Разбираем RGB и каналы в Фотошоп. Знакомство с цветовыми каналами (RGB, CMYK, Плашечные, Lab, многоканальный и одноканальные режимы)

Многие наверняка задаются вопросом, что такое sRGB в настройках камеры, зачем это нужно и что лучше, sRGB или Adobe RGB?

RGB – это аббревиатура от названий основных цветов (Red, Green, Blue). Почему они основные? Потому что у человека, в отличие от некоторых других видов, трихроматическое зрение. То есть, в глазу есть рецепторы, восприимчивые к этим трём цветам. Огромный вклад в восприятие цвета делает наш мозг, поэтому задача правильного отображения цвета нетривиальна и требует значительных ухищрений.

Цветовое пространство – это множество цветов которые мы можем наблюдать или отображать. Существует много способов графически отображать цветовые пространства, но хитрые математики придумали один очень элегантный способ, который вы постоянно встречаете на просторах Интернет.

Концепцию цвета можно представить следующим образом: цвет состоит из двух составляющих – яркость и тональность. То есть, серый от белого отличается только яркостью, тональность у них одинаковая. В результате экспериментов в начале 20 века удалось выяснить диапазон цветов, которые воспринимаются человеком. С помощью математических преобразований, всё множество тональностей удалось отобразить на плоскости, и назвали эту диаграмму CIE 1931 (1931 – год, когда диаграмма была представлена). Таким образом, стало возможным описать цвет координатами x,y на графике, плюс яркость.

На диаграмме цвета указаны условно для наглядности, это вовсе не те цвета, которые вы видите в повседневной жизни.

С регистрацией цвета проблем особых никогда не было, у любой цифровой камеры цветовой охват, который видит сенсор, гораздо шире того, что может видеть человек. Отчасти поэтому применяются инфракрасные и ультрафиолетовые фильтры внутри камеры, чтобы упростить последующую обработку сигнала.

Проблемы возникли с отображением цвета, особенно на экране монитора. Возможности дисплеев сильно ограничены в силу физических причин, и получить полный набор цветов, которые различает человеческий мозг, было практически нереализуемым. Было много попыток создать цветной дисплей, отображающий большинство оттенков, но компромисса между цветопередачей и ценой устройства удалось достичь в 50ые на ЭЛТ-дисплеях.

Чтобы обуздать разнообразие цветных дисплеев и профессиональную обработку изображений на компьютере сделать более прогнозируемой, в 90ые был разработан стандарт sRGB. Он появился в следствие анализа возможностей наиболее распространённых на тот момент CRT(ЭЛТ)-мониторов. О ЖК-дисплеях тогда никто даже не мечтал, к тому же по характеристикам и цене ЖК сильно отставали от ЭЛТ и базой для стандарта быть не могли.

Принцип работы CRT-экранов простой – при смешивании трёх основных цветов (красный, зелёный, синий) получались разнообразные оттенки. Проблемы две:

  1. число доступных оттенков зависит от чистоты основных цветов, а чистых цветов очень сложно добиться
  2. только смешиванием трёх основных цветов все видимые цвета не получить

Стандарт sRGB описывает, какой именно чистоты должны быть основные цвета и какие именно оттенки достижимы при их смешивании. Так же определяется, где находится точка белого. На CIE-диаграмме стандарт sRGB выглядит как треугольник с координатами основных цветов в вершинах:

Легко видеть, насколько скромны возможности техники по сравнению с тем, чем наделила нас природа.

Даже если получить основные цвета исключительной чистоты, как это достигается на лазерных дисплеях, вы не получите полного цветового охвата, который мы наблюдаем в окружающем нас мире. Всё, на что способен такой дисплей, ограничивается треугольником:

К слову сказать, при печати нет таких жёстких ограничений в количестве источников первичных цветов и поэтому за вполне разумные деньги на крутых фотопринтерах применяется, например, 8-цветная печать. Цветовой охват при этом расширяется не очень высокой ценой и выглядит на диаграмме как многоугольник. Вот как выглядит цветовой охват не очень крутого принтера по сравнению с sRGB:

Но у принтеров при этом куча других проблем, в частности, зависимость цветопередачи от качества бумаги и прочее.

Adobe RGB – это другой, но очень похожий стандарт, он немного шире и охватывает больше цветов:

Вы наверняка захотите тут же побежать и переключить sRGB в вашей камере на Adobe RGB, но не спешите это делать.

Adobe RGB нужен только тем, кто профессионально занимается печатью и точно знает, что он делает (таким людям наши статьи читать не надо). Преобладающее большинство экранов и программ работает в стандарте sRGB и об Adobe RGB ничего не знает, так исторически сложилось. Более того, при попытке на sRGB экране отобразить Adobe RGB цвета, могут возникнуть проблемы с цветопередачей. sRGB гарантирует, что по крайней мере большинство людей увидят примерно те же цвета, что и вы.

Из-за ограниченного диапазона sRGB вы наверняка замечали, что сфотографировав красную розу, вы потом на фото не можете различить лепестки. Просто возможностей экрана недостаточно, чтобы изобразить все детали в оттенках красного, к примеру.

Конечно, тут много зависит от настроек монитора, поэтому фотографы предпочитают иметь дело с мониторами на IPS-матрицах и ищут модели, которые откалиброваны ещё на заводе, такие как LG IPS236V . Все производители стараются соответствовать стандарту sRGB, у кого-то получается лучше, у кого-то хуже.

В последнее время технологии сильно продвинулись вперёд и ЖК-мониторы порой демонстрируют цветовой охват даже шире, чем ЭЛТ-мониторы, хотя до недавнего времени это было невозможно, вот почему старые громоздкие экраны долго не удавалось вытеснить из дизайнерских отделов. Вот какой цветовой охват у профессионального ЖК-монитора:

Наши внимательные читатели наверняка уже измучили себя вопросом, что это за диаграмма в заголовке статьи, от какого она монитора? Это не монитор, а телефон Samsung Galaxy Note . Фокус в том, что в современных смартфонах используется новая технология дисплеев – AMOLED (органические светодиоды). Пока полноценные большие AMOLED-мониторы выходят очень дорогими, но я верю, что будущее именно за ними.

AMOLED позволяет достичь более чистых основных цветов и как следствие – более широкий цветовой охват. На практике это означает, что на Samsung Galaxy Note картинка будет более сочной и контрастной, чем на экранах предыдущих поколений.

Спасибо за внимание.

Понимание того, что вы видите в каждом канале, предоставляет вам знания для создания сложных выделенных областей и тонкой настройки изображений. В этой статье вы заглянете внутрь различных цветовых каналов, начиная с наиболее распространенного режима изображения: RGB.

Сразу оговорюсь, что статья не охватывает . Они настолько важны, что будут описаны в отдельной статье.

Каналы RGB

Если вы готовите изображение, которое отправится на струйный принтер, вероятно, имеющийся у вас дома (а не в типографию), режим RGB - то, что вам нужно. В конце концов, ваш монитор - RGB, как и цифровой фотоаппарат со сканером. Фотошоп не отображает отдельные каналы красным, зеленым и синим цветом - они показаны в градациях серого , чтобы вы могли легко увидеть наиболее насыщенные цветом области. Поскольку цвета в этом режиме состоят из света, белый указывает области, где цвет проявляется в полную силу, черный указывает области, где он слабо заметен, а оттенки серого цвета представляют все участки между ними.

Как можно увидеть на рисунке выше, каждый канал содержит различную информацию:

Красный . Он, как правило, самый светлый из всех и демонстрирует наибольшую разницу цветовой гаммы. В приведенном примере он очень светлый, потому что на коже, волосах девушки много красного цвета. Он может быть очень важен при редактировании тона кожи.

Зеленый. Вы можете думать о нем как о «центре контраста», потому что он обычно наиболее контрастный (это логично, поскольку на цифровых фотоаппаратах зеленых датчиков установлено в два раза больше, чем красных или синих). Помните о нем, создавая слой-маску для усиления резкости изображения или работая с картами смещения.

Синий . Обычно самый темный из группы, он может быть полезен в случае, когда вам нужно создать сложную выделенную область, чтобы изолировать объект. Здесь же вы столкнетесь с такими проблемами, как шум и зерно.

Каналы CMYK

Хотя вы, вероятно, проводите большую часть времени, работая с изображениями RGB, вам также может потребоваться работать с изображениями в режиме CMYK . Его название, означает голубую, пурпурную, желтую и черную краски, применяемые коммерческими типографиями для печати газет, журналов, упаковок продуктов и так далее. В этом режиме также присутствует композитный канал.

Если вы планируете печатать изображение на обычном лазерном или струйном принтере, вам он не потребуется. Кроме того, этот режим лишает вас нескольких драгоценных фильтров и корректирующих слоев. Профессиональная типографская печать, с другой стороны, делит CMYK вашего изображения на отдельные цветоделения. Каждое деление - это идеальная копия цветового канала, который вы видите в фотошопе, напечатанная соответствующим цветом (голубой, пурпурный, желтый или черный). Когда печатная машина накладывает эти четыре цвета поверх друг друга, они образуют полноцветное изображение (этот метод известен как четырехкрасочная печать ).

Поскольку они представляют краски, а не свет, информация в градациях серого имеет противоположное значение, нежели в режиме RGB. В данном режиме черный цвет указывает на полную силу, а белый цвет указывает на самое слабое проявление цвета.

Плашечные каналы

В среде печати CMYK существует особый вид готовой краски, называемый плашечный цвет , для которого требуется особого рода канал. Если вы графический дизайнер, работающий в отделе пред-печатной подготовки (верстки), разработки дизайна продукта или в рекламном агентстве, вам необходимо знание приемов работы с плашечными цветами.

Каналы Lab

Режим Lab отделяет значения яркости (насколько яркое или темное изображение) от цветовой информации. Этот цветовой режим не используется для вывода изображения, как режимы RGB и CMYK, вместо этого он полезен, когда вы хотите изменить только значения яркости изображения (при усилении его резкости или яркости), без смещения цветов.

Подобным образом вы можете настроить только цветовую информацию (скажем, чтобы избавиться от оттенка), не меняя значение яркости. А если вы взглянете на палитру, вы увидите изображения, похожие на рентгеновские.

В режиме Lab присутствуют следующие каналы:

  • Яркость (Lightness) . Он содержит обесцвеченные детали изображения, оно выглядит как действительно хорошая черно-белая версия. Некоторые люди клянутся, что, отделив его в новый документ, а затем проведя небольшую правку, вы сможете создать черно-белое изображение достойное Энсела Адамса .
  • а . Он содержит половину цветовой информации: смесь пурпурного (понимайте как «красный») и зеленого.
  • b . другая половина: смесь желтого и синего.

Многоканальный режим

Этот режим вам не понадобится, если только вы не станете подготавливать изображения для печати в типографии. Однако вы можете оказаться в этом режиме случайно. При удалении одного из цветовых каналов документа в режиме RGB, CMYK или Lab, фотошоп переведет документ в данный режим без появления предупреждения. Если это произойдет, используйте палитру История для возврата на шаг назад или нажмите сочетание клавиш Ctrl+Z, чтобы отменить совершенное действие.

В данном режиме отсутствует композитный канал. Этот режим предназначен исключительно для выполнения заданий на двух-или трехцветную печать, поэтому, когда вы перейдете в него, программа преобразует любые существующие цветовые каналы в плашечные.

При преобразовании изображения в этот режим, фотошоп сразу совершает одну из следующих операций (в зависимости от того, где вы находились ранее):

  • преобразует RGB в голубой, пурпурный и желтый плашечные каналы;
  • преобразует CMYK в голубой, пурпурный, желтый и черный плашечные;
  • преобразует Lab в альфа-каналы под именами Альфа 1, Альфа 2 и Альфа 3;
  • преобразует Градации серого (Grayscale) в черный плашечный.

Такие изменения вызывают радикальные цветовые сдвиги, однако чтобы создать желаемое изображение, вы можете отредактировать их в отдельности, как содержимое, так и плашечный цвет.

Закончив редактирование, сохраните изображение как PSD или как файл DCS 2.0, если вам нужно передать его в программу предпечатной подготовки.

Одноканальные режимы

Остальные режимы изображения не очень интересны, поскольку у них только один канал. К таким режимам относятся Битовый формат (Bitmap), Градации серого (Grayscale), Дуплекс (Duotone) и Индексированные цвета (Indexed Color).

Заметили ошибку в тексте - выделите ее и нажмите Ctrl + Enter . Спасибо!

Как вы уже знаете, каждый пиксел изображения в градациях серого определяется 8 битами информации, и файл может содержать до 256 значений пикселов. Но эти значения (от 1 до 255) не обязательно должны представлять оттенки серого. Режим Indexed Color (Индексированные цвета) предлагает возможность создания 8-битовых изображений с 256 цветами. В таких изображениях используется таблица из 256 цветов, выбранных из всей 24-битовой цветовой палитры. Цвет того или иного пиксела определяется ссылкой к таблице: этот пиксел имеет цвет за номером 123, этот – за номером 81 и т. д.

Режим Indexed Color позволяет экономить дисковое пространство (лишь 8 бит на пиксел против 24 бит в режиме RGB – см. ниже), но дает всего 256 цветов. Это совсем не много по сравнению с 16,7 млн. цветов в режиме RGB. Тем не менее, поскольку многие мониторы работают только в режиме 8-битового отображения цвета, изображения с индексированными цветами идеально подходят для программ мультимедиа и экранных презентаций.

Есть и ряд серьезных ограничений. Прежде всего, в режиме Indexed Color невозможно пользоваться фильтрами и инструментами, выполняющими сглаживание (напр. "палец" или "осветлитель/затемнитель"), так как функция сглаживания здесь недоступна. Это значит, что редактировать изображение следует в RGB и лишь на заключительной стадии выполнять преобразование в Indexed Color.

Другая проблема с индексированными цветами связана с цветовыми таблицами. Если при переносе изображения из одной программы в другую эта таблица изменится, то изменится и цветовой состав изображения. Пиксел номер 123 может и сохранит значение 81, но после переноса в другую программу "цвет 81" может оказаться уже не красным, а синим.

Наконец, изображение с индексированными цветами невозможно разделить на цвета CMYK в программе QuarkXPress или Adobe PageMaker. Если вы собираетесь напечатать такое изображение, его стоит преобразовать в RGB или CMYK, не выходя из Photoshop. Правда, картинка после этого ничуть не улучшится – она по-прежнему будет состоять из 256 цветов.

Кстати, изображения Indexed Color можно более-менее успешно использовать при работе с плашечными цветами.

Изображения с индексированными цветами можно сохранять в форматах Photoshop, CompuServe GIF, PNG, PICT , Amiga IFF и BMP (см. "Другие форматы файла, которые могут вам пригодиться", "Хранение изображений").

Режим RGB

Компьютерные мониторы и телевизоры воспроизводят цвет в режиме RGB, где все разнообразие оттенков формируется сочетанием разного количества красного, зеленого и синего света. (Эти цвета называются первичными аддитивными – сложение красного, зеленого и синего света образует белый). Файлы, сохраненные в режиме RGB, состоят из трех 8-битовых файлов в градациях серого, поэтому принято говорить, что RGB-изображения являются 24-битовыми файлами.

Эти файлы могут включать до 16 млн. цветов – вполне достаточно для фотографического качества. Именно в этом режиме мы предпочитаем редактировать цветные изображения. Большинство сканеров сохраняет изображения в режиме RGB. Исключение составляют оснащенные "цветовыми компьютерами" барабанные сканеры высшего класса, которые автоматически преобразуют файлы в режим CMYK (см. далее).

Если вы занимаетесь созданием изображений для проектов мультимедиа или выводом файлов на устройства записи на пленку (напр. 35-мм слайды или диапозитивы 4 х 5 дюймов), изображения следует всегда сохранять в режиме RGB (см. "Методы вывода").

24-битовые RGB-файлы можно сохранять в форматах Photoshop, EPS, TIFF, PICT , Amiga IFF , BMP, JPEG, PCX, Pixar, Roaw, Scitex CT и Targa. Но если у вас нет веских причин поступать иначе, мы рекомендуем вам пользоваться только форматами Photoshop, TIFF или EPS.

Photoshop позволяет также работать и с 48-битовыми RGB-файлами, содержащими три 16-битовых канала вместо обычных 8-битовых. Несмотря на ограниченный выбор средств для обработки 48-битовых изображений, мы обращаемся к таким файлам все чаще и чаще, поскольку они допускают чрезвычайную гибкость в редактировании (см. "Работа с многобитовыми сканированными изображениями", "Цветокоррекция").

Разумеется, если вы занимаетесь подготовкой изображений для мультимедиа или Web, вы будете все время работать в RGB и переключаться на CMYK вам совершенно незачем.

Режим CMYK

Традиционные машины цветной печати работают только с четырьмя красками: голубой, пурпурной, желтой и черной. Все остальные цвета имитируются комбинацией этих красок. Когда вы открываете CMYK-файл в Photoshop, программа для отображения его на экране компьютера тут же преобразует значения CMYK в значения RGB. Важно помнить, что, просматривая CMYK-файл на экране, вы видите его RGB-версию.

Если вы покупаете сканированные изображения, полученные на сканере высшего класса, это почти наверняка будут CMYK-файлы. Во всех остальных случаях прежде, чем напечатать изображение на печатной машине или настольном принтере, вам нужно будет преобразовать его из RGB в CMYK. Средства, которые в Photoshop используются для такого преобразования, рассмотрены в "Параметры цвета" .

CMYK-файлы можно сохранять в форматах Photoshop, TIFF, EPS, JPEG, Scitex CT и Raw, хотя в большинстве случаев используются первые три.

Режим Lab

Основная проблема моделей RGB и CMYK состоит в том, что применяемые в них значения в действительности цвета не описывают. Скорее это набор инструкций, которыми пользуется выводное устройство для воспроизведения цвета. Но дело в том, что по одним и тем же спецификациям RGB или CMYK разные устройства воспроизводят разные цвета. Вы наверняка видели в магазинах полки с работающими телевизорами и понимаете, о чем речь: одно и то же изображение (с одними и теми же значениями RGB) на разных экранах выглядит по-разному.

А если вам доводилось иметь дело с печатной машиной, то вы знаете, что цвет на пятидесятом оттиске выглядит не так, как на пятитысячном или пятидесятитысячном. Хотя пиксел сканированного изображения имеет определенное значение CMYK или RGB, определить, как этот цвет будет выглядеть в действительности, невозможно. Следовательно, RGB и CMYK являются аппаратно-зависимыми цветовыми моделями.

Между тем существуют и аппаратно-независимые цветовые модели. Все они в той или иной степени основываются на цветовом пространстве, определенном в качестве стандарта в 1931 году организацией Commission Internationale de l’Eclairage (CIE). Модель Lab в Photoshop – одна из его производных.

В отличие от RGB и CMYK, модель Lab определяет цвет не по его компонентам, а дает описание того, как выглядит цвет. Аппаратно-независимые модели составляют ядро систем управления цветом, которые обеспечивают соответствие цветов при отображением их на экране, подачей файла на выводное устройство и получении конечных оттисков.

Файл, сохраненный в модели Lab, описывает, как выглядит цвет в строго определенных условиях. А то, какие значения RGB или CMYK нужны для воспроизведения этого цвета на конкретном выводном устройстве, зависит от вас (или от Photoshop, или от вашей системы управления цветом).

В ходе преобразования изображения из RGB в CMYK или наоборот Photoshop использует модель Lab в качестве эталона, принимая в расчет параметры из диалоговых окон RGB Setup и CMYK Setup (подробно этот процесс описан в "Параметры цвета"). Lab-изображения можно сохранять в форматах Photoshop, EPS, TIFF или Raw.

Хорошо, что работать в режиме Lab приходится довольно редко: управляться с этой моделью почти невозможно. Если RGB или CMYK более или менее понятны, то Lab совершенно непостижима (если вы вдруг почувствовали, что кое-что начинает проясняться, значит у вас нелады с рассудком). Тем не менее, иногда Lab оказывается очень полезной, например при подчистке изображений, полученных на цифровых камерах, или при тонкой настройке яркости).

Подсказка. L означает Luminosity (Светлота) . Преимущество Lab заключается в том, что информация о яркости (канал "L") здесь хранится отдельно от цветовой информации (каналы "a" и "b"). Этим можно воспользоваться для настройки тонов без воздействия на его цвета, а также для повышения резкости без заметного ущерба для качества изображения.

Режим Multichannel

Последним в списке цветовых режимов Photoshop числится Multi-channel – многоканальный. Так же, как RGB или CMYK, он имеет несколько 8-битовых каналов, но позволяет присваивать им любые цвета и имена.

Подобная гибкость может быть как благом, так и наказанием. Прежде, когда цветные сканеры были слишком дороги, мы делали цветные картинки на серых сканерах, сканируя изображение три раза через красную, зеленую и синюю пленки. Затем комбинировали три изображения, объединяя их в одном многоканальном документе, а потом уже выполняли преобразование в RGB. К счастью, теперь в этом нет необходимости.

Сегодня многие изображения, используемые в научных и астрономических целях, делаются с применением "инородного цвета" – в дополнение к различным цветам видимого спектра каналы могут представлять собой комбинацию радио-, инфракрасных и ультрафиолетовых волн. Некоторые из наших знакомых, помешанные на цифровой фотографии, комбинируют в многоканальном режиме обычные снимки с фотографиями, сделанными под воздействием инфракрасных лучей, создавая необыкновенные сюрреалистические композиции.

Мы же обращаемся к режиму Multichannel в основном на промежуточных этапах работы. В нем, например, можно хранить дополнительные каналы масок для прозрачности или выделений, использованных в других изображениях. Многоканальные изображения могут сохраняться только в форматах Photoshop и Raw.

HEX / HTML

Цвет в формате HEX - это ни что иное, как шестнадцатеричное представление RGB.

Цвета представляются в виде трёх групп шестнадцатеричных цифр, где каждая группа отвечает за свой цвет: #112233, где 11 - красный, 22 - зелёный, 33 - синий. Все значения должны быть между 00 и FF.

Во многих приложениях допускается сокращённая форма записи шестнадцатеричных цветов. Если каждая из трёх групп содержит одинаковые символы, например #112233, то их можно записать как #123.

  1. h1 { color: #ff0000; } /* красный */
  2. h2 { color: #00ff00; } /* зелёный */
  3. h3 { color: #0000ff; } /* синий */
  4. h4 { color: #00f; } /* тот же синий, сокращённая запись */

RGB

Цветовое пространство RGB (Red, Green, Blue) состоит из всех возможных цветов, которые могут быть получены путём смешивания красного, зелёного, и синего. Эта модель популярна в фотографии, телевидении, и компьютерной графике.

Значения RGB задаются целым числом от 0 до 255. Например, rgb(0,0,255) отображается как синий, так как синий параметр установлен в его самое высокое значение (255), а остальные установлены в 0.

Некоторые приложения (в частности веб-браузеры) поддерживают процентную запись значений RGB (от 0% до 100%).

  1. h1 { color: rgb(255, 0, 0); } /* красный */
  2. h2 { color: rgb(0, 255, 0); } /* зелёный */
  3. h3 { color: rgb(0, 0, 255); } /* синий */
  4. h4 { color: rgb(0%, 0%, 100%); } /* тот же синий, процентная запись */

Цветовые значения RGB поддерживаются во всех основных браузерах.

RGBA

С недавних пор современные браузеры научились работать с цветовой моделью RGBA - расширением RGB с поддержкой альфа-канала, который определяет непрозрачность объекта.

Значение цвета RGBA задается в виде: rgba(red, green, blue, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: rgb(0, 0, 255); } /* синий в обычном RGB */
  2. h2 { color: rgba(0, 0, 255, 1); } /* тот же синий в RGBA, потому как непрозрачность: 100% */
  3. h3 { color: rgba(0, 0, 255, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: rgba(0, 0, 255, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: rgba(0, 0, 255, 0); } /* полностью прозрачный */

RGBA поддерживается в IE9+, Firefox 3+, Chrome, Safari, и в Opera 10+.

HSL

Цветовая модель HSL является представлением модели RGB в цилиндрической системе координат. HSL представляет цвета более интуитивным и понятным для восприятия образом, чем типичное RGB. Модель часто используется в графических приложениях, в палитрах цветов, и для анализа изображений.

HSL расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Lightness/Luminance (светлота/светлость/светимость, не путать с яркостью).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Lightness является процентным значением светлости (от 0% до 100%).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный */
  2. h2 { color: hsl(120, 100%, 75%); } /* светло-зелёный */
  3. h3 { color: hsl(120, 100%, 25%); } /* тёмно-зелёный */
  4. h4 { color: hsl(120, 60%, 70%); } /* пастельный зеленый */

HSL поддерживается в IE9+, Firefox, Chrome, Safari, и в Opera 10+.

HSLA

По аналогии с RGB/RGBA, для HSL имеется режим HSLA с поддержкой альфа-канала для указания непрозрачности объекта.

Значение цвета HSLA задается в виде: hsla(hue, saturation, lightness, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный в обычном HSL */
  2. h2 { color: hsla(120, 100%, 50%, 1); } /* тот же зелёный в HSLA, потому как непрозрачность: 100% */
  3. h3 { color: hsla(120, 100%, 50%, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: hsla(120, 100%, 50%, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: hsla(120, 100%, 50%, 0); } /* полностью прозрачный */

CMYK

Цветовая модель CMYK часто ассоциируется с цветной печатью, с полиграфией. CMYK (в отличие от RGB) является субтрактивной моделью, это означает что более высокие значения связаны с более тёмными цветами.

Цвета определяются соотношением голубого (Cyan), пурпурного (Magenta), жёлтого (Yellow), с добавлением чёрного (Key/blacK).

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

Например, для получения цвета «PANTONE 7526» следует смешать 9 частей голубой краски, 83 частей пурпурной краски, 100 - жёлтой краски, и 46 - чёрной. Это можно обозначить следующим образом: (9,83,100,46). Иногда пользуются такими обозначениями: C9M83Y100K46, или (9%, 83%, 100%, 46%), или (0,09/0,83/1,0/0,46).

HSB / HSV

HSB (также известна как HSV) похожа на HSL, но это две разные цветовые модели. Они обе основаны на цилиндрической геометрии, но HSB/HSV основана на модели «hexcone», в то время как HSL основана на модели «bi-hexcone». Художники часто предпочитают использовать эту модель, принято считать что устройство HSB/HSV ближе к естественному восприятию цветов. В частности, цветовая модель HSB применяется в Adobe Photoshop.

HSB/HSV расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Brightness/Value (яркость/значение).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Brightness является процентным значением яркости (от 0% до 100%).

XYZ

Цветовая модель XYZ (CIE 1931 XYZ) является чисто математическим пространством. В отличие от RGB, CMYK, и других моделей, в XYZ основные компоненты являются «мнимыми», то есть вы не можете соотнести X, Y, и Z с каким-либо набором цветов для смешивания. XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

LAB

Цветовая модель LAB (CIELAB, «CIE 1976 L*a*b*») вычисляется из пространства CIE XYZ. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета.

RGB модель описывает излучаемые цвета. Она основана на трёх основных (базовых) цветах: красный (Red), зелёный (Green) и синий (Blue). RGB-модель можно назвать "родной" для дисплея. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными.

Из рисунка видно, что сочетание зелёного и красного дают жёлтый цвет, сочетание зелёного и синего - голубой, а сочетание всех трёх цветов - белый. Из этого можно сделать вывод о том, что цвета в RGB складываются субтрактивно.

Основные цвета взяты из биологии человека. То есть, эти цвета основаны на физиологической реакции человеческого глаза на свет. Человеческий глаз имеет фоторецептор клеток, реагирующих на наиболее зеленый (М), желто-зеленый (L) и сине-фиолетовый (S) света (максимальная длин волн от 534 нм, 564 нм и 420 нм соответственно). Человеческий мозг может легко отличить широкий спектр различных цветов на основе различий в сигналах, полученных от трех волн.

Наиболее широко RGB цветовая модель используется в ЖК или плазменных дисплеях, таких как телевизор или монитор компьютера. Каждый пиксель на дисплее может быть представлен в интерфейсе аппаратных средств (например, графические карты) в качестве значений красного, зеленого и синего. RGB значения изменяются в интенсивности, которые используются для наглядности. Камеры и сканеры также работают в том же порядке, они захватывают цвет с датчиками, которые регистрируют различную интенсивность RGB на каждый пиксель.

В режиме 16 бит на пиксель, также известном как Highcolor, есть либо 5 бит на цвет (часто упоминается как 555 режим) или с дополнительным битом для зеленого цвета (известен как 565 режим). Дополнен зеленый цвет из-за того, что человеческий глаз имеет способность выявлять больше оттенков зеленого, чем любого другого цвета.

RGB значения, представленные в режиме 24 бит на пиксель (bpp), известном также под именем Truecolor, обычно выделяется три целых значения между 0 и 255. Каждое из этих трех чисел представляет собой интенсивность красного, зеленого и синего соответственно.

В RGB - три канала: красный, синий и зелёный, т.е. RGB - трёхканальная цветовая модель. Каждый канал может принимать значения от 0 до 255 в десятичной или, что ближе к реальности, от 0 до FF в шестнадцатеричной системах счисления. Это объясняется тем, что байт, которым кодируется канал, да и вообще любой байт состоит из восьми битов, а бит может принимать 2 значения 0 или 1, итого 28=256. В RGB, например, красный цвет может принимать 256 градаций: от чисто красного (FF) до чёрного (00). Таким образом несложно подсчитать, что в модели RGB содержится всего 2563 или 16777216 цветов.

В RGB три канала, и каждый кодируется 8-ю битами. Максимальное, FF (или 255) значение даёт чистый цвет. Белый цвет получается путём сочетания всех цветов, точнее, их предельных градаций. Код белого цвета = FF(красный) + FF(зелёный) + FF(синий). Соответственно код чёрного = 000000. Код жёлтого = FFFF00, пурпурного = FF00FF, голубого = 00FFFF.

Также есть еще 32 и 48 битные режимы отображения цветов.

RGB не используется для печати на бумаге, вместо нее существует CMYK-цветовое пространство.

CMYK - это цветовая модель используемая в цветной печати. Цветовая модель является математической моделью для описания цветов целыми числами. CMYK модель построена на голубом, пурпурном, желтом и черном цветах.