Регулятор напряжения для блока питания своими руками. Блок питания с регулировкой тока и напряжения

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.

Последовательность действий по переделке БП ATX в регулируемый лабораторный.

1. Удаляем перемычку J13 (можно кусачками)

2. Удаляем диод D29 (можно просто одну ногу поднять)

3. Перемычка PS-ON на землю уже стоит.


4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши "вздутости", их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.

5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.


6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и "типа дроссель" L5.


7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.

8. Меняем плохие: заменить С11, С12 (желательно на бОльшую ёмкость С11 - 1000uF, C12 - 470uF).

9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 - у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:


10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (...2-ю ногу), С26, J11 (...3-ю ногу)


11. Не знаю почему, но R38 у меня был перерублен кем-то:) рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.

12. Отделяем 15-ю и 16-ю ноги микросхемы от "всех остальных", для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.


13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.

14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.


Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит. К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП. Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Диодный мост

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформатор ТС-150–1

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Готовый БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели. Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.
Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.


Выбираем уличный датчик движения для включения света

Из статьи вы узнаете, как изготовить блок питания регулируемый своими руками из доступных материалов. Его можно использовать для питания бытовой аппаратуры, а также для нужд собственной лаборатории. Источник постоянного напряжения может применяться для тестирования таких устройств, как реле-регулятор автомобильного генератора. Ведь при его диагностике возникает необходимость в двух напряжениях - 12 Вольт и свыше 16. А теперь рассмотрите особенности конструкции блока питания.

Трансформатор

Если устройство не планируется использовать для зарядки кислотных аккумуляторов и питания мощной аппаратуры, то нет необходимости в использовании крупных трансформаторов. Достаточно применить модели, мощность у которых не более 50 Вт. Правда, чтобы сделать регулируемый блок питания своими руками, потребуется немного изменить конструкцию преобразователя. Первым делом нужно определиться с тем, какой диапазон изменения напряжения будет на выходе. От этого параметра зависят характеристики трансформатора блока питания.

Допустим, вы выбрали диапазон 0-20 Вольт, значит, отталкиваться нужно от этих значений. Вторичная обмотка должна иметь на выходе переменное напряжение 20-22 Вольта. Следовательно, на трансформаторе оставляете первичную обмотку, поверх нее проводите намотку вторичной. Чтобы вычислить необходимое количество витков, проведите замер напряжения, которое получается с десяти. Десятая часть этого значения - это напряжение, получаемое с одного витка. После того как будет сделана вторичная обмотка, нужно произвести сборку и стяжку сердечника.

Выпрямитель

В качестве выпрямителя можно использовать как сборки, так и отдельные диоды. Перед тем как сделать регулируемый блок питания, проведите подбор всех его компонентов. Если высокая на выходе, то вам потребуется использовать мощные полупроводники. Желательно их устанавливать на алюминиевых радиаторах. Что касается схемы, то предпочтение нужно отдавать только мостовой, так как у нее намного выше КПД, меньше потерь напряжения при выпрямлении Однополупериодную схему использовать не рекомендуется, так как она малоэффективна, на выходе возникает много пульсаций, которые искажают сигнал и являются источником помех для радиоаппаратуры.

Блок стабилизации и регулировки

Для изготовления стабилизатора и разумнее всего использовать микросборку LM317. Дешевый и доступный каждому прибор, который позволит за считаные минуты собрать качественный блок питания регулируемый своими руками. Но его применение требует одной важной детали - эффективного охлаждения. Причем не только пассивного в виде радиаторов. Дело в том, что регулировка и стабилизация напряжения происходят по весьма интересной схеме. Устройство оставляет ровно то напряжение, которое необходимо, а вот излишки, поступающие на его вход, преобразуются в тепло. Поэтому без охлаждения вряд ли микросборка долго проработает.

Взгляните на схему, в ней нет ничего сверхсложного. Всего три вывода у сборки, на третий подается напряжение, со второго снимается, а первый необходим для соединения с минусом блока питания. Но здесь возникает маленькая особенность - если включить между минусом и первым выводом сборки сопротивление, то появляется возможность проводить регулировку напряжения на выходе. Причем блок питания регулируемый своими руками может изменять выходное напряжение как плавно, так и ступенчато. Но первый тип регулировки наиболее удобный, поэтому его используют чаще. Для реализации необходимо включить сопротивление переменное 5 кОм. Кроме того, между первым и вторым выводом сборки требуется установить постоянный резистор сопротивлением около 500 Ом.

Блок контроля силы тока и напряжения

Конечно, чтобы эксплуатация устройства была максимально удобной, необходимо проводить контроль выходных характеристик - напряжения и силы тока. Строится схема регулируемого блока питания таким образом, что амперметр включается в разрыв плюсового провода, а вольтметр - между выходами устройства. Но вопрос в другом - какой тип измерительных приборов использовать? Самый простой вариант - это установить два LED-дисплея, к которым подключить схему вольт- и амперметра, собранную на одном микроконтроллере.

Но в блок питания регулируемый, своими руками изготавливаемый, можно смонтировать пару дешевых китайских мультиметров. Благо их питание можно произвести непосредственно от устройства. Можно, конечно, использовать и стрелочные индикаторы, только в этом случае нужно проводить градуировку шкалы для

Корпус устройства

Изготавливать корпус лучше всего из легкого, но прочного металла. Идеальным вариантом окажется алюминий. Как уже было упомянуто, схема регулируемого блока питания содержит элементы, которые сильно нагреваются. Следовательно, внутри корпуса нужно монтировать радиатор, который для большей эффективности соединить можно с одной из стенок. Желательно наличие принудительного обдува. Для этой цели можно использовать термовыключатель в паре с вентилятором. Устанавливать их необходимо непосредственно на радиаторе охлаждения.

Здравствуйте дорогие друзья. Сейчас я вам расскажу о неплохом и дешевом источнике питания (по совместительству ЗУ для автомобиля), который можно собрать собственноручно. Для сборки данной схемы вам понадобится перечень деталей, сейчас я их вам перечислю: трансформатор силовой понижающий, диодный мост, конденсатор электролит большой емкости и конденсатор меньшей емкости, два резистора (один переменный, а второй постоянный), микросхема крен и три мощных транзистора. Самое главное, что все эти детали можно найти в старом ламповом телевизоре, в общем не нужно тратить деньги на покупку дефицитных радиодеталей – это большой плюс данной схемы. Второй существенный плюс – это то, что такая простенькая схемка способна выдавать ток до 22 Ампер при 13 вольтах. Сами видите какие большие преимущества: и легкая, и при не больших затратах денежных средств, а превратить моно такую схему и в лабораторный блок питания, блок питания для опытов (регулируемый), для питания мощных приборов и так далее. Смотрите схему блока питания – зарядного устройства ниже.

Теперь расскажу о каждой детали подробнее. Давайте начнем с силового трансформатора. Силовой трансформатор предназначен для преобразования напряжения одной частоты. Они бывают повышающие и понижающие. Повышающий трансформатор повышает напряжение, а понижающий понижает, значит, так как трансформатор у нас по схеме понижает напряжение – он понижающий. Состоит трансформатор из первичной, вторичной обмотки и магнитопровода. Магнитопровод состоит из отдельных спресованных листов электротехнической стали. Первичная обмотка состоит и множества витков меньшим сечением провода и характеризуется большим сопротивлением по отношению ко вторичной обмотке (когда бдите искать обмотку на 220 вольт – меряйте сопротивления, где большее – там и сетевая обмотка).

Вторичка состоит и наименьшего количества витков и сечение провода больше – это нужно для того, чтобы снять больший ток. Новички возможно спросят, почему выводы 15, 13 и 10,11 соединены вторички. Это нужно делать для боле высокого выходного напряжения трансформатора. Можно просто намотать больше провода на вточичке – напряжение поднимется. А если у вас на трансформаторе не достаточное напряжение – то можно подключить к сети два трансформатора, а вторички подключить последовательно, но тогда трансформаторы лучше брать одинаковые по мощности, так как трансформатор меньшей мощности будет сильнее греться. Трансформатор можно самостоятельно перемотать на нужное вам напряжение и ток – но об этом в другой статье. В общем вот так выглядит трансформатор, как описано выше. Достать можно с лампового телевизора, он там на ват 150 будет. 150/10=15 А, при 10 вольтах такой трансформатор выдаст вам 15 ампер, а при 150 вольтах – 150./150=1 всего один ампер. Считайте так что сами какой вам ток нужен.

Диодный мост собран по мостовой схеме. Диодный мост по мостовой схеме в два раза лучше убирает пульсации сети, чем одно полупериудный выпрямитель, потому в блоках питания устанавливают диодные мосты по мостовой схеме, чтобы аппаратура, которую питает сеть, через диодный мост не давала сбоев, ели УНЧ – то характерного звука. Конденсаторы любые, но на ток не менее 15-20 Ампер, либо купите диодный мост на рынке и ток так же не менее 20 Ампер. Конденсатор на 47000 мкф электролит убирает пульсации как и диодный мост, только конденсатор убирает эти пульсации лучше и соответственно, чем больше емкость конденсатора – тем больше пульсаций он сможет убрать. Можно электролитические конденсаторы изготовить самому: берете пол литровую банку и наливаете электролит, опускаете 2 пластины (одну медную, а вторую железную), получается анод и катод и можно подключать в сеть. Емкость конденсатора будет на прямую зависеть от количества электролита (а вернее заряженного электролита) и размера пластин (вернее, на сколько быстро сможем заряжать электролит и разряжать, ведь от большей площади пластин мы быстрее зарядим жидкость). Кстати, при очень большой емкости можно отказаться от стабилизатора, так как конденсатор собственно и буде являться стабилизатором напряжения и фильтром.

Микросхема КРЕН8б будет стабилизировать ток до 1 Ампера. Данную микросхему в этом блоке питания можно сравнить с предварительным усилителем в УНЧ, так как основное усиление происходит в транзисторах Т1, Т2, Т3. Все транзисторы обязательно ставим на радиаторы. Резистором R1 мы регулируем ток (до 1Ампера), который стабилизируется микросхемой, поступающий на базу транзистора. Соответственно мы регулируем и коэффициентом усиления сразу всех трех транзисторов (максимальный ток на базу одного транзистора равен 0,33 А, т.к. 1/3=0,333333 А). Положительный заряд получается усиливается и через микросхему (для управления коэффициентом усиления транзисторов), и через транзисторы (транзисторы питаем положительным зарядом, а с микросхемы управляем коэффициентом усиления).

Если подсоединить еще транзистора три так параллельно этим трем и параллельно микросхеме КРНЕ подключить еще одну такую, то ток мы сможем получить в два раза выше, чем при данной работающей стандартной схеме. Советую, если вам нужны большие токи, но при этом трансформатор должен быть достаточно мощным. Вот выходной ток должен быть при моем способе под 40 А при 13 вольтах, а значит 40*13=520 ват Трансформатор должен быть мощностью пол киловата. Резистор R2 нужен для ограничения по току, чтобы не допустить короткого замыкания. Тогда далее ставим конденсатор электролит для сглаживания пульсаций на конечном этапе и не мешало бы еще поставить конденсатор меньшей емкости для того чтобы сглаживать пульсации боле высоких частот. Так же если в сети у вас много помех, то рекомендую установить дросель, который уберет все высокочастотные ВЧ помехи. Дросель устанавливайте последовательно, в разрыв цепи перед микросхемой, на плюс естественно.