Расширение спектра. Системы с расширяемым спектром

Расширение спектра скачкообразной перестройкой частоты Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS) – метод основанный на периодической смене несущей частоты в соответствии с алгоритмом известном передатчику и приемнику. Принципы реализации: Диапазон частот радиоканала делится на пронумерованные подканалы; В процессе работы алгоритма генерируется псевдослучайная последовательность чисел, каждому числу сопоставляется номер частотного подканала; В процессе передачи одного отдельного бита частота может не изменяться (медленное расширение спектра) или изменяться несколько раз (быстрое расширение спектра); Для линейного кодирования используют частотную или фазовую модуляции.


Особенности метода: При прослушивании отдельного подканала получают шумоподобный сигнал не позволяющий восстановить передаваемые данные; В случае использования быстрого расширения спектра, искажение сигнала передаваемого по отдельному подканалу не приводит к потери передаваемого бита; В следствии смена несущих частот снижается эффект межсимвольной интерференции; Метод может использоваться для организации мультиплексирования нескольких потоков данных – для каждого потока выбираться отдельная псевдослучайная последовательность; Простота реализации.


Прямое последовательное расширение спектра Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum, DSSS) – метод основан на замене каждого передаваемого бита N битами, что влечет увеличение в N- раз тактовой частоты передатчика и расширение спектра. Принцип реализации: Каждый передаваемая двоичная единица заменяется последовательностью битов называемой элементарной (расширяющей) последовательностью. Двоичный ноль заменяется инверсным значением расширяющей последовательности. Бит расширяющей последовательности называется элементарным сигналом (чипом). Скорость передачи чипов называют чиповой скоростью. Кол-во битов в элементарной последовательности называют коэффициентом расширения;


Пример: Если в качестве элементарной последовательности используется (последовательность Баркера) Тогда для передачи будет передана следующая последовательность чипов:


Особенности метода: Чем больше коэффициент расширения тем шире спектр передаваемого сигнала; Метод в меньшей степени обеспечивает защиту от помех чем метод FHSS, поскольку искажение сигнала в узкой полосе частот может привести к ошибочному распознаванию принятого бита приемником;


Множественный доступ с кодовым разделением Множественный доступ с кодовым разделением (Code Division Multiplexing Access, CDMA) основан на методе DSSS. Принципы реализации: В процессе передачи каждый узел CDMA-сети использует уникальную элементарную последовательность (э.п.) ; Обозначим m - длину расширяющей последовательности, Вектор соответствующий э. п. обозначим S, дополнение (инверсию) э.п. обозначим S (для записи вектора будем использовать биполярную запись: двоичный 0 будем обозначим -1, двоичную единицу +1). Элементарные последовательности выбираются так чтобы они были попарно ортогональны. Т.е. для каждых векторов S и T, их нормированное скалярное произведение ST должно быть равно 0: Σ i=1 m 1 – m S i T i = 0 ST


Из ST = 0 следует ST=0 Отметим, что нормированное скалярное произведение э.п. на саму себя равно 1. Σ i=1 m 1 – m SiSiSiSi SS = Σ i=1 m 1 – m Si2Si2 = Σ m 1 – m ±1 2 = = 1 SS = -1 Предположим, что все станции синхронизированы, т.е. все станции начинаю передачу битов данных одновременно. При одновременной передачи биполярные сигналы линейно складываются. Пример 1. Если станция A, B и C посылают соответственно +1, -1 и +1, то в результате получим +1.


Пример 2. Пусть станции A, B, C используют следующие э.п.: A: = () B: = () C: = () Рассмотрим примеры одновременной передачи данных этими станциями: _ _ 1 С = () _ 1 1 B+C = () 1 0 _ A+B = () A+B+C = ()


Приемнику заранее известны элементарные последовательности всех передающих станций. Для декодирования производится вычисление нормированного скалярного произведения принятой последовательности (суммы принятых сигналов) и элементарной последовательности станции. Пример 3. Пусть станции A, B и C передают соответственно 1, 0, 1 (в биполярной записи +1, -1, +1). Приемник получает сумму сигналов S=A+B+C, тогда SA = (A+B+C)A = AA + BA + CA = = 1 SB = (A+B+C)B = AB + BB + CB = = -1 SC = (A+B+C)C = AC + BC + CC = = 1 Пусть станции A, B и C передают соответственно 1, 0, _ (в биполярной записи +1, -1, _). Приемник получает сумму сигналов S=A+B, тогда SA = (A+B)A = AA + BA = 1+0 = 1 SB = (A+B)B = AB + BB = 0-1 = -1 SC = (A+B)C = AC + BC = 0+0 = 0


Особенности метода: Попарно ортогональные последовательности генерируются с помощью метода Уолша (коды Уолша); Чем длиннее э.п. тем больше вероятность ее корректного распознавания на фоне шумов (на практике часто применяют последовательности с 64 или 128 чипами); Для повышения надежности, используют коды с коррекцией ошибок. Для выравнивания мощностей сигналов принимаемых от различных станций применяют метод компенсации мощностей (чем слабее сигнал принимаемый от базовой станции тем более мощный сигнал должна передавать мобильная станция). Допущения в описании алгоритма: Синхронизация станций сети; Равенство мощностей всех принимаемых сигналов (равноудаленность мобильных станций от базовой станции); Знание базовой станцией э.п. всех передающих станций.


Формат кадра Управление кадром ДлительностьA.1А. 2А. 3НомерА.4Данные Контрольная сумма ВерсияТип К DS От DS MFПовторПитание Продол- жение WПодтипO Типы кадров: информационные служебные управляющие 1.Управление кадром (2 байта) Версия (2 бита) – версия протокола; Тип (2 бита) – тип кадра (информационный, служебный, управляющий); Подтип (4 бита) – подтип кадра (CTS, RTS, сигнальный, аутенитификация и т. д.); Информационный кадр:


К DS (1 бит) – кадр передается в направлении к распределительной системы; От DS (1 бит) – кадр передается в направлении от распределительной системы; MF (больше фрагментов, 1 бит) – указывает на то, что далее следует еще один фрагмент; Повтор (1 бит) – указание на повторную посылку фрагмента; Питание (1 бит) – указание станции перейти в режим пониженного энергопотребления или выйти из него; Продолжение (больше данных, 1 бит) – указывает на то, что у отправителя имеются еще кадры для пересылки; W (1 бит) – указывает на использование шифрования по алгоритму WEP; O (1 бит) – указывает на необходимость обработки кадров строго по порядку;


2. Длительность (2 байта) – указание предположительного времени передачи кадра и получения подтверждения (ACK) 3. A.1 (6 байт) – адрес отправителя 4. A.2 (6 байт) – адрес получателя 5. A.3 (6 байт) – адрес исходной ячейки 6.Номер (2 байта) – содержит 4-битовое подполе номера фрагмента, используемое для фрагментации и повторной сборки, и 12-битовый порядковый номер, используемый для нумерации кадров; 7. A.4 (6 байт) – адрес целевой ячейки; 8. Данные (байт) – передаваемые данные; 9. Контрольная сумма (4 байта). В управляющих кадрах отсутствуют поля A3 и A4. В служебных кадрах (RTS, CTS, ACK)отсутствуют поля A3, A4, Номер, Данные.


Уменьшение зоны радиопокрытия до минимально приемлемой (идеал – зона радиопокрытия не должна выходить за пределы контролируемой территории). Разграничение доступа, основанное на MAC-аутентификации. Использование уникальных последовательность частотных прыжков в технологии FHSS. Фильтрация устройств по заранее заданным IP-адресам. Использование WEP (Wired Equivalent Privacy) - шифрование на основе алгоритма RC4 с 64 и 128-битовыми ключами (в алгоритме были найдены серьезные уязвимости). Методы защиты реализуемые в оборудовании WiFi:


Аутентификация и авторизация на основе стандарта IEEE 802.1x - использование серверов AAA (например RADIUS) и динамических ключей шифрования. Использование протокола WPA и WPA2 (Wi-Fi Protected Access). WPA реализует принцип временных ключей шифрования и взаимосвязан с TKIP Temporal Key Integrity Protocol (WPA был разработан как замена WEP). В 2008 г. В технологии WPA найдены уязвимости. WPA2 реализует стандарт i – надежный протокол безопасности использующий алгоритм шифрования AES (Advanced Encryption Standart). Реализация WiFi сетей на основе VPN - развертывание виртуальной частной сети поверх имеющейся беспроводной.

Расширение спектра

Термин расширение спектра был использован многочисленных военныхи коммерческих системах связи. В системах с расширенным спектромкаждый сигнал-переносчик сообщений требует значительно более широкойполосы радиочастот по сравнению с обычным модулированным сигналом. Более широкая полоса частот позволяет получить некоторые полезные

свойства и характеристики, которые трудно достичь другими средствами.

Расширение спектра представляет собой метод формирования сигнала с расширенным спектром с помощью дополнительной ступени модуляции, обеспечивающей не только расширение спектра сигнала, но и ослабление его влияния на другие сигналы. Дополнительная модуляция никак не связана с передаваемым сообщением. Поэтому подобное расширение полосы непозволяет ослабить влияние аддитивного белого гауссовского шума (АБГШ), как это происходит при широкополосной частотной модуляции.

Преимущества систем с расширенным спектром

спектральной плотности 4) Высокая разрешающая способность при измерениях расстояния 5) Защищённость связи6) Способность противостоять воздействию преднамеренных помех

8) Постепенное снижение качества связи при увеличении числа пользователей одновременно занимающих один и тот же ВЧ канал

9) Низкая стоимость при реализации

10) Наличие современной элементнойбазы (интегральных микросхем).

Основные группы систем с расширенным спектром

В соответствии с архитектурой и используемыми видами модуляции,

системы с расширенным спектром могут быть разделены на следующие основные группы:

Системы с прямым расширением спектра на основе псевдослучайных последовательностей (ПСП), включая системы МДКРК (CDMA).

Системы с перестройкой рабочей частоты (с «прыгающей» частотой), включая системы МДКРК с медленной и быстрой перестройкой рабочей частоты.

Системы множественного доступа с расширенным спектром и контролем несущей (CSMA).

Системы с перестройкой временного положения сигналов («прыгающим» временем).

Системы с линейной частотной модуляцией сигналов (chip modulation). Системы со смешанными методами расширения спектра.

В подвижных системах радиосвязи и беспроводных локальных сетях нашли широкое применение методы прямого расширения спектра, перестройки рабочей частоты и расширения спектра с контролем несущей.

Прямое расширение спектра с помощью псевдослучайных последовательностей

Рис. 1. Структурная схема

системы с прямым

расширением спектра

сигналов с помощью

псевдослучайной

последовательности: а -

передатчик сигналов с

PSK и последующим

расширением спектра; б - эквивалентная схема передатчика, в которой

расширение спектра

осуществляется в полосе модулирующих частот; в - приемник.

Процесс формирования сигналов с расширенным спектром происходит в два этапа: модуляция и расширение спектра (или вторичная модуляции посредством псевдослучайной последовательности). Вторичная

модуляция осуществляется с помощью идеальной операции перемножения g(t)s(t) (рис.1).При таком перемножении формирует

амплитудно-модулированный двухполосный сигнал с подавленной несущей.

PSK сигнал определяется следующим выражением:

где d(t) - нефильтрованный двухуровневый сигнал, имеющий два состояния: +1 и -1; ωпч - промежуточная частота,Ps - мощность сигнала.

В качестве сигнала расширения спектра g(t) используется сигнал псевдослучайной последовательности (ПСП) с частотой следованиясимволов f= 1/Тс. В результате повторной модуляции формируется PSKсигнал с расширенным спектром:

Этот сигнал промежуточной частоты затем переносится вверх на необходимую частоту с помощью синтезатора радиочастоты (РЧ). Здесьω0 обозначает либо промежуточнуюω ПЧ либо радиочастотуωРЧ.

Таким образом, на вход приемника поступает сумма М независимых сигналов с расширенным спектром, занимающих одну и ту же полосу РЧ:

где М - число одновременно передающих (активных) пользователей; g i (t) -ПСП i-й пары передатчик-приемник; s i (t) модулированный сигнал; I(t) -помеха (преднамеренная или собственная);n(t) - АБГШ.

В приемнике пользователя, которому предназначено сообщение, имеетсясинхронизированный во времени сигналg i (t) обеспечивающий сжатия

спектра и представляющий точную копию сигнала ПСП соответствующего передатчика. Полученный после сжатия спектра узкополосный PSK сигнал демодулируется. В приведенном примере используется двоичная фазовая модуляция/демодуляция. Однако возможна реализация и других видов

модуляции, таких, как МSК, GМSК, GFS^ FВРSК и FQFSК.

Если выбран ансамбль некоррелированных сигналов ПСП, то после операции сжатия спектра сохраняется лишь модулированный полезный сигнал. Все другие сигналы, являясь некоррелированными, сохраняют широкополосность и имеют ширину спектра, превышающую граничную полосу пропускания фильтра демодулятора.

приемной частей системыизображенына рис.4. Здесь генератор двоичной ПСП управляет синтезатором частот, с помощью которого осуществляется переход(«перескок») с одной частоты на другую измножества доступных частот. Таким образом, здесь эффект расширения

спектра достигается за счет псевдослучайной перестройки частоты несущей, значение которой выбирается из имеющихся частот f j ,. . . , f N ,

где N может достигать значений несколько тысяч и более.

Если скорость перестройки сообщений (скорость смены частот)

превышает скорость передачи сообщений, то имеем систему с быстрой перестройкой частоты. Если скорость перестройки меньше скорости

передачи сообщений, так что в интервале перестройки передается несколько битов, то имеем систему с медленной перестройкой частоты.

Изначально метод расширенного спектра создавался для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. Первая разработанная схема расширенного спектра известна как метод перестройки частоты. Более современной схемой расширенного спектра является метод прямого последовательного расширения. Оба метода используются в различных стандартах и продуктах беспроводной связи.

Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum - FHSS)

Для того чтобы радиообмен нельзя было перехватить или подавить узкополосным шумом, было предложено вести передачу с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределялась по всему диапазону, и прослушивание какой-то определенной частоты давало только небольшой шум. Последовательность несущих частот была псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшала сигнал, так как подавлялась только небольшая часть информации.

Идею этого метода иллюстрирует рис. 1.10 .

В течение фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции , такие как FSK или PSK . Для того чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию.


Рис. 1.10.

Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.

Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра (рис. 1.11а); в противном случае мы имеем дело с быстрым расширением спектра (рис. 1.11б).

Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.

Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и сопряжен с меньшими накладными расходами.

Методы FHSS используются в беспроводных технологиях IEEE 802.11 и Bluetooth .

В FHSS подход к использованию частотного диапазона не такой, как в других методах кодирования - вместо экономного расходования узкой полосы делается попытка занять весь доступный диапазон. На первый взгляд это кажется не очень эффективным - ведь в каждый момент времени в диапазоне работает только один канал. Однако последнее утверждение не всегда справедливо - коды расширенного спектра можно использовать и для мультиплексирования нескольких каналов в широком диапазоне. В частности, методы FHSS позволяют организовать одновременную работу нескольких каналов путем выбора для каждого канала таких псевдослучайных последовательностей , чтобы в каждый момент времени каждый канал работал на своей частоте (конечно, это можно сделать, только если число каналов не превышает числа частотных подканалов).

Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum - DSSS)

В методе прямого последовательного расширения спектра также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от метода FHSS , весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N-битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон.

Цель кодирования методом DSSS та же, что и методом FHSS , - повышение устойчивости к помехам. Узкополосная помеха будет искажать только определенные частоты спектра сигнала, так что приемник с большой степенью вероятности сможет правильно распознать передаваемую информацию.

Код, которым заменяется двоичная единица исходной информации, называется расширяющей последовательностью , а каждый бит такой последовательности - чипом.

Соответственно, скорость передачи результирующего кода называют чиповой скоростью. Двоичный нуль кодируется инверсным значением расширяющей последовательности. Приемники должны знать расширяющую последовательность, которую использует передатчик, чтобы понять передаваемую информацию.

Количество битов в расширяющей последовательности определяет коэффициент расширения исходного кода. Как и в случае FHSS , для кодирования битов результирующего кода может использоваться любой вид модуляции, например BFSK .

Чем больше коэффициент расширения, тем шире спектр результирующего сигнала и выше степень подавления помех. Но при этом растет занимаемый каналом диапазон спектра. Обычно коэффициент расширения имеет значение от 10 до 100.

При расширении спектра методом прямой последовательности (direct sequence spread spectrum - DSSS) после обработки исходного сигнала кодом расширения каждому исходному биту ставится в соответствие несколько битов передаваемого сигнала. Степень расширения спектра прямо пропорциональна количеству битов кода. Другими словами, 10-битовый код расширяет полосу частот сигнала в 10 раз больше, чем 1-битовый код.

Один из методов применения DSSS - комбинирование цифрового информа­ционного потока и битовой последовательности кода расширения с использова­нием исключающего ИЛИ. Операция исключающего ИЛИ выполняется согласно следующим правилам:

Пример такого комбинирования приводится на рис. 7.6. Отметим, что бит дан­ных, равный единице, инвертирует биты кода; если же бит данных равен нулю, биты кода расширения передаются без изменений. Комбинация двух последова­тельностей битов имеет такую же скорость передачи, как и последовательность кода расширения. Следовательно, полоса комбинированной последовательности больше полосы последовательности данных. В данном примере скорость переда­чи последовательности битов кода в четыре раза превышает аналогичный пара­метр для битов данных.

DSSS с использованием BPSK

Рассмотрим использование схемы DSSS на практике, предполагая применение модуляции BPSK. Для обозначения двоичных данных удобнее будет использо­вать не нуль и единицу, а "+1" и "−1" соответственно. Как было показано в уравнении (6.5), сигнал BPSK можно описать следующей формулой:

А - амплитуда сигнала;

f c - несущая частота;

d (t ) - дискретная функция, принимающая значение +1, если соответствую­щий бит потока данных равен 1, и −1, когда бит данных равен 0.

Рис. 7.6. Пример использования расширения спектра

методом прямой последовательности

Чтобы получить сигнал DSSS, необходимо умножить s d (t ) на функцию c (t ), которая соответствует псевдослучайной последовательности и принимает значе­ния −1 и +1:

При поступлении сигнала на приемник он еще раз умножается на c (t ). Посколь­ку c (t ) × c (t ) = 1, в результате умножения будет восстановлен исходный сигнал:

Формулу (7.5) можно интерпретировать двояко, откуда следуют две реали­зации описанного метода. Первая интерпретация - умножение c (t ) на d (t ) с по­следующим применением модуляции BPSK (именно такой подход рассматривал­ся выше). Можно также использовать альтернативный подход - модуляцию по схеме BPSK потока данных d (t ) с последующим умножением полученной функ­ции s d (t ) на c (t ).

Рис. 7.7. Система расширения спектра методом

прямой последовательности

Реализация второй трактовки приведена на рис. 7.7 Пример использования такого подхода изображен на рис. 7.8.

Рис. 7.8. Пример системы расширения спектра методом

прямой последователь­ности (модуляция BPSK )

Анализ производительности

Расширение спектра при использовании схемы DSSS определить довольно просто (рис. 7.9). В нашем примере ширина полосы одного бита информационного сиг­нала равна Т , что соответствует скорости передачи данных 1/T . Следовательно, в зависимости от кодировки ширина спектра сигнала будет составлять порядка 2/T . Подобным образом, спектр псевдослучайного сигнала равен 2/Т с . Получаю­щийся расширенный спектр изображен на рис. 7.9, в. Степень расширения пря­мо зависит от скорости передачи псевдослучайной последовательности.

Как и для схемы FSSS, представление об эффективности DSSS можно полу­чить, проанализировав устойчивость системы связи к подавлению. Предполо­жим, что намеренная помеха ставится на центральной частоте системы DSSS. Сигнал помех имеет следующий вид:

Полученный сигнал можно представить так:

s (t ) - переданный сигнал;

s j (t ) - сигнал намеренных помех;

n (t ) - аддитивный белый шум;

S j - мощность сигнала помех.

Рис. 7.9. Приблизительный спектр сигнала DSSS

Устройство сужения спектра в приемнике умножает s r (t ) на c (t ). Компонент сиг­нала, соответствующий намеренным помехам, можно записать в следующем виде:

Таким образом, имеем простое применение модуляции BPSK к несущему тону. Следовательно, мощность несущей S j распределена в полосе, ширина которой приблизительно равна 2/Т с . В то же время демодулятор BPSK (рис. 7.7), следую­щий за устройством сужения спектра, включает полосовой фильтр с шириной полосы 2/T , который согласован с данными BPSK. Значит, большая часть мощ­ности помех отфильтровывается. Хотя строго следует учитывать влияние множе­ства факторов, мощность намеренных помех, которые не были отсеяны полосо­вым фильтром, можно записать приблизительно:

Таким образом, использование расширенного спектра снизило мощность наме­ренных помех в (Т c /Т ) раз. Величина, обратная данному коэффициенту, выража­ет выигрыш в отношении сигнал/шум:

R c - скорость передачи данных кода расширения;

R - скорость передачи данных;

W d - ширина полосы сигнала;

W s - ширина полосы сигнала расширенного спектра.

Результат подобен полученному ранее для схемы FHSS (уравнение (7.3)).

СИСТЕМЫ С РАСШИРЕНИЕМ СПЕКТРА

Термин расширение спектра был использован в многочисленных военных и коммерческих системах связи. В системах с расширенным спектром каждый сигнал-переносчик сообщений требует значительно более широкой полосы радиочастот по сравнению с обычным модулированным сигналом. Более широкая полоса частот позволяет получить некоторые полезные свойства и характеристики, которые трудно достичь другими средствами.

Расширение спектра представляет собой метод формирования сигнала с расширенным спектром с помощью дополнительной ступени модуляции, обеспечивающей не только расширение спектра сигнала, но и ослабление его влияния на другие сигналы. Дополнительная модуляция никак не связана с передаваемым сообщением.

Широкополосные системы находят применение благодаря следующим потенциальным преимуществам:

Повышенной помехоустойчивости;

Возможности обеспечения кодового разделения каналов для многостанционного доступа на его основе в системах, использующих технологию CDMA;

Энергетической скрытности благодаря низкому уровню спектральной плотности;

Высокой разрешающей способности при измерениях расстояния;

Защищенности связи;

Способности противостоять воздействию преднамеренных помех;

Повышенной пропускной способности и спектральной эффективности в некоторых сотовых системах персональной связи;

Постепенному снижению качества связи при увеличении числа пользователей, одновременно занимающих один и тот же ВЧ канал;

Низкой стоимости при реализации;

Наличию современной элементной базы (интегральных микросхем).

Рисунок 6.1 – Структура системы с прямым расширением спектра

В соответствии с архитектурой и используемыми видами модуляции системы с расширенным спектром могут быть разделены на следующие основные группы.

С прямым расширением спектра на основе псевдослучайных последовательностей (ПСП), включая системы МДКРК,

С перестройкой рабочей частоты (с «прыгающей» частотой), включая системы МДКРК с медленной и быстрой перестройкой рабочей частоты,

Множественного доступа с расширенным спектром и контролем несущей (CSMA),

С перестройкой временного положения сигналов («прыгающим» временем),

С линейной частотной модуляцией сигналов (chip modulation),

Со смешанными методами расширения спектра.

Прямое расширение спектра с помощью псевдослучайных последовательностей

На рисунке 6.1 приведена концептуальная схема системы с прямым расширением спектра на основе псевдослучайных последовательностей (а - передатчик сигналов с PSK и с последующим спектра, б - передатчик с расширением спектра в полосе модулирующих частот, в - приемник). В первом модуляторе осуществляется фазовая манипуляция (PSK) сигнала промежуточной частоты двоичным цифровым сигналом передаваемого сообщения d(t) в формате без возвращения к нулю (NRZ) с частотой следования символов f b = 1/Т b .



В пределах одной соты системы подвижной радиосвязи, как правило, есть несколько абонентов, одновременно пользующихся связью, причем каждый из них использует одну и ту же несущую частоту fрч и занимает одну и ту же полосу частот Врч.

Процесс формирования сигналов с расширенным спектром в системах с многостанционным доступом происходит в два этапа: модуляция и расширение спектра (или вторичная модуляция посредством ПСП). Вторичная модуляция осуществляется с помощью идеальной операции перемножения g(t)s(t). При таком перемножении формируется амплитудно-модулированный двухполосный сигнал с подавленной несущей. Первый и второй модуляторы можно поменять местами без изменения потенциальных характеристик системы.

Сигнал g(t)s(t) с расширенным спектром преобразуется вверх до нужной радиочастоты. Хотя преобразование частоты вверх и вниз является для большинства систем практически необходимым процессом, все же этот этап не является определяющим. Поэтому в дальнейшем будем считать, что сигнал g(t)s(t) передается и принимается на промежуточной частоте, исключив из рассмотрения подсистемы преобразования частот вверх и вниз.

Таким образом, на вход приемника поступает сумма М независимых сигналов с расширенным спектром, занимающих одну и ту же полосу РЧ.

Концепция систем с расширенным спектром путем программной перестройки рабочей частоты во многом схожа с концепцией систем с прямым расширением спектра. Здесь генератор двоичной ПСП управляет синтезатором частот, с помощью которого осуществляется переход («перескок») с одной частоты на другую из множества доступных частот. Таким образом, здесь эффект расширения спектра достигается за счет псевдослучайной перестройки частоты несущей, значение которой выбирается из имеющихся частот f1,...,fN, где N может достигать значений несколько тысяч и более. Если скорость перестройки сообщений (скорость смены частот) превышает скорость передачи сообщений, то имеем систему с быстрой перестройкой частоты. Если скорость перестройки меньше скорости передачи сообщений, так что в интервале перестройки передается несколько битов, то имеем систему с медленной перестройкой частоты.

Если выбран ансамбль некоррелированных сигналов ПСП, то после операции сжатия спектра сохраняется лишь модулированный полезный сигнал. Все другие сигналы, являясь некоррелированными, сохраняют широкополосность и имеют ширину спектра, превышающую граничную полосу пропускания фильтра демодулятора. На рисунке 6.2 приведены упрощенные временные и спектральные диаграммы, качественно иллюстрирующие процессы расширения и сжатия спектра сигналов. В частности, в них отсутствует сигнал несущей.

Рисунок 6.2 - Диаграммы при расширении спектра

В системах с расширенным спектром путем перестройки рабочей частоты последняя сохраняется постоянной в течение каждого интервала перестройки, но изменяется скачком от интервала к интервалу. Частоты передачи формируются цифровым синтезатором частот, управляемым кодом («словами»), поступающим в последовательном либо параллельном виде и содержащим m двоичных символов (битов) Каждому m-битовому слову или его части соответствует одна из M = 2m частот. Хотя для осуществления перестройки частот имеется M = 2m, m = 2, 3, частот, но не все из них обязательно используются в конкретной системе. Системы с расширением спектра путем программной перестройки рабочей частоты подразделяются на системы с медленной, с быстрой и со средней скоростью перестройки.

В системах с медленной перестройкой скорость перестройки fh, меньше скорости передачи сообщений fb. Таким образом в интервале перестройки, прежде, чем осуществится переход на другую частоту, могут быть переданы два бита сообщения или более (в некоторых системах свыше 1000). В системах со средней скоростью перестройки скорость перестройки равна скорости передачи. Наибольшее распространение получили системы с быстрой и медленной перестройкой рабочей частоты.

Для синхронизации приемников при приеме сигналов с расширенным спектром может потребоваться три устройства синхронизации:

Фазовой синхронизации несущей (восстановления несущей);

Символьной синхронизации (восстановления тактовой частоты);

Временной синхронизации генераторов, формирующих кодовые или псевдослучайные последовательности.

Временная синхронизация обеспечивается в два этапа, в течение которых выполняются:

Поиск (первоначальная, грубая синхронизация);

Слежение (точная синхронизация).

На рисунке 6.3 изображены структурные схемы передающей и приемной частей системы с перестройкой частоты.

Рисунок 6.3 - Система с программной перестройкой частоты

В стандарте GSM применяется спектрально-эффективная гауссова частотная манипуляция с минимальным частотным сдвигом (GMSK). Манипуляция называется гауссовой потому, что последовательность ин­формационных битов до модулятора проходит через фильтр нижних час­тот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала. Формирование GMSK радио­сигнала осуществляется таким образом, что на интервале одного инфор­мационного бита фаза несущей изменяется на 90°. Это наименее воз­можное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты. Применение фильтра Гаусса позволяет при дискретном изменении частоты получить «гладкие переходы». В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы ВТ = 0,3, где В - ширина полосы фильтра по уровню -3 дБ, Т - длительность 1 бита цифрового сообщения. Функциональная схема модулятора показана на рисунке 6.4.

Рисунок 6.4 - Функциональная схема модулятора

Основой формирователя GMSK-сигнала является квадратурный (1/Q) модулятор. Схема состоит из двух умножителей и одного сумматора. За­дача этой схемы заключается в том, чтобы обеспечить непрерывную точ­ную фазовую модуляцию. Один умножитель изменяет амплитуду синусоидального, а второй – косинусоидального колебания. Входной сигнал до умножителя разбивается на две квадратурные составляющие. Разложение происходит в двух обозначенных «sin» и «cos» блоках.

Диаграммы, иллюстрирующие формирование GMSK-сигнала, пока­заны на рисунке 4.9.

Модуляцию GMSK отличают следующие свойства, предпочтитель­ные для мобильной связи:

Постоянную по уровню огибающую, что позволяет использовать эффективные передающие устройства с усилителями мощности в режиме класса С;

Компактный спектр на выходе усилителя мощности передающего устройства, что обеспечивает низкий уровень внеполосного излу­чения;

Хорошие характеристики помехоустойчивости канала связи.

Рисунок 6.5 - Формирование GMSK-сигнала

Обработка речи. Обработка речи в стандарте GSM осуществляется с целью обеспече­ния высокого качества передаваемых сообщений и реализации дополни­тельных сервисных возможностей. Обработка речи осуществляется в рамках принятой системы преры­вистой передачи речи(Discontinuous Transmission - DTX), которая обес­печивает включение передатчика, когда пользователь начинает разговор, и отключает его в паузах и в конце разговора. DTX управляется детек­тором активности речи (Voice Activity Detector - VAD), который обес­печивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях, когда уровень шума соизмерим с уровнем речи. В состав системы прерывистой передачи речи входит так­же устройство формирования комфортного шума, который включается и прослушивается в паузах речи, когда передатчик отключен. Экспери­ментально доказано, что отключение фонового шума на выходе прием­ника в паузах при отключении передатчика раздражает абонента и сни­жает разборчивость речи, поэтому применение комфортного шума в пау­зах считается необходимым.. DTX-процесс в приемнике предполагает интерполяцию фрагментов речи, потерянных из-за ошибок в канале.