волн.

Человек способен услышать звук, даже если барабанная перепонка под его воздействием отклонилась на расстояние, равное радиусу ядра атома водорода.

Распостранение звука в свободном пространстве

Если источник звука всенаправленный , другими словами, звуковая энергия распространяется равномерно во всех направлениях, как например, звук от самолета в воздушном пространстве, то распределение звукового давления зависит только от расстояния и уменьшается на 6 дБ с каждым удвоением расстояния от источника звука.


Если же источник звука направленный , как, например, рупор, то уровень звукового давления зависит как от расстояния, так и от угла восприятия относительно оси излучения звука.

Взаимодействие звука с препятствием

Звуковые (слышимые) волны, встречая на своём пути препятствие, частично поглощаются им, частично отражаются от него, то есть переизлучаются препятствием обратно в помещение и частично проходят через него насквозь.

Сразу следует отметить, что процентное соотношение этих процессов будет различным для звуковых волн разной длины, что обусловлено особенностями поведения ВЧ, СЧ и НЧ волн. Помимо этого немаловажную роль играют характеристики самого препятствия такие, как его толщина, плотность материала из которого оно изготовлено, а также свойства поверхности (гладкая/рельефная, плотная/рыхлая).


Распостранение звука в замкнутом пространстве

Распространение звука в замкнутом пространстве (в условиях помещения) кардинальным образом отличается от условий его распространения в свободном пространстве, так, как звуковая волна встречает на своём пути множество преград (стены, потолок, пол, мебель, предметы интерьера и т.п.).

Возникающие в результате этого многочисленные отражения основного звука взаимодействуют, как с прямым звуком, исходящим непосредственно из динамика и достигающего ушей слушателя кратчайшим путём, то есть, по прямой, так и между собой. Схематически это различие иллюстрирует следующая диаграмма:

1) Открытое пространство: прямой звук;

2) Замкнутое пространство: прямой звук + ранние отражения + реверберация.

Всем известно, что звук отражается от стен, пола и потолка, но как это происходит?

Как уже было рассмотрено выше, звуковая волна, ударяясь о преграду, частично отражается от неё, частично поглощается, а частично проходит сквозь препятствие.

Естественно, чем тверже и плотнее стена, тем большую часть акустической энергии она будет отражать назад во внутреннее пространство помещения.

Звуковые волны отражаются от препятствий остронаправленно, поэтому в местах их отражений от стен, потолка и пола, то есть, в стороне от основного источника звука появляются его дополнительные "образы" (вторичные, «мнимые» источники звука или, так называемые «фантомы». В некоторых зарубежных источниках информации их также называют «горячими областями»).

Отражения, взаимодействуя между собой и с прямым звуком, искажают его и ухудшают отчетливость звуковой картины. А теперь представьте себе, что происходит, когда многочастотный звук сразу от двух или более акустических систем отражается сразу от шести поверхностей комнаты (четырёх стен, потолка и пола), и Вы поймете, какое колоссальное влияние оказывает акустика помещения на качество звука, воспроизводящегося в нём.

Итак, в замкнутом пространстве (в условиях помещения) выделяют три источника звука:

1. Прямой звук - это звук, исходящий непосредственно из динамиков АС (акустической системы) и достигающий ушей слушателя кратчайшим путём - по прямой, то есть, не отражаясь от поверхностей стен, пола и потолка помещения (условно можно считать его оригинальным звуком, записанном на музыкальном носителе).

2. Ранние отражения (первые отражения) - это отражения основного звука от стен, пола и потолка помещения, а также от предметов интерьера, находящихся в нём, достигающие ушей слушателя самыми короткими путями, то есть, претерпевая одно единственное отражение, благодаря чему они сохраняют достаточно большую амплитуду и формируют в областях отражения на поверхностях стен, пола и потолка помещения «образы» (вторичные, виртуальные, «мнимые» источники, «фантомы») прямого звука. Именно поэтому первые отражения являются наиболее важными в общей структуре отражений и, соответственно, оказывают серьёзное влияние на качество звучания и формирование стереокартины.

3. Реверберационные отражения (поздние отражения, реверберация, эхо) . В отличие от ранних отражений, они являются результатом многократных переотражений основного звука от поверхностей стен, пола и потолка помещения. Они достигают ушей слушателя сложными, длинными путями и поэтому имеют низкую амплитуду.

Под основным звуком подразумевается звук, исходящий непосредственно из динамика, но, в отличие от прямого звука, имеет круговую направленность.


Чем же отличаются ранние и поздние отражения?

Чтобы ответить на данный вопрос, необходимо ознакомиться с некоторыми субъективными особенностями человеческого звуковосприятия, связанными с временной характеристикой звука.

Это - так называемый эффект Хааса (Haas effect) , суть которого состоит в том, что, если звук прибывает от нескольких разноудаленных источников, то наша система ухо/мозг идентифицирует (воспринимает) только тот звук, который пришел раньше.

Если разница во времени прибытия нескольких звуковых сигналов составляет до 50 мс , то ранее прибывший звук доминирует над пришедшим позже, даже в случае, если последний на 10 дБ громче (т.е. громче в 3 раза!!!).

Таким образом, все отражения, достигающие ушей слушателя в течение первых 50 мс вслед за прямым звуком, воспринимаются человеческим ухом слитно с прямым сигналом, то есть, как один общий сигнал.

С одной стороны, это приводит к улучшению восприятия речи и субъективному увеличению её громкости, однако, в случае звуковоспроизведения это значительно ухудшает его качество за счёт искажения оригинальной музыкальной информации сливающимися с ней отражёнными звуковыми сигналами.

Если же отражения поступают с задержкой больше, чем 50 мс и имеют сопоставимый уровень с прямым сигналом, человеческое ухо воспринимает их как повторение прямого сигнала, то есть - в виде отдельных звуковых сигналов. В таких случаях эти отражения называют «эхом» (реверберацией) . Эхо существенно ухудшает разборчивость речи и восприятие музыкальной информации.


1) Особое практическое значение имеют ранние отражения (первые отражения) , достигающие уха слушателя во временном промежутке до 20 мс. после прямого сигнала.

Как уже говорилось, они сохраняют большую амплитуду и воспринимаются человеческим ухом слитно с прямым сигналом и, следовательно, искажают его первоначальную (оригинальную) структуру. Таким образом, первые отражения являются одним из основных врагов качественного звука .

Геометрические характеристики ранних отражений напрямую зависят от формы помещения, местоположения источника звука (в нашем случае это АС) и слушателя в нём, являясь уникальными для каждой конкретной точки данного помещения.

Амплитудные же характеристики первых отражений зависят от:

Расстояния между источником звука и отражающей поверхностью;

Расстояния от ушей слушателя до отражающей поверхности;

От акустических свойств самой отражающей поверхности.

Таким образом, акустическая характеристика каждой точки внутреннего пространства помещения, главным образом, определяется сочетанием характеристик прямого звука и ранних отражений, приходящих в данную точку.


2) Реверберация (поздние отражения, эхо).

При воспроизведении звука в помещении мы слышим не только прямой звук от источника и ранние отражения, но и более слабые (тихие) отражённые сигналы, являющиеся результатом многократных длительных переотражений основного звука от стен, пола и потолка помещения. Естественно, что эти звуковые сигналы достигают ушей слушателя с большим опозданием относительно момента прибытия прямого звука и первых отражений. Субъективно это воспринимается в
виде эха.

Таким образом, эффект, при котором затухание звука происходит не сразу, а постепенно, за счет многочисленных его переотражений от стен, пола и потолка помещения, называется реверберацией .

Спектральный состав отраженных сигналов в больших и малых помещениях отличается, так как реверберация несёт в себе информацию о размерах помещения. Помимо этого спектр реверберационных сигналов также содержит информацию о свойствах материалов, из которых изготовлены отражающие поверхности.

Например, реверберация с высоким уровнем высокочастотных составляющих, ассоциируется с комнатой, имеющей твердые стены, которые хорошо отражают высокие частоты. Если же звук реверберации глухой, то слушатель приходит к выводу, что стены комнаты покрыты коврами или драпировками, поглощающими высокие частоты.

Также следует отметить, что спектр реверберационных сигналов позволяет определить расстояние до источника звука.

Наша система ухо/мозг, автоматически оценивая соотношение между уровнями прямого звука и реверберации, самостоятельно делает вывод о том, находится ли источник звука близко (слабая реверберация) или далеко (сильная реверберация).

Кроме того, орган слуха человека устроен таким образом, что качество звуковосприятия зависит не только от количественного соотношения между прямым звуком и реверберацией, но также и от времени запаздывания реверберационного сигнала по отношению к моменту восприятия прямого звука.

Время реверберации представляет собой промежуток времени, в течение которого звуковая волна, многократно переотражаясь эхом по комнате, постепенно затухает. Этот параметр является одним из главных критериев акустической характеристики помещения.

Этот параметр характеризует размеры помещения: в малых помещениях за единицу времени происходит большее количество переотражений, что, в отличие от ситуации в больших комнатах, ведёт к быстрому ослаблению и последующему затуханию реверберации. А также и свойства его отражающих поверхностей: твёрдые глянцевые поверхности, в отличие от рельефных и мягких, хорошо отражают звук, практически не ослабляя его, что в свою очередь, естественно, продлевает время реверберации.

Для обозначения данного параметра было принято сокращение RT60 , то есть время (в секундах), за которое уровень звукового давления (SPL) в помещении снижается на 60 дБ, после того, как источник звука прекратит излучение.

Многократное эхо субъективно воспринимается как гулкость помещения . Чем меньше затухание, тем больше время реверберации и, соответственно, тем сильнее гулкость.

Как уже отмечалось, время реверберации определяется не только размерами помещения, но и отражающей способностью его стен, пола и потолка. Вам приходилось замечать, как непривычен звук в пустой комнате, подготовленной для ремонта, или в громадном ангаре, где имеет место сильная реверберация?

В связи с вышесказанным, целесообразно рассмотреть ещё одну категорию, а именно, радиус гулкости . Что это такое?

Речь идёт о соотношении уровней прямого и отражённого звука. В общем, чем ближе находится слушатель к источнику звука, тем громче прямой звук и, соответственно, тише - отражённый. По мере удаления от источника звука прямой звук ослабевает, а отражённый, наоборот, усиливается.

Логически следуя данному принципу, можно вполне справедливо предположить, что на некотором определённом расстоянии от источника звука прямой и отражённый звук будут восприниматься слушателем с одинаковой громкостью. Так вот окружность, с радиусом, соответствующим радиусу гулкости, и является границей между двумя областями: внутренней с преобладанием прямого звука и наружную, где доминирует отражённый звук.

Особенности поведения звуковых волн разной длины в условиях замкнутого пространства

Очевидно, что поведение звука в музыкальной студии подчиняется законам его распространения в замкнутом пространстве. Рассмотрим этот процесс более детально.

Поведение звуковых волн в замкнутом пространстве зависит от их длины и, соответственно, от частоты их колебаний, варьирующих в пределах от 17 метров (20 Гц - в начале слышимого басового диапазона) до 17 миллиметров (20 КГц - в конце слышимого высокочастотного диапазона).

Упрощенно поведение звуковых волн внутри помещения, в зависимости от их длины, можно представить в виде двух независимых моделей.

Одна - для НЧ выглядит как чисто волновой процесс - интерференция (сложение) всех источников НЧ (как баса от динамиков, так и низкочастотных отражений от стен, пола и потолка), приводящий к образованию трёхмерной картинки для каждой частоты подобно горному рельефу с чередующимися пиками и провалами громкости.

Вторая - для ВЧ, подобна излучению света с известными законами преломления, отражения и дифракции. Она использует наглядные методы геометрической оптики, поскольку в этих областях действуют аналогичные правила. Например, часть энергии звуковой волны, достигшей твердой поверхности, отражается ею под углом, равном углу падения.

Общую картину дополняет смешение этих двух процессов для СЧ.

Средне- и высокочастотные волны (волны малой длины).

Как уже говорилось, поведение звуковых волн ВЧ диапазона в общих чертах подчиняется законам распространения света. Это напрямую относится к волнам ВЧ диапазона и более или менее справедливо по отношению к ВСЧ поддиапазону.

Первой особенностью звуковых волн данного диапазона является их выраженная направленность , то есть изменение (усиление или ослабление) восприятия уровня ВЧ даже при незначительном отклонении от оси их излучения. Проще говоря, высокие частоты распространяются в направлении слушателя подобно лучу прожектора.

Направленность растёт с увеличением частоты сигнала, достигая максимума на самых высоких частотах. Именно направленность определяет основную значимость ВЧ волн в формировании стереокартины.

Второй характерной особенностью ВЧ, является способность к многократному отражению от твёрдых поверхностей, подобно рекошетящей пуле или бильярдному шару, что, в свою очередь, обуславливает их лёгкую рассеиваимость (диффузию).

Третья особенность - лёгкая поглощаемость даже тонкими мягкими поверхностями, такими как, непример, шторы.

Именно благодаря направленности и способности к отражению ВЧ, как отмечалось выше, принимают активное участие в формировании реверберационной картины.

Низкочастотные или басовые волны (волны большой длины).

Итак, поведение НЧ в условиях замкнутого пространства выглядит как чисто волновой процесс, в основе которого лежит интерференция, то есть, процесс сложения (наложения) звуковых волн, исходящих абсолютно от всех НЧ источников, находящихся в помещении, а также множества НЧ-отражений от стен, пола и потолка данного помещения.

Это обусловлено тем, что в отличии от СЧ и ВЧ волн, являющихся направленными, басовые волны равномерно распространяются во всех направлениях подобно сферам, расходящимся от излучающего центра. Таким образом, НЧ звуковые волны являются всенаправленными , именно поэтому, с закрытыми глазами невозможно определить местоположение вуфера.

Это свойство НЧ волн объясняет неспособность участия их в формировании стереокартины.

Помимо этого, благодаря большой длине волны и высокой энергии, НЧ волны способны не только огибать препятствие, но и, частично отражаясь, «проходить» насквозь даже через бетонные стены (это как раз тот случай, когда Ваши дальние соседи по «многоэтажке» слышат низкочастотное «гудение», во время прослушивания Вами музыки).

Таким образом, в отличии от ВЧ, которые легко отражаются от твёрдых поверхностей, басовые волны отражаются гораздо хуже, частично поглощаясь и частично проходя сквозь препятствие, причём с понижением частоты они всё больше утрачивают способность к отражению и предпочитают «идти напролом».

А ещё НЧ волны «умеют» «вытекать» из помещения через открытые оконные и дверные проёмы, а также легко проникать через стекло, как будто его вообще нет.

Учитывая все вышеперечисленные моменты, а также принимая во внимание тот факт, что длины НЧ волн соизмеримы с линейными размерами комнаты (длиной, шириной и высотой), становится понятным, почему на поведение басовых волн основное влияние оказывают именно параметры помещения.

Если длина волны звукового сигнала в два раза больше одного из линейных размеров комнаты, то на её частоте между данной парой стен возникает самое грозное и трудноподавляемое акустическое явление, буквально, «убивающее» звук, - резонанс воздушного объёма .

Субъективно это выражается в усилении сигнала этой конкретной частоты по отношению к уровню остальных частот и появлению гулкости звучания.

Низкочастотные резонансы и стоячие волны возникают между двумя параллельными поверхностями (например, между фронтальной и тыловой стенами или между боковыми стенами, или между полом и потолком) при возбуждении в данном помещении звуковой волны с соответствующей частотой.

Причём абсолютно неважно, что возбудит эту волну: воспроизведение музыки, игра на музыкальном инструменте, тембр голоса при разговоре, звуки коммуникаций или проходящего мимо транспорта, работа электробытовых приборов и т.д.).

Низкочастотные звуковые волны распространяются всенаправленно («... мы не можем локализовать басы, ниже 80 Гц...» - Anthony Grimani) и они обладают огромной энергией. Самые низкие из них - басовые частоты, практически не отражаясь, способны проходить через любые препятствия.

По мере повышения частоты их способность к отражению возрастает, а проникающая способность снижается.

«Считается, что звук распространяется прямолинейно, как любые волны. Но это справедливо лишь для лишенного препятствий широкого пространства. В реальности движение звуковых волн неизмеримо сложнее. Они сталкиваются с препятствиями и друг с другом, и порой распространяются, образуя вихри, по неописуемым траекториям.

На мой взгляд, тем, кто занимается аудиотехникой, необходимо обладать пространственным воображением, чтобы ясно представлять визуальные образы звуковых волн и их поведение, которое невозможно объяснить, опираясь только на теорию электричества.

Похоже, по сей день, огромное количество факторов, влияющих на звуковоспроизведение, остаются неизученными, бросая вызов всем накопленным знаниям и опыту звукоинженеров. Чем больше я размышляю над этим, тем отчетливее понимаю, что мир звука намного глубже, чем мы можем себе представить.»

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.